Химическое соединение двух металлов

Обновлено: 22.01.2025

ИНТЕРМЕТАЛЛИДЫ (от лат. inter - между и металл) (интерметаллич. соединения), хим. соед. двух или неск. металлов между собой. Относятся к металлическим соединениям, или металлидам. И. образуются в результате взаимод. компонентов при сплавлении, конденсации из пара, а также при р-циях в твердом состоянии вследствие взаимной диффузии (при химико-термич. обработке), при распаде пересыщенного твердого раствора одного металла в другом, в результате интенсивной пластич. деформации при мех. сплавлении (механоактивации). Для И. характерны преим. металлич. тип хим. связи и специфич. металлич. св-ва. Однако среди И. имеются также солеобразные соед. с ионной связью (т. наз. валентные соед., образующиеся из элементов разл. хим. природы и представляющие собой стехиометрич. соед.), напр. NaAu, соед. с промежут. характером связи - ионно-металлич. и ковалентно-металлической, а также с ковалентной. Так, в ряду соед. Mg с элементами подгруппы IVa вместе с уменьшением различия в электрохим. характеристиках компонентов наблюдается и изменение св-в И. - от характерных для ионных соед. (Mg 2 Si, Mg 2 Ge) к св-вам, типичным для металлов (Mg 2 Pb). В соед. структурного типа NiAs (рис. 1) или родственных типов Ni 2 In, NiTe 2 или CdI 2 , представляющих собой соед. переходных металлов подгрупп VIIб, VIIIб и металлов подгруппы Сu с элементами подгрупп IIIa-VIa (т. наз. никель-арсенидные фазы, или фазы Макарова), сложная природа хим. связи, к-рая изменяется с изменением положения компонентов в периодич. системе; одновременно изменяется и состав И. Для соед. состава АВ характерна ковалентно-металлич. связь; при изменении состава И. от АВ 2 (напр., NiTe 2 ) до А 2 В (напр., Ni 2 In) наблюдается изменение природы связи - от преобладающей ионно-ковалентной до металлической.

Среди двойных И. наиб. распространены соед. Курнакова, фазы Лавеса, фазы Юм-Розери (электронные соед.), s-фазы, s-подобные фазы. Известны и нек-рые др. И. Особенно многочисленными являются соед. Курнакова (сверхструктуры, упорядоченные твердые р-ры), характеризующиеся упорядоченным расположением атомов компонентов (атомы каждого из металлов занимают в кристаллич. решетке И. строго определенное положение, создавая как бы неск. вставленных одна в другую подрешеток). Сверхструктуры по сравнению с неупорядоченными твердыми р-рами того же состава часто имеют большие (в 2-3 раза) размеры элементарных ячеек, а также добавочные дифракц. линии на рентгенограммах. Соед. Курнакова имеют составы АВ, А 2 В, А 3 В и т. д., однако в силу металлич. характера связи эти фазы могут обладать широкими областями гомогенности. В нек-рых сплавах упорядоченное расположение атомов компонентов возникает уже при кристаллизации, но в большинстве случаев упорядочение происходит в твердом состоянии ниже определенной т-ры, наз. точкой Курнакова. Фазы Лавеса - соед. состава АВ 2 (реже АВ) - образуются обычно при определенном соотношении атомных радиусов компонентов r А /r В и обладают узкими областями гомогенности. При взаимод. металлов подгруппы Iб, а также нек-рых переходных с металлами подгрупп IIIa, IVa, IIб-Vб при условии достаточно малого различия в величинах атомных радиусов компонентов образуются фазы Юм-Розери, часто наз. также электронными соединениями. s-Фазы образуют переходные металлы гл. обр. подгрупп Vб, VIб с металлами подгрупп VIIб, VIIIб также при условии достаточно малого различия в величинах их атомных радиусов (эти И. иногда наз. электронными соед. переходных металлов). s-Подобные фазы, напр., m-, c-, Р-фазы, сходны по кристаллич. структуре с s-фазами, но все же имеют небольшие отличия. Состав большинства И. не отвечает простым атомным соотношениям компонентов, т. к. обычно эти соотношения определяются структурным типом и наличием упорядоченного расположения атомов компонентов. Упорядоченные структуры характерны для многих b-фаз Юм-Розери, фаз Лавеса и родственных им соед. (напр., SmCo 5 ), для фаз структурного типа Cr 3 Si, m-фаз (напр., Fе 7 Мо 6 ), нек-рых s-фаз. Многие И., напр., e-фазы Юм-Розери, фаза s-FeCr, являются неупорядоченными.
Кристаллическая структура. Классификация И. по кристаллич. структурным типам плохо коррелирует с типами хим. связи, т. к. одни и те же структуры м. б. у соед. с разл. природой хим. связи. Можно лишь выделить структуры с низкими координац. числами (к. ч.), характерные для И. с ковалентной связью. При этом атомы элемента из подгрупп б периодич. системы в структуре типа СаF 2 расположены внутри тетраэдра (к. ч. = 4, напр., PtAl 2 , AuIn 2 ), а в структуре типа NiAs - в центре тригональной призмы (к. ч. = 6). Структуры ионных и металлич. кристаллов можно рассматривать как плотные упаковки сферич. частиц (см. Плотная упаковка). Благодаря плотной упаковке одни и те же структурные типы характерны для кристаллов с ионным и металлич. типом связи. Главный параметр, определяющий возникновение того или иного структурного типа для ионных и металлич. кристаллов, - отношение соотв. ионных и металлич. радиусов компонентов. Ограничение числа реализующихся структурных типов для И. связано с тем, что диапазон изменений металлич. атомных радиусов существенно уже, чем диапазон изменений радиусов катионов и анионов в ионных соединениях. Вместе с тем среди И., как и среди металлов, имеются специфич. кристаллич. структуры. Предложенный Л. Полингом метод описания структуры ионных кристаллов с помощью координац. полиэдров используют и для описания структур И. Напр., легко устанавливается родственность И. трех структурных типов фаз Лавеса (усеченные тетраэдры) MgCu 2 , MgZn 2 и MgNi 2 (рис. 2). В основе наиб. общей систематики структурных типов И. (П. И. Крипякевич, 1963) лежат координац. характеристики атома меньшего размера. Всего выделено 14 классов (или семейств) структурных типов, главные из них указаны в табл. 1.

Рис. 2. Структура фаз Лавеса: a -MgCu 2 . Атомы Mg образуют подрешетку со структурой типа алмаза. Атомы Сu расположены в пустотах (порах) этой подрешетки, образуя тетраэдры (показаны крупной штриховкой); центры этих тетраэдров совпадают с центрами тетраэдрич. пор подрешетки атомов Mg. Соединения вершин соседних тетраэдров также образуют тетраэдр (показан мелкой штриховкой); это позволяет представить расположение атомов непрерывной вязью тетраэдров по всему кристаллу, что справедливо для всех типов фаз Лавеса; б - полиэдр Лавеса - усеченный тетраэдр; в, г, д - изображения структурных типов фаз Лавеса в полиэдрах соотв. MgCu 2 , MgZn 2 , MgNi 2 .

К числу наиб. распространенных относятся И., имеющие структуры, близкие к структурам чистых металлов, - плотнейшие кубич. гранецентрированную и гексагональную (к. ч. = 12), а также кубич. объемноцентрированную (к. ч. = 8 + 6, где 8 и 6 - число атомов соотв. в первой и второй координац. сферах). Координац. многогранники для плотнейших упаковок шаров одинакового размера - кубооктаэдр и его гексагон. аналог (рис. 3, а, б) - характерны для И., компоненты к-рых имеют близкие атомные радиусы. Кроме соед. со структурами типов Сu и Mg к данному классу принадлежат семейства сверхструктур (напр., AuCu, AuCu 3 , Pt 7 Cu), а также структурные типы Ni 3 Sn, TiCu 3 и др. К. ч. = 8 + 6 соответствует координац. многогранник в виде куба (8 соседей у центр. атома), атомы второй координац. сферы располагаются в вершинах октаэдра. К этому классу относятся структурные типы a-Fe, сверхструктуры на основе решетки типа a-Fe (напр., b-латунь или CuZn, Fe 3 Al).

Др. подход к систематике кристаллич. структур металлов и их сплавов основан на выявлении наиб. характерных плотных и плоских (или почти плоских) сеток и последовательностей их укладки (У. Пирсон, 1972).

Рис. 3. Наиб. распространенные координац. многогранники для интерметаллидов: а - кубооктаэдр, к. ч. = 12 (гранецентрир. кубич. структура); б- гексагональный аналог кубооктаэдра, к. ч. = 12 (гексагон. плотноупакованная структура); в- куб, к. ч. = 8, и октаэдр, к. ч. = 6 (объемноцентрированная кубич. структура). Атом в центре координац. многогранника показан черным кружком, атомы в вершинах - светлыми, принадлежат первой координац. сфере (а, б) или первой и второй (в).

241_260-3.jpg

Примерно половина всех известных структурных типов металлич. и полупроводниковых соед. описываются укладкой правильных атомных треугольных (3 6 ), гексагональных (6 3 ) сеток, сеток кагомэ (3636) и сеток (3 2 434), содержащих квадраты (рис. 4; в обозначениях сеток большие цифры указывают форму ячейки, напр. 3 - треугольная, 4 - квадрат и т. д., цифры в верх. индексах - число таких ячеек, окружающих узел сетки).

Рис. 4. Структуры интерметаллидов, изображенные атомными сетками.

241_260-4.jpg

Известные решетки металлов - гексагональная плотноупакованная и кубич. гранецентрированная - представляют собой двух- (ABA. ) и трехслойные (АВСА. ) упаковки треугольных сеток 3 6 ; в структурах соед. сетки содержат атомы разного сорта с упорядоченным или неупорядоченным расположением, м. б. искаженными и иметь пятиугольные ячейки. В качестве примера на рис. 5 представлена структура s-фазы, показанная сетками.

Рис. 5. Структура s-фазы; представлена двумя сетками кагоме, повернутыми одна по отношению к другой на 90°; атомы, находящиеся между этими сетками, обозначены черными кружками.

241_260-5.jpg

Несмотря на удобство описания мн. структур с помощью плоских атомных сеток, следует учитывать трехмерный характер координации атомов в структурах кристаллов И. Одним из главных принципов структурообразования для этих кристаллов следует считать предложенный Ф. Лавесом в 1967 принцип наиб. полного заполнения пространства, к-рое обеспечивается или плотнейшей упаковкой сфер при одинаковом радиусе компонентов (к. ч. = 12; поры, или пустоты, между атомами имеют конфигурацию тетраэдров и октаэдров), или идеальной упаковкой неск. искаженных тетраэдров (характеризуется только одним типом пор - тетраэдрическим).

Рис. 6. Координац. многогранники Каспера - Франка; показаны проекциями атомов на плоскость чертежа; атомы, находящиеся на разных уровнях по отношению к центральному, изображены разл. способами.

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ (металлиды), обладают металлич. св-вами, в частности электрич. проводимостью, что обусловлено металлич. характером хим. связи. К металлическим соединениям относятся соед. металлов друг с другом - интер-металлиды и мн. соед. металлов (в осн. переходных) с неметаллами. Металлич. св-ва обычно сильнее проявляются в богатых металлами соед.-низших карбидах, нитридах, сульфидах, оксидах и т.д.

К металлическим соединениям относятся фазы внедрения (фазы Хэгга), структура к-рых состоит из атомов металла, расположенных так же, как и в характерных для металлов плотных упаковках (гексагoн., гранецентрир. или объемноцентрир. кубич.), а атомы неметаллов (Н, N, С, В, Р, О) расположены в пустотах этой плотной упаковки. Фазы внедрения могут образовываться, если отношение радиусов атомов металла и неметалла равно или менее 0,59 (правило Хэгга). Когда это отношение больше 0,59, возникают более сложные структуры. В фазах внедрения, как правило, подрешетка атомов металла отличается от структуры исходного металла. Так, у кароидов Ti и V типа MX гранецентрир. кубич. кристаллич. решетка (хотя эти металлы не кристаллизуются в такой решетке). Для фаз внедрения характерно образование более или менее широких областей гомогенности, верх. границей к-рых является стехиометрич. состав.

Фазы состава М 4 Х обычно имеют кубич. гранецентрир. подрешетку металлич. атомов, М 2 Х-гексагон. компактную, MX-кубическую (гранецентрир. или объемноцентрир.) или простую гексагональную. Т. к. в плотнейших гексагoн. и кубич. упаковках число октаэдрич. пустот равно числу металлич. атомов, а число тетраэдрических - вдвое больше, при размещении атомов неметаллов в октаэдрич. пустотах предельный состав отвечает ф-ле MX, в тетраэдрических-МХ 2 . К фазам внедрения относятся в осн. гидриды, карбиды, нитриды, частично оксиды, фосфиды и бориды переходных металлов.

Силициды, германиды и т.п. из-за больших атомных радиусов неметалла, как правило, не образуют фазы внедрения, однако и среди них имеются соед. с металлоподобными структурами (типа b-W). Низшие сульфиды, селениды, арсе-ниды переходных металлов (в частности, со структурами типа NaCl или NiAs) часто обладают металлич. св-вами. Близкий к фазам внедрения характер имеют бронзы оксидные.

К металлическим соединениям относятся многие т. наз. ф а з ы Ц и н т л я -бинарные, тройные и более сложные соед., включающие наиб. активные s-металлы наряду с металлами и неметаллами IIIa-VIa гр., характеризующиеся образованием групп одинаковых атомов (металла или неметалла). Примеры фаз Цинтля - высшие бориды (СаВ 6 с октаэдрич. группировками В 6 и др.), Li 21 Si 5 , в к-ром м.б. выделены группы [Li 22 Si 4 ] 6+ и [Li 20 Si 6 ] 4- , двойной силицид Li 8 MgSi 6 , в к-ром существуют группы Li 8 MgSi и кольцевая группа Si 5 .

К металлическим соединениям относятся также сверхпроводниковые соед. (см. Сверхпроводники)-ф а з ы Ш е в р ё л я, напр. Mo 6 S 8 и соед. внедрения на его основе М х Мо 6 S 8 (напр., Cu 2 Mo 6 S 8 ), высокотемпературные оксидные сверхпроводники, напр. Ba 2 YCu 3 O 0,65+x (при 0,23 < х < 0,3), фторидные сверхпроводники, напр. Hg 3-x AsF 6 , и др.

===
Исп. литература для статьи «МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ» : нет данных

ИНТЕРМЕТАЛЛИДЫ

Структура арсенида никеля

ИНТЕРМЕТАЛЛИДЫ (от лат. inter - между и металл) (интерметаллич. соединения), хим. соед. двух или неск. металлов между собой. Относятся к металлическим соединениям, или металлидам. Интерметаллиды образуются в результате взаимод. компонентов при сплавлении, конденсации из пара, а также при р-циях в твердом состоянии вследствие взаимной диффузии (при химико-термич. обработке), при распаде пересыщенного твердого раствора одного металла в другом, в результате интенсивной пластич. деформации при мех. сплавлении (механоактивации). Для интерметаллидов характерны преим. металлич. тип хим. связи и специфич. металлич. св-ва. Однако среди интерметаллидов имеются также солеобразные соед. с ионной связью (т. наз. валентные соед., образующиеся из элементов разл. хим. природы и представляющие собой стехиометрич. соед.), напр. NaAu, соед. с промежут. характером связи - ионно-металлич. и ковалентно-металлической, а также с ковалентной. Так, в ряду соед. Mg с элементами подгруппы IVa вместе с уменьшением различия в электрохим. характеристиках компонентов наблюдается и изменение св-в интерметаллидов - от характерных для ионных соед. (Mg 2 Si, Mg 2 Ge) к св-вам, типичным для металлов (Mg 2 Pb). В соед. структурного типа NiAs (рис. 1) или родственных типов Ni 2 In, NiTe 2 или CdI 2 , представляющих собой соед. переходных металлов подгрупп VIIб, VIIIб и металлов подгруппы Сu с элементами подгрупп IIIa-VIa (т. наз. никель-арсенидные фазы, или фазы Макарова), сложная природа хим. связи, к-рая изменяется с изменением положения компонентов в периодич. системе; одновременно изменяется и состав интерметаллидов. Для соед. состава АВ характерна ковалентно-металлич. связь; при изменении состава интерметаллидов от АВ 2 (напр., NiTe 2 ) до А 2 В (напр., Ni 2 In) наблюдается изменение природы связи - от преобладающей ионно-ковалентной до металлической.

Среди двойных интерметаллидов наиб. распространены соед. Курнакова, фазы Лавеса, фазы Юм-Розери (электронные соед.), s -фазы, s -подобные фазы. Известны и нек-рые др. интерметаллиды. Особенно многочисленными являются соед. Курнакова (сверхструктуры, упорядоченные твердые р-ры), характеризующиеся упорядоченным расположением атомов компонентов (атомы каждого из металлов занимают в кристаллич. решетке интерметаллидов строго определенное положение, создавая как бы неск. вставленных одна в другую подрешеток).

Фазы Лавеса

Сверхструктуры по сравнению с неупорядоченными твердыми р-рами того же состава часто имеют большие (в 2-3 раза) размеры элементарных ячеек, а также добавочные дифракц. линии на рентгенограммах. Соед. Курнакова имеют составы АВ, А 2 В, А 3 В и т.д., однако в силу металлич. характера связи эти фазы могут обладать широкими областями гомогенности. В нек-рых сплавах упорядоченное расположение атомов компонентов возникает уже при кристаллизации, но в большинстве случаев упорядочение происходит в твердом состоянии ниже определенной т-ры, наз. точкой Курнакова. Фазы Лавеса - соед. состава АВ 2 (реже АВ) - образуются обычно при определенном соотношении атомных радиусов компонентов r А /r В и обладают узкими областями гомогенности. При взаимод. металлов подгруппы Iб, а также нек-рых переходных с металлами подгрупп IIIa, IVa, IIб-Vб при условии достаточно малого различия в величинах атомных радиусов компонентов образуются фазы Юм-Розери, часто наз. также электронными соединениями. s -Фазы образуют переходные металлы гл. обр. подгрупп Vб, VIб с металлами подгрупп VIIб, VIIIб также при условии достаточно малого различия в величинах их атомных радиусов (эти интерметаллиды иногда наз. электронными соед. переходных металлов). s -Подобные фазы, напр., m -, c -, Р-фазы, сходны по кристаллич. структуре с s -фазами, но все же имеют небольшие отличия. Состав большинства интерметаллидов не отвечает простым атомным соотношениям компонентов, т.к. обычно эти соотношения определяются структурным типом и наличием упорядоченного расположения атомов компонентов. Упорядоченные структуры характерны для многих b -фаз Юм-Розери, фаз Лавеса и родственных им соед. (напр., SmCo 5 ), для фаз структурного типа Cr 3 Si, m -фаз (напр., Fе 7 Мо 6 ), нек-рых s -фаз. Многие интерметаллиды, напр., e -фазы Юм-Розери, фаза s -FeCr, являются неупорядоченными.
Кристаллическая структура. Классификация интерметаллидов по кристаллич. структурным типам плохо коррелирует с типами хим. связи, т. к. одни и те же структуры м. б. у соед. с разл. природой хим. связи. Можно лишь выделить структуры с низкими координац. числами (к. ч.), характерные для интерметаллидов с ковалентной связью. При этом атомы элемента из подгрупп б периодич. системы в структуре типа СаF 2 расположены внутри тетраэдра (к. ч. = 4, напр., PtAl 2 , AuIn 2 ), а в структуре типа NiAs - в центре тригональной призмы (к. ч. = 6). Структуры ионных и металлич. кристаллов можно рассматривать как плотные упаковки сферич. частиц (см. Плотная упаковка). Благодаря плотной упаковке одни и те же структурные типы характерны для кристаллов с ионным и металлич. типом связи. Главный параметр, определяющий возникновение того или иного структурного типа для ионных и металлич. кристаллов, - отношение соотв. ионных и металлич. радиусов компонентов. Ограничение числа реализующихся структурных типов для интерметаллидов связано с тем, что диапазон изменений металлич. атомных радиусов существенно уже, чем диапазон изменений радиусов катионов и анионов в ионных соединениях. Вместе с тем среди интерметаллидов, как и среди металлов, имеются специфич. кристаллич. структуры. Предложенный Л. Полингом метод описания структуры ионных кристаллов с помощью координац. полиэдров используют и для описания структур интерметаллидов. Напр., легко устанавливается родственность интерметаллидов трех структурных типов фаз Лавеса (усеченные тетраэдры) MgCu 2 , MgZn 2 и MgNi 2 (рис. 2). В основе наиб. общей систематики структурных типов интерметаллидов (П. И. Крипякевич, 1963) лежат координац. характеристики атома меньшего размера. Всего выделено 14 классов (или семейств) структурных типов, главные из них указаны в табл. 1.

Рис. 2. Структура фаз Лавеса: a - MgCu 2 . Атомы Mg образуют подрешетку со структурой типа алмаза. Атомы Сu расположены в пустотах (порах) этой подрешетки, образуя тетраэдры (показаны крупной штриховкой); центры этих тетраэдров совпадают с центрами тетраэдрич. пор подрешетки атомов Mg. Соединения вершин соседних тетраэдров также образуют тетраэдр (показан мелкой штриховкой); это позволяет представить расположение атомов непрерывной вязью тетраэдров по всему кристаллу, что справедливо для всех типов фаз Лавеса; б - полиэдр Лавеса - усеченный тетраэдр; в, г, д - изображения структурных типов фаз Лавеса в полиэдрах соотв. MgCu 2 , MgZn 2 , MgNi 2 .

К числу наиб. распространенных относятся интерметаллиды, имеющие структуры, близкие к структурам чистых металлов, - плотнейшие кубич. гранецентрированную и гексагональную (к. ч. = 12), а также кубич. объемноцентрированную (к. ч. = 8 + 6, где 8 и 6 - число атомов соотв. в первой и второй координац. сферах). Координац. многогранники для плотнейших упаковок шаров одинакового размера - кубооктаэдр и его гексагон. аналог (рис. 3, а, б) - характерны для интерметаллидов, компоненты к-рых имеют близкие атомные радиусы. Кроме соед. со структурами типов Сu и Mg к данному классу принадлежат семейства сверхструктур (напр., AuCu, AuCu 3 , Pt 7 Cu), а также структурные типы Ni 3 Sn, TiCu 3 и др. К. ч. = 8 + 6 соответствует координац. многогранник в виде куба (8 соседей у центр. атома), атомы второй координац. сферы располагаются в вершинах октаэдра. К этому классу относятся структурные типы a -Fe, сверхструктуры на основе решетки типа a -Fe (напр., b -латунь или CuZn, Fe 3 Al).

Др. подход к систематике кристаллич. структур металлов и их сплавов основан на выявлении наиб. характерных плотных и плоских (или почти плоских) сеток и последовательностей их укладки (У. Пирсон, 1972).

Рис. 3. Наиб. распространенные координационные многогранники для интерметаллидов: а - кубооктаэдр, к. ч. = 12 (гранецентрир. кубич. структура); б - гексагональный аналог кубооктаэдра, к. ч. = 12 (гексагон. плотноупакованная структура); в - куб, к. ч. = 8, и октаэдр, к. ч. = 6 (объемноцентрированная кубич. структура). Атом в центре координац. многогранника показан черным кружком, атомы в вершинах - светлыми, принадлежат первой координац. сфере (а, б) или первой и второй (в).

Структуры интерметаллидов

Примерно половина всех известных структурных типов металлич. и полупроводниковых соед. описываются укладкой правильных атомных треугольных (3 6 ), гексагональных (6 3 ) сеток, сеток кагомэ (3636) и сеток (3 2 434), содержащих квадраты (рис. 4; в обозначениях сеток большие цифры указывают форму ячейки, напр. 3 - треугольная, 4 - квадрат и т.д., цифры в верх. индексах - число таких ячеек, окружающих узел сетки).

Рис. 4. Структуры интерметаллидов, изображенные атомными сетками.

Структура sigma-фазы

Известные решетки металлов - гексагональная плотноупакованная и кубич. гранецентрированная - представляют собой двух- (ABA. ) и трехслойные (АВСА. ) упаковки треугольных сеток 3 6 ; в структурах соед. сетки содержат атомы разного сорта с упорядоченным или неупорядоченным расположением, м. б. искаженными и иметь пятиугольные ячейки. В качестве примера на рис. 5 представлена структура s -фазы, показанная сетками.

Рис. 5. Структура s -фазы; представлена двумя сетками кагоме, повернутыми одна по отношению к другой на 90°; атомы, находящиеся между этими сетками, обозначены черными кружками.

Координационные многогранники Каспера - Франка

Несмотря на удобство описания мн. структур с помощью плоских атомных сеток, следует учитывать трехмерный характер координации атомов в структурах кристаллов интерметаллидов. Одним из главных принципов структурообразования для этих кристаллов следует считать предложенный Ф. Лавесом в 1967 принцип наиб. полного заполнения пространства, к-рое обеспечивается или плотнейшей упаковкой сфер при одинаковом радиусе компонентов (к. ч. = 12; поры, или пустоты, между атомами имеют конфигурацию тетраэдров и октаэдров), или идеальной упаковкой неск. искаженных тетраэдров (характеризуется только одним типом пор - тетраэдрическим).

Рис. 6. Координационные многогранники Каспера - Франка; показаны проекциями атомов на плоскость чертежа; атомы, находящиеся на разных уровнях по отношению к центральному, изображены разл. способами.

ИНТЕРМЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ

(металлические соединения, металлиды) - в узком смысле кристаллы, представляющие собой соединения металлов друг с другом; в широком смысле двух- или многокомпонентные кристаллы, электронное строение к-рых имеет характерные признаки металла (или полупроводника). Кристаллич. структуры И. с. отличаются от структуры отд. компонент. 3 Si, Cr 5 Si 3 , CrSi, CrSi 2 , причём первое и последнее из них отличаются протяжёнными концентрац. областями гомогенности. В И. с. существуют равновесные точечные дефекты типа атомов замещения, внедрения или вакансий, концентрация к-рых больше, чем в однокомпонентных кристаллах. В нек-рых И. с., напр. VH 1 _ x , TiC 1 _ x , Ni 1-x Al, a-Fе 1 _ x Si 2 , концентрация вакансии достигает десятков % от числа узлов решётки. 2 Mg,MgZn 2 , MgNi 2 ), фазы внедрения (гидриды, карбиды, нитриды металлов), И. с. переходных d -металлов друг с другом (s-фазы), И. с. d- и f -металлов о непереходными элементами и др. Электронными соединениями являются, напр., фазы системы Сu-Zn: CuZn (b-фаза), Cu 5 Zn 3 (g-фаза), CuZn 3 (e-фаза). Их кристаллич. структура и состав определяются гл. обр. электронной концентрацией, к-рая для перечисленных И. с. близка к 3 / 2 , 31 / 13 , 7 / 4 (отношение числа валентных электронов к числу атомов). Эти значения соответствуют размерам ферма-поверхности, при к-рых она касается границ первой Бриллюэна зоны для соответствующих кристаллич. структур. Для электронного строения таких И. с. характерно расположение уровня Ферми в энергетич. зоне, образованной s состояниями (зона s-типа), и приблизительная сферичность поверхности Ферми. 3 Si, Nb 3 Ge, Nb 3 Sn и др.), полупроводники и полуметаллы(GaAs, HgTe, CrSi 2 , CoB, Mg 2 Sn и др.), ферромагнетики(SmCo, CoPt и др.), кристаллы с высокими термоэмиссионными свойствами (LaB 6 ). Нек-рые И. с. обладают высокой твёрдостью (WC, TiB 2 , TiC), жаростойкостью (MoSi 2 , TiB 2 ), a TaC - высокой темп-рой плавления. Лит.: Гельд П. В., Сидоренко Ф. А., Силициды переходных металлов четвертого периода, М., 1971; Мелихов В. Д., Пресняков А. А., Строение и свойства электронных фаз, А.-А., 1973; Тейлор К., Интерметаллические соединения редкоземельных металлов, пер. с англ., М., 1974; Крипякевич П. И., Структурные типы интерметаллических соединений, М., 1977; Андриевский Р. А., Уманский Я. С., Фазы внедрения, М., 1977; Гладышевский Е. И., Бодак О. И., Кристаллохимия интерметаллических соединений редкоземельных металлов, Львов, 1982; Кузьма Ю. Б., Кристаллохимия боридов, Львов, 1983; Свойства, получение и применение тугоплавких соединений. Справочник, под ред. Т. Я. Косолаповой, М., 1986.П. В. Гелъд, Ф. А. Сидоренко.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Полезное

Смотреть что такое "ИНТЕРМЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ" в других словарях:

ИНТЕРМЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ — (интерметаллиды устар.) хим. соединения металла с металлом, напр. CuAl2, MgZn2, Al2CuMg и др. В таких соединениях преобладает (см.). И. с. не подчиняются законам постоянства состава и простых кратных отношений (см. ). Практическое применение И. с … Большая политехническая энциклопедия

Интерметаллические соединения — химические соединения металлов друг с другом; см. Металлиды … Большая советская энциклопедия

Интерметаллические соединения — Интерметаллид (интерметаллическое соединение) химическое соединение из двух или более металлов. Интерметаллиды, как и другие химические соединения, имеют фиксированное соотношение между компонентами. Интерметаллиды обладают, как правило, высокой… … Википедия

СОЕДИНЕНИЯ ИНТЕРМЕТАЛЛИЧЕСКИЕ — соединения металлов друг с другом. Обладают преимущественно метал. связью. В отличие от обычных хим. соединений часто не подчиняются законам постоянства состава и простых кратных отношений. Геологический словарь: в 2 х томах. М.: Недра. Под… … Геологическая энциклопедия

Металлические соединения — интерметаллические соединения, то же, что Металлиды … Большая советская энциклопедия

Антимониды — соединения сурьмы с металлами. Твёрдые вещества с относительно высокой температурой плавления. Некоторые А. (Na3Sb, Ca3Sb2, Zn3Sb2 и др.) можно рассматривать как производные сурьмянистого водорода SbH3 (стибина), другие (ZnSb, SnSb, Ni4Sb … Большая советская энциклопедия

Олово — 50 Индий ← Олово → Сурьма … Википедия

Sn — Олово / Stannum (Sn) Атомный номер 50 Внешний вид простого вещества серебристо белый мягкий, пластичный металл (β олово) или серый порошок (α олово) Свойства атома Атомная масса (молярная масса) 118,71 а. е. м. (г/моль) … Википедия

Крик олова — Олово / Stannum (Sn) Атомный номер 50 Внешний вид простого вещества серебристо белый мягкий, пластичный металл (β олово) или серый порошок (α олово) Свойства атома Атомная масса (молярная масса) 118,71 а. е. м. (г/моль) … Википедия

Оловянная чума — Олово / Stannum (Sn) Атомный номер 50 Внешний вид простого вещества серебристо белый мягкий, пластичный металл (β олово) или серый порошок (α олово) Свойства атома Атомная масса (молярная масса) 118,71 а. е. м. (г/моль) … Википедия

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ

(металлиды), обладают металлич. св-вами, в частности электрич. проводимостью, что обусловлено металлич. характером хим. связи. К М. с. относятся соед. металлов друг с другом - интер-металлиды и мн. соед. металлов (в осн. переходных) с неметаллами. Металлич. св-ва обычно сильнее проявляются в богатых металлами соед.-низших карбидах, нитридах, сульфидах, оксидах и т. д.

К М. с. относятся фазы внедрения (фазы Хэгга), структура к-рых состоит из атомов металла, расположенных так же, как и в характерных для металлов плотных упаковках (гексагoн., гранецентрир. или объемноцентрир. кубич.), а атомы неметаллов (Н, N, С, В, Р, О) расположены в пустотах этой плотной упаковки. Фазы внедрения могут образовываться, если отношение радиусов атомов металла и неметалла равно или менее 0,59 (правило Хэгга). Когда это отношение больше 0,59, возникают более сложные структуры. В фазах внедрения, как правило, подрешетка атомов металла отличается от структуры исходного металла. Так, у кароидов Ti и V типа MX гранецентрир. кубич. кристаллич. решетка (хотя эти металлы не кристаллизуются в такой решетке). Для фаз внедрения характерно образование более или менее широких областей гомогенности, верх. границей к-рых является стехиометрич. состав.

Силициды, германиды и т. п. из-за больших атомных радиусов неметалла, как правило, не образуют фазы внедрения, однако и среди них имеются соед. с металлоподобными структурами (типа b-W). Низшие сульфиды, селениды, арсе-ниды переходных металлов (в частности, со структурами типа NaCl или NiAs) часто обладают металлич. св-вами. Близкий к фазам внедрения характер имеют бронзы оксидные.

К М. с. относятся многие т. наз. ф а з ы Ц и н т л я -бинарные, тройные и более сложные соед., включающие наиб. активные s-металлы наряду с металлами и неметаллами IIIa-VIa гр., характеризующиеся образованием групп одинаковых атомов (металла или неметалла). Примеры фаз Цинтля - высшие бориды (СаВ 6 с октаэдрич. группировками В 6 и др.), Li 21 Si 5 , в к-ром м. б. выделены группы [Li 22 Si 4 ] 6+ и [Li 20 Si 6 ] 4- , двойной силицид Li 8 MgSi 6 , в к-ром существуют группы Li 8 MgSi и кольцевая группа Si 5 .

К М. с. относятся также сверхпроводниковые соед. (см. Сверхпроводники)- ф а з ы Ш е в р ё л я, напр. Mo 6 S 8 и соед. внедрения на его основе М х Мо 6 S 8 (напр., Cu 2 Mo 6 S 8 ), высокотемпературные оксидные сверхпроводники, напр. Ba 2 YCu 3 O 0,65+x (при 0,23 < х 0,3), фторидные сверхпроводники, напр. Hg 3-x AsF 6 , и др.

Лит. см. при статьях Интерметаллиды, Металлы и др.

Смотреть что такое "МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ" в других словарях:

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ — (металлиды), твёрдые фазы сплавов металлов друг с другом (интерметаллич. соединения) или с нек рыми неметаллами (напр., с Н, В, N, С, Si), обладающие металлическими св вами. В отличие от твёрдых растворов М. с. относятся к т. н. промежуточным… … Физическая энциклопедия

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ — то же, что металлиды … Большой Энциклопедический словарь

металлические соединения — то же, что металлиды. * * * МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ, то же, что металлиды (см. МЕТАЛЛИДЫ) … Энциклопедический словарь

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ — то же, что металлиды … Естествознание. Энциклопедический словарь

МЕТАЛЛИЧЕСКИЕ КРИСТАЛЛЫ — кристаллич. в ва, все атомы к рых объединены металлическими связями валентные электроны металла делокализованы по всему пространству кристаллич. решетки, образуемой его положит. ионами. Структуры М. к. характеризуются плотной и плот нейшей… … Химическая энциклопедия

Соединения на высокопрочных болтах — Соединения на высокопрочных болтах – вид соединения, основанного на трении, возникающем между соприкасающимися поверхностями собранных деталей в результате сильного их сжатия высокопрочными болтами. [Справочник проектировщика. Металлические … Энциклопедия терминов, определений и пояснений строительных материалов

Соединения в строительных конструкциях — Соединения в строительных конструкциях – служат для образования необходимых связей между конструктивными элементы с целью создания узлов, увеличения размеров конструкции и обеспечения её работы как единого целого в соответствии с… … Энциклопедия терминов, определений и пояснений строительных материалов

Соединения (строит.) — Соединения в строительных конструкциях служат для осуществления необходимой связи конструктивных элементов между собой, обеспечения надёжности строительной конструкции, её работы как единого целого в соответствии с требованиями эксплуатации и… … Большая советская энциклопедия

металлические конструкции — строительные конструкции, выполненные из металла. Подразделяются на стальные и из лёгких сплавов. По характеру соединения элементов делятся на сварные, клёпаные и с болтовыми соединениями. Металлоконструкции обладают высокой прочностью, надёжны в … Энциклопедия техники

Читайте также: