Хрупкое разрушение это металлов
Процесс деформации при достижении достаточно высоких напряжений заканчивается разрушением. Процесс разрушения состоит из двух стадий — зарождения трещины и ее распространения через все сечение образца (детали).
Разрушение есть многостадийный процесс, в течение которого меняется форма, размеры и микроскопические механизмы роста трещины. На микроскопическом уровне различают:
а) разрушение, когда развивающийся процесс скольжения формирует плоскость будущего излома; последующий процесс отрыва идет по поверхности раздела ( границ зерен) или по плоскостям спайности;
б) смешанные — плоскости излома проходят и через зерна и между ними.
На практике разрушение подразделяют на хрупкое, вязкое и усталостное.
Хрупкое разрушение происходит без макроскопической де формации или с очень малой деформацией, и начинаемся обычно на внешних рисках, подрезах или на уже имеющихся трещинах. Хрупкому разрушению способствуют следующие факторы:
—конструктивная форма: насечки, резьба, риски, резкое изменение сечения;
—технологические: дефекты сварки, закалки, шлифования, высокие напряжения;
—условия нагружения: низкие температуры, ударные нагрузки, многоосное напряженное состояние;
—структура материала: крупные зерна, фазы выделения на границах зерен, старение, неблагоприятные примеси и включения;
—внешние условия: коррозионная среда — коррозионное растрескивание.
Вязкое разрушение сопровождается значительной пластической деформацией и является результатом медленного разрастания достаточно длинных трещин. Разрушение происходит путем образования пор и путем медленного роста ступенчатой трещины при образовании полостей и ямок перед се вершиной.
Вязкое разрушение обусловлено малой скоростью распространения трещины. Скорость распространения хрупкой трещины весьма велика — она близка к скорости звука, поэтому нередко хрупкое разрушение называют «внезапным» или «катастрофическим» разрушением.
С точки зрения микроструктуры существуют два вида разрушения — транскристаллитное и интеркристаллитное. При транскристаллитном разрушении трещина распространяется по телу зерна, а при интеркристаллитном она проходит по границам зерна.
По внешнему виду излома (визуальное наблюдение) можно судить о характере разрушения. Волокнистый (матовый) излом свидетельствует о вязком разрушении, кристаллический (светлый) излом является результатом хрупкого разрушения.
Изучение тонкой структуры излома с помощью электронного микроскопа (микрофракгография) позволяет более уверенно судить о вязком или хрупком характере разрушения. Вязкое разрушение характеризуется «чашечным» микростроением излома. При этом виде разрушения происходит образование внутренних микрообластей («чашек») с последующим удлинением этих локальных очагов разрушения и разрывом перемычек, разделяющих их.
Хрупкое разрушение характеризуется «ручьистым» поверхности излома. Хрупкая трещина распространяется по нескольким параллельным плоскостям. Ступени при разрушении сливаются, образуя ручьистый узор.
Вязкий чашечный и хрупкий ручьистый изломы относятся к транскристаллитному разрушению.
Многие металлы ( Fe, W, Zn и др), в зависимости от температуры могут разрушаться как вязко, так и хрупко. Понижение температуры обусловливает переход от вязкого к хрупкому разрушению. Это явление получило название хладноломкость.
1-«чашечный» излом, 2- «ручьистая» поверхность излома
Усталостные разрушения возникают при циклическом нагружении, приводящем к необратимому накоплению повреждений, являющихся очагами будущего разрушения. Накопление повреждений происходит в три стадии: 1) упрочнение (возникновение, движение и скопление дислокаций), 2) образование трещин (при незначительном движении дислокаций на поверхности возникают экструзии — маленькие и интрузии — маленькие впадины (канавки), приводящие к образованию зародышевых трещин); 3) рост зародышевых трещин.[5]
Хрупкое разрушение
Многолетний опыт эксплуатации металлических конструкций и деталей свидетельствует о том, что наиболее опасным видом разрушения является хрупкое разрушение. Оно происходит довольно быстро и под действием относительно невысоких напряжений и потому наступает внезапно, неожиданно. В этой связи повышается актуальность рассмотрения вопросов, связанных с определением понятия «хрупкое разрушение», систематизации особенностей, этапов и др.
Основные виды разрушения металла
Разрушение металлических материалов представляет собой процесс появления и развития в металле трещин, которые приводят к разделению его на части. То есть оно связано с процессами пластической деформации, возникновения трещин и их последующего распространения на всю конструкцию.
Причины хрупкого разрушения могут быть разнообразны. Наиболее распространенными являются следующие:
- одновременное появление нескольких трещин;
- слияние нескольких трещин, которые расположены рядом друг с другом, в одну магистральную, по которой идет полное разрушение.
Можно выделить три вида разрушений:
- хрупкое;
- вязкое;
- усталостное.
Хрупкое разрушение бывает на металлических конструкциях, характеризующихся слабой пластичностью, вследствие достаточно быстрого распространения в них трещин. При этом трещины возникают, как правило, в локальных зонах высокой концентрации напряжений.
Суть вязкого разрушения может наступить, если нагрузить пластичную конструкцию и при этом превысить предельно допустимую упругость. Металл переходит в новое состояние, которое называют пластической деформацией. Это, в свою очередь, приводит к вязкому разрушению конструкции. Данный вид разрушений может быть вызван избыточными напряжениями, возникающими в результате растяжения, сжатия или сдвига.
Усталостное разрушение – процесс, который чаще всего происходит с наработкой, которая накапливается не один месяц и даже год. Он может возникнуть в результате многократно повторяющегося нагружения напряжением, которое значительно ниже допустимого предела прочности самого материала. Трещины данного вида возникают на малых дефектах структуры металла. На ранних стадиях их можно обнаружить с помощью рентгеновского или ультразвукового контроля.
Особенности хрупкого разрушения конструкций
Хрупкое разрушение конструкций характеризуется некоторыми особенностями. Признаки, которые отличают хрупкое разрушение от других, заключаются в быстром растрескивании под действием относительно невысоких напряжений. То есть для хрупкого разрушения не требуется повышающей нагрузки извне. Для её стремительного развития достаточна величина запасенной упругой энергии самой разрушающейся конструкции.
На хрупкость сварных соединений оказывают влияние различные факторы. К внутренним факторам относятся следующие:
- химический состав;
- тип кристаллической решетки;
- фазовый состав;
- размер структурных составляющих.
К внешним факторам относятся:
- температура;
- тип надреза;
- тип концентратора напряжений;
- условия нагружения;
- скорость нагружения;
- форма и размер детали;
- характер окружающей среды.
Этапы хрупкого разрушения
Несмотря на то, что хрупкое разрушение металлов проходит очень быстро, можно выделить несколько этапов в данном процессе. К ним относятся следующие:
- возникновение хрупкой трещины;
- нестабильное распространение трещины.
Возникновение хрупкой трещины – это стабильный процесс, сопровождаемый макропластической деформацией (утяжкой) и вязким подрастанием трещины, предшествующим ее превращению в хрупкую. Переход процесса разрушения во вторую стадию происходит дискретно, хрупкая трещина мгновенно начинает распространяться нестабильно со скоростью примерно 1000 м/с.
Испытания для выявления склонности материала к хрупкому разрушению
Чтобы определить склонность различных материалов к хрупкому разрушению необходимо провести специальные испытания. Одним из самых популярных является испытание на ударный изгиб с определением ударной вязкости материала. В основе данного метода лежит разрушение образца, которое осуществляется с надрезом или без надреза ударом маятникового копра.
Испытания проводятся при разных температурах, в том числе и отрицательных. Это позволяет выстроить температурную зависимость ударной вязкости и установить величину температурного порога хладноломкости.
Разрушение металлических конструкций может быть различных видов. Одним из самых опасных является хрупкое разрушение. Оно происходит достаточно быстро без серьезных нагрузок и может привести к полному разрушению детали. Именно поэтому необходимо проводить специальные испытания для определения склонности материала к хрупкому разрушению.
С практической точки зрения хрупкое разрушение гораздо важнее, чем вязкое. Это наиболее опасный вид разрушения, идущий катастрофически быстро и под влиянием сравнительно низких напряжений. Поэтому сведения о механизме хрупкого разрушения и условиях, которые ему способствуют или его затрудняют, особенно важны.
Как уже отмечалось, металлы и сплавы идеально хрупко (без пластической деформации) не разрушаются. Хрупкая трещина так же, как и вязкая, возникает по современным воззрениям в результате пластической деформации. Развитие ее происходит в основном на закритической стадии в отличие от вязкой трещины, развитие которой идет стабильно.
Хрупкая трещина при внутризеренном (транскристаллитном) разрушении (трещина скола) обычно распространяется вдоль кристаллографической плоскости с малыми индексами. Например, в металлах с ГП решеткой – по плоскости базиса, в ОЦК решетке – вдоль , иногда, например в ванадии и тантале, вдоль . В металлах с ГЦК решеткой образование трещин скола, как правило, не наблюдается.
В отличие от вязкого, хрупкое разрушение может быть не только внутри-, но и межзеренным. Последнее наблюдается особенно часто в сплавах, где по границам зерен располагаются прослойки второй фазы.
При межзеренном (интеркристаллитном) разрушении трещина в однофазных материалах распространяется по поверхности границ зерен, а при наличии на границах второй фазы – вдоль межфазной поверхности или вдоль скола внутри включений.
В зависимости от характера распространения трещины структура поверхности разрушения получается различной. Структура поверхности внутризеренного скола при узкой пластической зоне у вершины развивающейся хрупкой трещины резко отличается от вязкого излома. При простом осмотре хрупкий излом обычно блестящий или имеет цвет фаз, расположенных по границам зерен. Под микроскопом видно, что внутрикристаллитный скол не идеально гладок. На поверхности его обычно имеются ступеньки, придающие структуре вид ручьистых узоров (рис. 2.39а). В поликристаллических образцах вид этих узоров при переходе от зерна к зерну меняется. Каждая линия речного узора соответствует разнице в уровнях, т.е. ступеньке на поверхности излома.
Рисунок 2.39 - Фрактограммы внутризеренного скола (а) и межзеренного разрушения (б, в). б–небольшое количество частиц избыточных фаз на межзереной поверхности; в–большое количество частиц избыточных фаз на границах зерен (Н. А. Белов, В. В. Чеверикин)
а б
Рельеф хрупкого межзеренного разрушения в однофазном металле или сплаве соответствует форме межкристаллитной границы. Обычно он относительно гладкий, а неровности имеют микроскопические размеры и не образуют каких-либо характерных рельефных особенностей (см. рис. 2.39б). При наличии на границах зерен выделений избыточной фазы они легко выявляются в структуре излома (см. рис. 2.39б,в). По этой структуре можно более точно, чем при металлографическом анализе поверхности шлифа, оценить истинную форму, размеры и долю межзеренной поверхности, занимаемой частицами второй фазы. На шлифе частицы могут быть тонкими и прерывистыми, так как выявляются их произвольные сечения, а фрактографический анализ может показать, что поверхность их сильно развита и они занимают значительную часть площади излома. Естественно, такие частицы будут резко облегчать хрупкое межкристаллитное разрушение.
По микроструктуре излома можно установить, идет ли разрушение вдоль границы между матрицей и избыточной фазой (тогда выделения будут видны только на одной поверхности излома, а на второй мы увидим их «оттиски») или распространяется по телу хрупких включений.
Хрупкое разрушение для любого металлического материала наблюдается лишь при определенных условиях испытания, обработки или эксплуатации. Склонность к хрупкому разрушению особенно сильно зависит от температуры: чем она ниже, тем обычно больше вероятность хрупкого разрушения. Поэтому на температурной зависимости показателя пластичности технических материалов и сплавов выделяется интервал температур перехода (ΔТхр на рис. 2.40) от хрупкого разрушения (близкие к нулю показатели пластичности) к вязкому (значительные по величине показатели пластичности). Вместо интервала температур часто используют какую-то одну температуру хрупко-вязкого перехода Тхр, - верхнюю или нижнюю границы интервала ΔТхр, либо температуру, соответствующую середине этого интервала (рис. 2.40). Иногда Тхр оценивают как температуру, соответствующую определенной доле хрупких по структуре участков излома образца. Величина Тхр широко используется как характеристика склонности того или иного материала к хрупкому разрушению: чем выше Тхр, тем больше эта склонность.
Рисунок 2.40 - Зависимость показателя пластичности от температуры
Особенно важным является хрупкое разрушение при температурах вблизи комнатной и выше. Металлы и сплавы, у которых Тхр лежит при таких температурах, называют хладноломкими. Хладноломкость – проблема особенно острая для многих металлов с ОЦК решеткой.
Для объяснения возможности перехода из хрупкого состояния в пластичное часто привлекают классическую схему А.Ф.Иоффе (рис. 2.41). На этой схеме сопоставляются температурные зависимости хрупкой прочности – сопротивления разрушению отрывом Sот (3) и напряжения, необходимого для начала пластической деформации – предела текучести Sт (1,1 ′ ,2). Величина Sот слабо зависит от температуры, предел же текучести обычно более или менее резко падает при нагреве (рис. 2.41).
Температура перехода Тхр соответствует здесь точке пересечения кривых Sот и Sт . Ниже Тхр разрушающее напряжение достигается раньше, чем предел текучести Sт , и разрушение происходит хрупко, без предварительной пластической деформации. Выше Тхр при нагружении образца в процессе испытания вначале достигается Sт, идет пластическая деформация, а затем уже разрушение, которое в этих условиях в основном вязкое.
Рисунок 2. 41 - Схема А. Ф. Иоффе, объясняющая хрупко-вязкий переход
Схема Иоффе применима для макрообразца и не учитывает локальной концентрации напряжений у вершины распространяющейся трещины. Если же напряжения здесь значительно превзойдут предел текучести, то в процессе развития трещины будет проходить значительная пластическая деформация и работа этой деформации может оказаться настолько большой, что в соответствии с критерием Гриффитса трещина уже не сможет распространяться как хрупкая. Поэтому для того, чтобы ниже Тхр (рис. 2.41) действительно происходил переход из пластического состояния в хрупкое, необходима достаточно резкая температурная зависимость Sт (рис. 2.41, кривая 1). Тогда ниже Тхр даже у вершины трещины напряжения не превзойдут Sт . Если же предел текучести в принятых условиях испытания слабо зависит от температуры (рис. 2.41, кривая 2), то перехода их хрупкого состояния в пластичное наблюдаться не будет.
У материалов с резкой температурной зависимостью предела текучести обычно наблюдается и сильная чувствительность Sт к скорости деформации: увеличение скорости вызывает рост предела текучести (рис. 2.41, кривые 1 и 1′). Это также способствует хрупкому разрушению (повышает Тхр). Скорость пластической деформации вблизи вершины распространяющейся трещины близка к скорости ее развития. При хрупком разрушении эта скорость велика, что определяет высокий предел текучести у вершины трещины. В результате перед быстро движущейся трещиной пластическая деформация затруднена, работа ее мала, и трещине легче распространяться как хрупкой.
Большинство современных теорий хрупкого разрушения так или иначе базируется на схеме Иоффе. При этом учитывается факт зарождения трещин в результате образования дислокационных скоплений и слияния групп дислокаций.
Охрупчивание не всегда является результатом снижения температуры. В некоторых случаях оно наблюдается при повышении температуры. Причинами перехода из пластического состояния в хрупкое при нагреве могут быть старение, упорядочение, оплавление легкоплавких составляющих по границам зерен (красноломкость) и т.д. Например, в результате деформационного старения закаленная сталь охрупчивается при нагреве до 423-573К (явление синеломкости). На температурных зависимостях показателей пластичности иногда наблюдается по нескольку «провалов» пластичности, каждый из которых имеет свою природу.
Изломы, полученные при однократных видах нагружения
По характеру разрушения различают следующие основные виды изломов: вязкие, хрупкие, квазихрупкие, вязко-хрупкие и смешанные.
Вязкое разрушение. Вязкое разрушение всегда сопровождается большой пластической деформацией материала на стадии зарождения и распространения трещины. Поэтому вязкие изломы имеют большую шероховатость, темный матовый цвет и волокнистое строение (рис. 9.1). Вблизи поверхности изломов имеется утяжка (сужение или «шейка») вследствие протекания макроскопической пластической деформации образца или детали.
| Рисунок 9.1 – Общий вид вязких изломов |
Как правило, вязко разрушаются материалы с ГЦК решеткой, а также, в определенных условиях, материалы с ОЦК решеткой, например, мягкие стали при комнатной и повышенных температурах.
Вязкое разрушение начинается с образования пор, которые при дальнейшем увеличении нагрузки соединяются (рис. 9.2 а), образуя характерный ямочный микрорельеф, наблюдаемый на поверхности вязких изломов в электронном микроскопе (рис. 9.2 б).
Вязкое разрушение относится к энергоемкому разрушению, т. к. большая часть энергии затрачивается на пластическую деформацию материала. Поэтому вязкий излом свидетельствует о высоком уровне нагрузки, предшествующей разрушению, и о хорошем сопротивлении материала развитию трещины.
| |
а) | б) |
Рисунок 9.2 – Схема вязкого разрушения с образованием ямочного микрорельефа (а) и ямочный микрорельеф вязкого разрушения стали (б), х1000 |
Хрупкое разрушение. Хрупкое разрушение относят к одному из самых опасных видов разрушения. Оно происходит при небольших нагрузках с очень высокой скоростью. Скорость хрупкой трещины составляет примерно 0,4 от скорости распространения звука в металле. Сопротивление макропластической деформации практически отсутствует. Поэтому хрупкие изломы имеют небольшую шероховатость, светлый цвет, кристаллическое строение с металлическим блеском (рис. 9.3). Утяжка вблизи поверхности изломов практически отсутствует (величина относительного сужения не превышает 1,5 %). При хрупком разрушении металл из-за потери пластичности плохо сопротивляется распространению трещины, поэтому ненадежен в эксплуатации.
| Рисунок 9.3 – Общий вид хрупких изломов |
К основным причинам, вызывающим охрупчивание металлических материалов, следует отнести:
1. Низкие температуры эксплуатации (в основном для материалов с ОЦК и ГПУ решеткой, испытывающих хладноломкость).
2. Высокие скорости нагружения (удар, взрыв и т. д.).
3. Наличие в образце или детали концентраторов напряжения (острых надрезов, трещин и т, д.).
4. Большая толщина детали (масштабный фактор).
5. Структурное состояние материала (например, отпускная хрупкость, наличие примесей по границам зерен и т. д.).
Все перечисленные факторы, кроме некоторых случаев структурного состояния, создают жесткое напряженное состояние материала, затрудняющее пластическую деформацию и охрупчивающее материал.
Хрупкое разрушение подразделяют на транскристаллитное по механизму скола (трещина распространяется по телу зерна) (рис. 9.4 а), и интеркристаллитное (межзеренное) по границам зерен (рис. 9.4 б).
| |
а) | б) |
| |
в) | г) |
Рисунок 9.4 – Схемы внутризеренного (транскристаллитного) (а) и межзеренного (интеркристаллитного) (б) хрупкого разрушения, а также соответствующие микрорельефы изломов стали 45 (в) и Н32Т3 (г). Увеличение: в, г – х1000 |
Транскристаллитный скол происходит путем отрыва; на поверхности излома при большом увеличении видны фасетки скола (рис. 9.4 в). Так чаще всего разрушаются материалы с ОЦК решеткой (например, стали). Межзеренное хрупкое разрушение наблюдается в тех случаях, когда границы зерен ослаблены, например, вследствие расположенных на них выделений или загрязнений. Так могут разрушаться материалы как с ОЦК, так и с ГЦК решеткой (рис. 9.4 г).
Квазихрупкое разрушение.Квазихрупкое (квазивязкое) разрушение по своему механизму близко к вязкому и содержит признаки предшествовавшей пластической деформации, хотя по своей энергоемкости является скорее хрупким, чем вязким, т. к. обладает низким сопротивлением разрушению. Такое разрушение называют квазисколом с образованием розеточного излома. Розеточный излом с плоскими или слегка изогнутыми поверхностями или фасетками образуется за счет слияния отдельных трещин (рис. 9.5 а). Каждая трещина распространяется концентрически. При этом округлый фронт трещин под действием пластической деформации расширяется и образуется пора в виде линзы. При слиянии трещин образуются острые гребни, называемые гребнями отрыва. Микрорельеф поверхности излома, образовавшейся в результате квазискола, показан на рисунке 9.5 б.
Участки квазискола часто смешиваются с ямками отрыва при вязком разрушении, что указывает на схожую природу этих видов разрушения.
| |
Рисунок 9.5 – Схема образования (а) и характерный микрорельеф (б) квазискола. 1 – поверхность сдвига; 2 – отрывные гребни. б – х1500 |
Разрушение в интервале вязко-хрупкого перехода (вязко-хрупкое разрушение). При понижении температуры испытания многие материалы с ОЦК решеткой испытывают хладноломкость, т. е. переходят из пластичного состояния в хрупкое. Для большинства материалов такой переход наблюдается в некотором интервале температур, называемом интервалом вязко-хрупкого перехода. В этом интервале температур характеристики сопротивления материала развитию трещины (ударная вязкость КСU и процентное содержание вязкой составляющей в изломе В) изменяются S-образно (рис. 9.6).
| Рисунок 9.6 – Схема вязко-хрупкого перехода |
Различают нижнюю (Т н хр) и верхнюю (Т в хр) критические температуры хрупкости (рис. 9.6). За Т н хр принимают температуру, при которой на поверхности изломов образуются первые участки вязкой составляющей; за Т в хр – температуру, при которой вся поверхность излома становится вязкой. Верхняя и нижняя критические температуры хрупкости играют большую роль при оценке работоспособности материала в интервале вязко-хрупкого перехода.
Изломы, полученные в интервале вязко-хрупкого перехода, называют вязко-хрупкими. Они содержат одновременно как хрупкую, так и вязкую составляющие. В зависимости от структуры испытуемого металла вязко-хрупкие изломы могут содержать сосредоточенные области вязкого и хрупкого разрушения (сосредоточенное разрушение) или рассредоточенные области (рассредоточенное разрушение) (рис. 9.7).
Следует заметить, что вязко-хрупкое разрушение не следует относить к особому виду разрушения. Оно представляет собой лишь переходное (промежуточное) состояние от вязкого к хрупкому.
а) | б) |
Рисунок 9.7 – Общий вид сосредоточенного (а) и рассредоточенного (б) вязко-хрупких изломов стальных образцов.
Смешанное разрушение имеет место при разрушении материалов с ГЦК-решеткой, например, аустенитных сталей и некоторых цветных сплавов в условиях плоской деформации (при низких температурах, высоких скоростях нагружения и т. д.), а также при разрушении некоторых закаленных инструментальных сталей. Полученные изломы имеют матовую или «бархатную» поверхность; они ровные, без губ среза или имеют небольшие губы среза (рис. 9.8 а) и небольшую шероховатость. Металлический блеск отсутствует.
При микрофрактографическом исследовании таких изломов можно обнаружить практически все виды микрорельефа: ямочный, квазискол, межзеренное вязкое разрушение и т. д. (рис. 9.8 б). Причем, имеет место различное сочетание вышеперечисленных микрорельефов, а сами вышеуказанные микрорельефы не всегда ярко выражены. Так, например, при смешанном разрушении участки ямочного микрорельефа могут состоять из неглубоких мелких ямок, свидетельствующих о невысокой локальной пластической деформации материала.
Разрушение металлов
Разрушение металлов часто происходит вследствие появления и развития трещин (из-за механического воздействия). Это может быть как несколько трещин, расположенных рядом, так и одна магистральная, возникшая при слиянии более мелких. Способность сопротивляться такому процессу зависит от прочности и надежности материала и определяет его долговечность.
Вследствие воздействий внешней среды также может происходить химическое или электрохимическое разрушение металла – коррозия. Обработка поверхностей для защиты проводится в зависимости от агрессивных факторов. Подробнее о видах и причинах разрушения металлов читайте в нашем материале.
Виды разрушения металлов
Специалисты выделяют вязкое и хрупкое разрушение металлов, но эти виды объединяет общий механизм зарождения трещин. В большинстве случаев микротрещины образуются на фоне скопления движущихся дислокаций перед препятствием – перед границами блоков и зерен, перед слиянием дислокаций, пр.
Значительная плотность дислокаций приводит к их слиянию с одновременным формированием микротрещины. Трещина появляется в плоскости, перпендикулярной плоскости скольжения, при плотности дислокаций Ю10–1013 см-2. Существуют и безбарьерные механизмы образования трещин, например, на фоне взаимодействия дислокаций в кристаллической решетке.
При хрупком разрушении металла отрыв происходит, когда нормальные растягивающие напряжения достигают предельного значения сопротивления отрыву. Перед разрушением материал оказывается подвержен упругой, а в некоторых случаях и небольшой пластической деформации.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Хрупкое разрушение характеризуется сопротивлением отрыву и сопровождается кристаллическим изломом, который в большинстве случаев проходит по границам зерен. Тогда плоскость разрушения является перпендикулярной нормальным растягивающим напряжениям, а поверхность излома имеет «ручьистое» строение.
Хрупкая трещина распространяется с большой скоростью, приближенной к скорости звука, по этой причине данный тип разрушения металла известен как внезапный, катастрофический.
На практике чаще встречается не абсолютно хрупкое, а микропластическое разрушение. Дело в том, что когда материал находится в упругодеформированном состоянии, концентрация напряжений у вершины трещины вызывает пластическую микродеформацию.
Вязкое или пластическое разрушение металла можно описать как срез под действием касательных напряжений. Оно предполагает медленное распространение трещины при большой работе. Перед разрушением наблюдается большая пластическая деформация металла с поглощением энергии внешнего нагружения – данный эффект достигается благодаря вязкости материала.
В результате образуется волокнистый излом, особенности которого объясняются пластическим деформированием металла. Плоскость излома находится под углом, а его микростроение принято характеризовать как «чашечное».
С точки зрения микроструктуры разрушение металла делят на транскристаллитное и интеркристаллитное. В первом случае трещина распространяется по телу зерна, тогда как во втором проходит через его тело.
Факторы, влияющие на пластичное и хрупкое состояние металлов
Вязкостью называют способность материала поглощать механическую энергию внешних сил при помощи пластической деформации. С точки зрения физики, вязкость представляет собой энергетическую характеристику и выражается в единицах работы, например в Джоулях.
На показатель вязкости влияет химический состав металлов и сплавов, примененная термическая обработка и ряд прочих внутренних факторов. Не менее важную роль играют условия, в которых металл находится, а именно учитывают температуру, скорость нагружения, наличие концентраторов напряжения, вид напряженного состояния, размеры изделия. В зависимости от этих показателей, материал может быть вязким или хрупким.
Остановимся на каждом факторе более подробно:
Температурное воздействие
Изменение температуры сильно влияет на предел текучести ат, но почти не оказывает воздействия на сопротивление отрыву или SOT. При температуре Тв, то есть указывающей на верхний порог хрупкости, или ломкости, от < SQT, нагружение вызовет пластическое деформирование и последующее разрушение металла.
В этом случае материал оказывается в вязком состоянии. Тогда как при температурах Тн, то есть нижнего порога хрупкости, или хладноломкости, SOT < ат, разрушение не сопровождается пластической деформацией. Значит, можно говорить о том, что металл пребывает в хрупком состоянии.
Стоит пояснить, что под хладноломкостью понимают склонность металла к переходу в хрупкое состояние на фоне снижения температуры. В число хладноломких входят железо, вольфрам, цинк и другие металлы, характеризующиеся объемно-центрированной кубической (ОЦК) и гексагональной плотноупакованной (ГПУ) кристаллической решеткой. Металлы и сплавы с гранецентрированной кубической или ГЦК-решеткой не относятся к хладноломким, поэтому могут применяться в криогенной технике.
Скорость деформации
При переходе от статического нагружения к динамическому возрастает предел текучести, а сопротивление отрыву почти не зависит от скорости деформации. Увеличение скорости деформации приводит к тому, что хрупкость металла проявляется при более высокой температуре. Если металл при статическом нагружении остается вязким, то динамическое нагружение способно спровоцировать его переход в хрупкое состояние.
Наличие концентраторов напряжения
Под концентраторами напряжений понимают надрезы, отверстия, выточки, канавки, включения – они оказывают значительной воздействие на материал, приводя к повышению его хрупкости. Чаще всего очагами хрупкого разрушения металлов становятся трещины. Для надреза характерна концентрация напряжений у его вершины. Чем больше глубина надреза и чем он острее, тем большее влияние металл испытывает под действием коэффициента концентрации напряжений.
Пластичным материалам свойственна местная пластическая деформация около вершины надреза при Оmax > SQr. Сам металл упрочняется, уменьшается острота надреза, снижается концентрация напряжения, благодаря чему достигается надежная работа изделия. Если материал не склонен к местной пластической деформации, у вершины надреза формируется трещина, а ее развитие вызывает хрупкое разрушение.
Напряженное состояние
Важной характеристикой различных способов нагружения является коэффициент мягкости =max /Smax, где max – наибольшие касательные напряжения; Smax – наибольшие растягивающие напряжения. Для осевого сжатия ос = 2; для кручения – 0,8; для осевого растяжения – 0,5. Сжатие металла сопровождается вязким разрушением путем среза, перед которым наблюдается пластическая деформация. Тогда как растяжение того же материала вызывает хрупкое разрушение путем отрыва.
Масштабный фактор
Речь идет о влиянии размеров изделия на разрушение металлов и сплавов. Дело в том, что при увеличении массы повышается вероятность присутствия дефектов в объеме материала, которые могут запустить процесс разрушения.
Усталостное разрушение металлов
Усталость – это разрушение металлов на фоне повторных нагрузок либо связанных с изменением знака напряжений. Она наблюдается у пружин автоматики, деталей кулачковых и любых иных механизмов, постоянно претерпевающих нагружение и последующеее разгружение, растяжение и сжатие или многократно повторяющиеся ударные и плавно возрастающие нагрузки.
Например, материал валов, которые передают крутящий момент, подвержен изгибу с вращением. Из-за этого наблюдается многократное изменение знака напряжения, то есть растяжение сменяется сжатием.
От других видов усталостное разрушение металлов отличается внезапным характером, оно не сопровождается видимыми внешними признаками предварительной пластической деформации. Обычно в усталостном изломе присутствуют две характерные зоны: с гладкой и неровной поверхностью. Первая формируется при постепенном развитии трещины, а другая представляет собой область, в которой произошел излом оставшейся части сечения.
Усталостное разрушение свойственно деталям, функционирующим при напряжении, не достигающем напряжения предела текучести металла. Формирование подобных трещин объясняется строением материала, то есть присутствием различно ориентированных зерен, блоков, включений неметаллической природы, микропор, дислокаций и твердых дефектов решетки.
Под усталостью понимают постепенное накопление повреждений из-за повторно-переменных напряжений, что в итоге вызывает растрескивание и механическое разрушение металла изделия.
Помимо усталости, существует и противоположное свойство – выносливость, то есть способность материала сопротивляться усталости.
Теоретический предел выносливости представляет собой наибольшее напряжение цикла, с которым металл справляется без последующих разрушений при бесконечно большом количестве циклов нагружения.
Предел выносливости определяют, исходя из заданного числа циклов нагружения N. Например, у стали этот показатель составляет 107, у цветных металлов N = 108. В большинстве случаев для выяснения предела выносливости проводят испытание образца на изгиб с вращением со знакопеременным симметричным циклом напряжений.
Данная характеристика во многом связана с качеством обработки поверхности металла. Так, при зачистке грубым напильником предел выносливости сокращается на 20 % по сравнению с аналогичным показателем полированного металла. А наличие коррозии приводит к его многократному снижению.
Химическая коррозия металлов
Такое разрушение металлов происходит в среде, неспособной передавать электрический ток. Например, данный процесс запускается при нагреве, что приводит к образованию сульфидов (химических соединений) и различных видов пленок. Сплошные пленки могут быть непроницаемыми.
В итоге коррозия и разрушение поверхности металла останавливается, так как материал оказывается законсервированным. Подобным слоем защищена поверхность алюминия, хрома, никеля, свинца. На стали и чугуне пленка непрочная и не может препятствовать разрушению более глубоких слоев изделия.
Выделяют два типа химической коррозии:
Газовая появляется на поверхности металла под действием агрессивной среды газа, пара при повышенной температуре. Особенность таких условий состоит в том, что в горячей среде на поверхности нет конденсата. Химическая коррозия может быть спровоцирована кислородом, диоксидом серы, водяным паром, сероводородом, пр. В результате наблюдается абсолютное разрушение активного металла, кроме ситуаций, когда он находится под защитой плотной пленки.
Для запуска жидкостной коррозии необходимы жидкостные среды, неспособные передавать электричество. Чаще всего такой эффект достигается при контакте металла с сырой нефтью, нефтепродуктами, смазочными материалами. Если в указанных веществах присутствует вода в небольших объемах, коррозия становится электрохимической.
При любом виде химической коррозии скорость разрушения металла зависит от химической реакции, при которой окислитель проникает сквозь поверхностную оксидную пленку.
Электрохимическая коррозия металлов
Для электрохимической коррозии необходима среда, передающая электрический ток. Подобный процесс приводит к изменению состава металла, ведь атомы покидают кристаллическую решетку на фоне анодного или катодного влияния. В первом случае ионы металла переходят в окружающую жидкость. Во втором – получаемые при анодном процессе электроны связываются с окислителем.
Чаще всего встречается электрохимическая коррозия под действием водорода или кислорода, что важно учитывать при защите металлов от разрушений. Дело в том, что металлические изделия обычно испытывают на себе влияние влажной среды во время хранения и использования.
Электрохимическая коррозия может быть нескольких видов:
- Электролитная. Обязательным условием для нее является контакт металла с растворами солей, кислотами, основаниями, обычной водой.
- Атмосферная. Протекает под действием влажной атмосферы и является наиболее распространенной, так как ей подвержено подавляющее большинство предметов из металла.
- Почвенная. Является результатом контакта металлического изделия с влажной почвой, в которой нередко присутствуют различные химические элементы, обеспечивающие более активное разрушение металла. Кислые почвы способствуют повышенной скорости протекания коррозии, а песчаные оказывают самое медленное влияние.
- Аэрационная. Относится к самым редким видам коррозии – ее основным признаком является неравномерный доступ воздуха к разным поверхностям металла. Неоднородное воздействие приводит к разрушению линий переходов между разными участками.
- Морская коррозия металлов. Это еще один из видов разрушения металлов под действием окружающей среды – процесс происходит из-за контакта с морской водой. Его выделяют как отдельный тип, так как речь идет о жидкости с большой долей солей и растворенных органических веществ в составе. Данные характеристики обеспечивают морской воде повышенную агрессивность.
- Биокоррозия. Металл может разрушаться и под действием бактерий, ведь в процессе своей жизнедеятельности подобные живые существа вырабатывают углекислый газ и другие вещества.
- Электрокоррозия. В данном случае разрушение металла объясняется воздействием на него блуждающих токов. Обычно подобные процессы протекают в подземных сооружениях, например, им подвержены рельсы метрополитена, стержни заземления, трамвайные линии, пр.
Рекомендуем статьи
На производстве в состав стали нередко добавляют легирующие компоненты, защищающие металл от образования очагов коррозии всех либо только некоторых типов. В качестве легирующего элемента может использоваться хром – он должен составлять не менее 13 % от общего объема сплава. Помимо этого, предотвратить появление коррозии на стали без применения легирующих добавок позволяют конструктивные, пассивные и активные методы антикоррозионной защиты.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Читайте также: