Хлорпропан с металлическим натрием

Обновлено: 07.01.2025

Гексан C6H14 – это предельный углеводород, содержащий шесть атомов углерода в углеродной цепи. Бесцветная жидкость с характерным запахом, нерастворим в воде и не смешивается с ней.

Гомологический ряд гексана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4, или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
Метан CH4
Этан C2H6
Пропан C3H8
Бутан C4H10
Пентан C5H12
Гексан C6H14
Гептан C7H16
Октан C8H18
Нонан C9H20
Декан C10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Строение гексана

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp 3 :


При образовании связи С–С происходит перекрывание sp 3 -гибридных орбиталей атомов углерода:


При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:


Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:


Это соответствует тетраэдрическому строению.

Например, в молекуле гексана C6H14 атомы водорода располагаются в пространстве в вершинах тетраэдров, центрами которых являются атомы углерода. При этом углеродный скелет имеет зигзагообразное строение.

Изомерия гексана

Структурная изомерия

Для гексана характерна структурная изомерия – изомерия углеродного скелета.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомеры углеродного скелета отличаются строением углеродного скелета.

Для пентана не характерна пространственная изомерия.

Химические свойства гексана

Гексан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для гексана характерны реакции:

  • разложения,
  • замещения,
  • окисления.

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для гексана характерны радикальные реакции.

Гексан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Гексан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании гексана образуется смесь хлорпроизводных.

Бромирование протекает более медленно и избирательно.

1.2. Нитрование гексана

Гексан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в гексане замещается на нитрогруппу NO2.

Например. При нитровании гексана образуются преимущественно 2-нитрогексан и 3-нитрогексан:

2. Дегидрирование гексана

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:



3. Крекинг

Крекинг – это реакция разложения алкана с длинной углеродной цепью на алканы с более короткой углеродной цепью и алкены.

Крекинг бывает термический и каталитический.

Термический крекинг протекает при сильном нагревании без доступа воздуха.

При этом получается смесь алканов и алкенов с различной длиной углеродной цепи и различной молекулярной массой.

Например, при крекинге н-гексана образуется смесь, в состав которой входят этилен, пропан, метан, бутилен, пропилен, этан и другие углеводороды.

Каталитический крекинг проводят при более низкой температуре в присутствии катализаторов. Процесс сопровождается реакциями изомеризации и дегидрирования. Катализаторы каталитического крекинга – цеолиты (алюмосиликаты кальция, натрия).

4. Окисление гексана

Гексан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

Полное окисление – горение

Гексан горит с образованием углекислого газа и воды. Реакция горения гексана сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении гексана в недостатке кислорода может образоваться угарный газ СО или сажа С.

5. Изомеризация гексана

Под действием катализатора и при нагревании неразветвленные алканы, содержащие не менее четырех атомов углерода в основной цепи, могут превращаться в более разветвленные алканы.

Получение гексана

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета.

Реакция больше подходит для получения симметричных алканов.

Гексан можно получить из 1-хлорпропана и натрия:

2. Гидрирование алкенов и алкинов

Гексан можно получить из гексена или гексина:

При гидрировании гексена-1, гексена-2 или гексена-3 образуется гексан:

При полном гидрировании гексина-1, гексина-2 или гексина-3 также образуется гексан:

3. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Из угарного газа и водорода можно получить гексан:

4. Получение гексана в промышленности

В промышленности гексан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H + Li + K + Na + NH4 + Ba 2+ Ca 2+ Mg 2+ Sr 2+ Al 3+ Cr 3+ Fe 2+ Fe 3+ Ni 2+ Co 2+ Mn 2+ Zn 2+ Ag + Hg 2+ Pb 2+ Sn 2+ Cu 2+
OH - РРРРРМНМНННННННН--ННН
F - РМРРРМННММНННРРРРР-НРР
Cl - РРРРРРРРРРРРРРРРРНРМРР
Br - РРРРРРРРРРРРРРРРРНММРР
I - РРРРРРРРРР?Р?РРРРНННМ?
S 2- МРРРР---Н--Н-ННННННННН
HS - РРРРРРРРР?????Н???????
SO3 2- РРРРРННМН?-Н?НН?ММ-Н??
HSO3 - Р?РРРРРРР?????????????
SO4 2- РРРРРНМРНРРРРРРРРМ-НРР
HSO4 - РРРРРРРР-??????????Н??
NO3 - РРРРРРРРРРРРРРРРРРРР-Р
NO2 - РРРРРРРРР????РМ??М????
PO4 3- РНРР-ННННННННННННННННН
CO3 2- РРРРРНННН??Н?ННННН?Н?Н
CH3COO - РРРРРРРРР-РР-РРРРРРР-Р
SiO3 2- ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:


Скопируйте эту ссылку, чтобы разместить результат запроса " " на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Внимание, если вы не нашли в базе сайта нужную реакцию, вы можете добавить ее самостоятельно.

На данный момент доступна упрощенная авторизация через VK.
В будущем добавлю авторизацию через Гугл и Яндекс.

Здесь вы можете выбрать параметры отображения органических соединений.

Эти параметры действуют только для верхнего изображения вещества и не применяются в реакциях.

Размер шрифта
Отображение гетероатомов

Корректная работа сайта обеспечена на всех браузерах, кроме Internet Explorer.

Если вы пользуетесь Internet Explorer, смените браузер.

На сайте есть сноски двух типов:

Подсказки - помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация - такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Пропан: способы получения и химические свойства

Пропан C3H8 – это предельный углеводород, содержащий три атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.

Гомологический ряд пропана

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Строение пропана

Например, в молекуле пропана C3H8 атомы водорода располагаются в пространстве в вершинах тетраэдров, центрами которых являются атомы углерода. При этом углеродный скелет образует угол, т.е. геометрия молекулы — уголковая или V-образная.

Изомерия пропана

Для пропана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.

Химические свойства пропана

Пропан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для пропана характерны реакции:

Поэтому для пропана характерны радикальные реакции.

Пропан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

Пропан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании пропана образуется смесь хлорпроизводных.

Хлорпропан может взаимодействовать с хлором и дальше с образованием дихлорпропана, трихлорпропана, тетрахлорпропана и т.д.

1.2. Нитрование пропана

Пропан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в пропане замещается на нитрогруппу NO2.

2. Дегидрирование пропана

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

3. Окисление пропана

Пропан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Пропан горит с образованием углекислого газа и воды. Реакция горения пропана сопровождается выделением большого количества теплоты.

При горении пропана в недостатке кислорода может образоваться угарный газ СО или сажа С.

Получение пропана

При проведении синтеза со смесью разных галогеналканов образуется смесь разных алканов.

2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH → R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии бутаноата натрия с гидроксидом натрия при сплавлении образуются пропан и карбонат натрия:

CH3–CH2 – CH2 –COONa + NaOH → CH3–CH2 – CH3 + Na2CO3

3. Гидрирование алкенов и алкинов

Пропан можно получить из пропилена или припина:

При гидрировании пропена образуется пропан:

При полном гидрировании пропина также образуется пропан:

4. Синтез Фишера-Тропша

Из угарного газа и водорода можно получить пропан:

5. Получение пропана в промышленности

В промышленности пропан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Читайте также: