Химические свойства типичных металлов неметаллов и амфотерных элементов

Обновлено: 24.01.2025

Перед изучением этого раздела рекомендую изучить следующие темы:

Химические свойства амфотерных оксидов

Амфотерные оксиды проявляют свойства и основных, и кислотных. От основных отличаются только тем, что могут взаимодействовать с растворами и расплавами щелочей и с расплавами основных оксидов, которым соответствуют щелочи.

1. Амфотерные оксиды взаимодействуют с кислотами и кислотными оксидами.

При этом амфотерные оксиды взаимодействуют, как правило, с сильными и средними кислотами и их оксидами.

Например , оксид алюминия взаимодействует с соляной кислотой, оксидом серы (VI), но не взаимодействует с углекислым газом и кремниевой кислотой:

амфотерный оксид + кислота = соль + вода

амфотерный оксид + кислотный оксид = соль

2. Амфотерные оксиды не взаимодействуют с водой.

Оксиды взаимодействуют с водой, только когда им соответствуют растворимые гидроксиды, а все амфотерные гидроксиды — нерастворимые.

амфотерный оксид + вода ≠

3. Амфотерные оксиды взаимодействуют с щелочами.

При этом механизм реакции и продукты различаются в зависимости от условий проведения процесса — в растворе или расплаве.

В растворе образуются комплексные соли, в расплаве — обычные соли.

Формулы комплексных гидроксосолей составляем по схеме:

  1. Сначала записываем центральный атом-комплекообразователь (это, как правило, амфотерный металл).
  2. Затем дописываем к центральному атому лиганды — гидроксогруппы. Число лигандов в 2 раза больше степени окисления центрального атома (исключение — комплекс алюминия, у него, как правило, 4 лиганда-гидроксогруппы).
  3. Заключаем центральный атом и его лиганды в квадратные скобки, рассчитываем суммарный заряд комплексного иона.
  4. Дописываем необходимое количество внешних ионов. В случае гидроксокомплексов это — ионы основного металла.

Основные продукты взаимодействия соединений амфотерных металлов со щелочами сведем в таблицу.

Степень окисле-ния +2 (Zn, Sn, Be)

* здесь Х — щелочной металл, Y — амфотерный металл.

Исключение — железо не образует гидроксокомплексы в растворе щелочи!

Например :

амфотерный оксид + щелочь (расплав) = соль + вода

амфотерный оксид + щелочь (раствор) = комплексная соль


4. Амфотерные оксиды взаимодействуют с основными оксидами.

При этом взаимодействие возможно только с основными оксидами, которым соответствуют щелочи и только в расплаве. В растворе основные оксиды взаимодействуют с водой с образованием щелочей.

амфотерный оксид + основный оксид = соль + вода

5. Окислительные и восстановительные свойства.

Амфотерные оксиды способны выступать и как окислители, и как восстановители и подчиняются тем же закономерностям, что и основные оксиды. Окислительно-восстановительные свойства амфотерных оксидов подробно рассмотрены в статье про основные оксиды.

6. Амфотерные оксиды взаимодействуют с солями летучих кислот.

При этом действует правило: в расплаве менее летучие кислоты и их оксиды вытесняют более летучие кислоты и их оксиды из их солей.

Например , твердый оксид алюминия Al2O3 вытеснит более летучий углекислый газ из карбоната натрия при сплавлении:

Металлы и неметаллы

Наш мир наполняют различные простые вещества – металлы или неметаллы. При существовании 120 химических элементов, Вселенную наполняют более 400 простых веществ. Этот парадокс связан с понятием аллотропии – явлением образования одним химическим элементом двух и более простых веществ. Например, атом кислорода может формировать молекулярный кислород О2 и озон О3.

План урока:

Физические свойства металлов

Металлы – химические элементы, атомы которых в процессе реакции стремятся отдавать электроны. Они обладают металлической кристаллической решеткой и общими физическими свойствами. На данный момент известно более 87 металлов.

Для металлов характерен ряд свойств:

  • твердость (кроме ртути, которая представляет собой жидкость);
  • металлический блеск;
  • проводимость электрического тока и тепла;
  • пластичность.

Металлы при ударах не разрушаются, а меняют форму. С этой особенностью связано то, что из них производят проволоку, металлические листы и др. Развитие бронзового и железного века связано с производством товаров из металлов.

Физические свойства неметаллов

Неметаллы – химические элементы, атомы которых стремятся принять чужие электроны. Для них характерны атомные и молекулярные кристаллические решетки. Для атомов неметаллов не характерны общие физические свойства. На данный момент существует 22 неметалла.

Для неметаллов характерен ряд свойств:

  • хрупкость (неметаллы нельзя ковать);
  • отсутствие блеска;
  • непроводимость электрического тока и тепла.

Расположение металлов и неметаллов в периодической таблице Д.И. Менделеева

Определить, является простое вещество металлом или неметаллом, можно с помощью периодической таблицы Менделеева. Металлы располагаются ниже диагонали «водород-бор- кремний-мышьяк-теллур-астат», а неметаллы выше.

Красные ячейки – неметаллы, синие – металлы

Элементы, расположенные вблизи диагонали, обладают смешанными свойствами: проявляют как металлические, так и неметаллические свойства. Они называются полуметаллами.

Красные ячейки – полуметаллы

Полуметаллы имеют ковалентную кристаллическую решетку при наличии металлической проводимости (электропроводности). Валентных электронов у них либо недостаточно для образования полноценной ковалентной связи, либо они не удерживаются достаточно прочно из-за больших размеров атома. Поэтому связь в ковалентных кристаллах этих элементов имеет частично металлический характер.

Закономерности в таблице Д.И. Менделеева

Каждый атом состоит из протонов, нейтронов и электронов. Протоны и нейтроны находятся в ядре, который несет положительный заряд. Вокруг ядра движутся отрицательно заряженные электроны. Атомный номер указывает на количество протонов.

Чем больше заряд ядра, тем сильнее к нему притягиваются электроны. Т.о., атому сложнее отдавать электроны. Поэтому в периоде слева направо, с увеличением порядкового номера металлические свойства ослабевают, а неметаллические – усиливаются.

Неметаллы стремятся принять электроны от других атомов. Период в таблице указывает на количество электронных уровней. По мере увеличения числа орбиталей электроны отдаляются от ядра и атому сложнее удерживать электроны на последних уровнях. Т.о., в группе сверху вниз количество орбиталей возрастает, поэтому металлические свойства усиливаются, а неметаллические – уменьшаются.

Способы получения металлов

Большую часть металлов получают из оксидов при нагревании.

Металлы, имеющие на внешнем уровне один-два электрона, получают с помощью электролиза расплавов.

Химические свойства металлов

Все металлы проявляют восстановительные свойства. Легкость в отдачи внешнего электрона применяется в фотоэлементах. Степень активности определяется рядом активности. У самых активных на внешнем уровне располагается по одному электрону.

Общие химические свойства металлов выражаются в реакциях со следующими соединениями.

Активные металлы реагируют с галогенами и кислородом. С азотом взаимодействуют только литий, кальций и магний. Большинство металлов при взаимодействии с кислородом образуют оксиды, а наиболее активные металлы – пероксиды (N2O2).

2 Ca + MnO2 → 2 CaO + Mn(нагревание)

Водород в кислотах вытесняют только те металлы, которые в ряду напряжений стоят до водорода.

Более активные металлы вытесняют из соединений менее активные.

  • Химические свойства щелочных и щелочно-земельных металлов (реакции с водой)

2 Na + 2 H2O → 2 NaOH + H2

Способы получения неметаллов

Неметаллы синтезируют из природных соединений с помощью электролиза.

2 KCl → 2 K + Cl2

Также неметаллы получают в результате окислительно-восстановительных реакций.

SiO2 + 2 Mg → 2 MgO + Si

Химические свойства неметаллов

Неметаллы проявляют окислительные свойства. Самый активный неметалл – фтор. Он бурно реагирует со всеми веществами, а некоторые реакции сопровождаются горением и взрывом. В атмосфере фтора горят даже вода и платина. Фтор окисляет кислород и образует фторид кислорода OF2.

Неметаллы вступают в реакции со следующими веществами.

3 F + 2 Al → 2 AlF3 (нагревание)

S + Fe →FeS (нагревание)

Меньшей активностью обладают такие неметаллы как бор, графит, алмаз. Они могут проявлять восстановительные свойства.

2 C + MnO2 → Mn + 2 CO

Коррозия металла

Коррозия – это процесс разрушения металлов или металлических конструкций под действием кислорода, воды и вредных примесей. Не все металлы подвергаются коррозии. Их стойкость зависит от ряда факторов.

  • На благородных металлах не образуется коррозия.
  • На поверхности алюминия, титана, цинке, хрома и никеля есть оксидная пленка, которая предотвращает процессы коррозии.

Различают несколько видов коррозии – химическую и электрохимическую.

Химическая коррозия

Химическая коррозия сопровождается химическими реакциями. Она образуется под действием газов.

Электрохимическая коррозия

Электрохимическая коррозия – процесс разрушения металлов или металлических конструкций, который сопровождается электрохимическими реакциями. В большинстве металлов находятся примеси. В процессе коррозии электродами могут служить не только металлы, но и его примеси.

Например, в железе могут находиться примеси олова. В этом случае на аноде электроны переносятся от олова к железу и металлы растворяются, т.е. железо подвергаются коррозии. На катоде восстанавливается водород из воды или растворенного кислорода. Электрохимическая коррозия может сопровождаться следующими процессами.

Анод: Fe 2+ - 2e → Fe 0

Катод: 2H + + 2e → H2

Способы защиты от коррозии

В промышленности популярны различные методы защиты металлов от коррозии.

Покрытия защищают поверхности от действия окислителей. Ими служат различные вещества:

  • покрытие менее активным металлом (железо покрывают оловом);
  • краски, лаки, смазки.
  • Создание специальных сплавов

Физические свойства сплавов и чистых металлов отличаются. Поэтому для повышения стойкости в сплав необходимо добавить дополнительные металлы.

Биологическая роль металлов и неметаллов

В организмах содержится множество различных металлов и неметаллов. Различных химических элементов в организме может не хватать, поэтому приходится потреблять их извне.Химические элементы можно разделить на две большие группы – макроэлементы и микроэлементы.

К макроэлементам относятся вещества, содержание которых в организме превышает 0,005 %. Эта группа включает водород, углерод, кислород, азот, натрий, магний, фосфор, сера, хлор, калий, кальций.Микроэлементы – элементы, содержание которых не превышает 0,005%. К ним относятся железо, медь, селен, йод, хром, цинк, фтор, марганец, кобальт, молибден, кремний, бром, ванадий, бор. Каждый макро- и микроэлемент в организме выполняет определенную функцию.

Применение металлов и неметаллов

В синтезе химических препаратов и лекарств применяются чистые металлы и неметаллы. В органической химии металлы используются в качестве катализаторов, а также при получении металлорганических соединений. Неметаллы служат исходным сырьем для получения чистых кислот и других химических соединений.

Химические свойства типичных металлов неметаллов и амфотерных элементов

Классификация и химические свойства оксидов (в этом видеоуроке представлены химические свойства основных и кислотных оксидов)

Оксид — бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом

Названия оксидов строится таким образом: сначала произносят слово «оксид», а затем называют образующий его элемент. Если элемент имеет переменную валентность, то она указывается римской цифрой в круглых скобках в конце названия:
Na I 2O – оксид натрия; Са II О – оксид кальция;
S IV O2 – оксид серы (IV); S VI O3 – оксид серы (VI).

По химическим свойствам оксиды делятся на две группы:
1. Несолеобразующие (безразличные) – не образуют солей, например: NO, CO, H2O;
2. Солеобразующие, которые, в свою очередь, подразделяются на:
основные – это оксиды типичных металлов со степенью окисления +1,+2 (I и II групп главных подгрупп, кроме бериллия) и оксиды металлов в минимальной степени окисления, если металл обладает переменной степенью окисления (CrO, MnO);
кислотные – это оксиды типичных неметаллов (CO2, SO3, N2O5) и металлов в максимальной степени окисления, равной номеру группы в ПСЭ Д.И.Менделеева (CrO3, Mn2O7);
амфотерные оксиды (обладающие как основными, так и кислотными свойствами, в зависимости от условий проведения реакции) – это оксиды металлов BeO, Al2O3, ZnO и металлов побочных подгрупп в промежуточной степени окисления (Cr2O3, MnO2).

Основными называются оксиды, которые образуют соли при взаимодействии с кислотами или кислотными оксидами.

Например, оксиду кальция CaO отвечает гидроксид кальция Ca(OH)2, оксиду кадмия CdO – гидроксид кадмия Cd(OH)2.

Условие протекания реакции: должны образовываться растворимые основания!
Na2O + H2O → 2NaOH
CaO + H2O → Ca(OH)2

Al2O3 + H2O → реакция не протекает, так как должен образовываться Al(OH)3, который нерастворим.
2. Взаимодействие с кислотами с образованием соли и воды:
CaO + H2SO 4 → CaSO4 + H2O.
3. Взаимодействие с кислотными оксидами с образованием соли:
СaO + SiO2 → CaSiO3

Кислотными называются оксиды, которые образуют соли при взаимодействии с основаниями или основными оксидами. Им соответствуют кислоты.

Например, оксиду серы (IV) соответствует сернистая кислота H2SO3 .

1. Взаимодействие с водой с образованием кислоты:
Условия протекания реакции: должна образовываться растворимая кислота.

Условия протекания реакции: с кислотным оксидом взаимодействует именно щелочь, то есть растворимое основание.

SO3 + 2NaOH → Na2SO4 + H2O
3. Взаимодействие с основными оксидами с образованием солей:
SO3 + Na2O → Na2SO4

Оксиды, гидратные соединения которых проявляют свойства как кислот, так и оснований, называются амфотерными.
Например: оксид алюминия Al2O3, оксид марганца (IV) MnO2.

1. C водой не взаимодействуют
2. Взаимодействие с кислотными оксидами с образованием солей при сплавлении (основные свойства):
ZnO + SiO2 → ZnSiO3
3. Взаимодействие с кислотами с образованием соли и воды (основные свойства):
ZnO + H2SO4 → ZnSO4 + H2O
4. Взаимодействие с растворами и расплавами щелочей с образованием соли и воды (кислотные свойства):
Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4]
Al2O3 + 2NaOH → 2NaAlO2 + H2O

Оксиды: классификация, получение и химические свойства

Оксиды — это сложные вещества, состоящие из атомов двух элементов, один из которых — кислород со степенью окисления -2. При этом кислород связан только с менее электроотрицательным элементом.

В зависимости от второго элемента оксиды проявляют разные химические свойства. В школьном курсе оксиды традиционно делят на солеобразующие и несолеобразующие. Некоторые оксиды относят к солеобразным (двойным).

Двойные оксиды — это некоторые оксиды , образованные элементом с разными степенями окисления.

Солеобразующие оксиды делят на основные, амфотерные и кислотные.

Основные оксиды — это оксиды, обладающие характерными основными свойствами. К ним относят оксиды, образованные атомами металлов со степень окисления +1 и +2.

Амфотерные оксиды — это оксиды, характеризующиеся и основными, и кислотными свойствами. Это оксиды металлов со степенью окисления +3 и +4, а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO.

Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N2O и SiO.

Классификация оксидов


Получение оксидов

Общие способы получения оксидов:

1. Взаимодействие простых веществ с кислородом :

1.1. Окисление металлов: большинство металлов окисляются кислородом до оксидов с устойчивыми степенями окисления.

Например , алюминий взаимодействует с кислородом с образованием оксида:

Не взаимодействуют с кислородом золото, платина, палладий.

Натрий при окислении кислородом воздуха образует преимущественно пероксид Na2O2,

Калий, цезий, рубидий образуют преимущественно надпероксиды состава MeO2:

Примечания : металлы с переменной степенью окисления окисляются кислородом воздуха, как правило, до промежуточной степени окисления (+3):

Железо также горит с образованием железной окалины — оксида железа (II, III):

1.2. Окисление простых веществ-неметаллов.

Как правило, при окислении неметаллов образуется оксид неметалла с высшей степенью окисления, если кислород в избытке, или оксид неметалла с промежуточной степенью окисления, если кислород в недостатке.

Например , фосфор окисляется избытком кислорода до оксида фосфора (V), а под действием недостатка кислорода до оксида фосфора (III):

Но есть некоторые исключения .

Например , сера сгорает только до оксида серы (IV):

Оксид серы (VI) можно получить только окислением оксида серы (IV) в жестких условиях в присутствии катализатора:

2SO2 + O2 = 2SO3

Азот окисляется кислородом только при очень высокой температуре (около 2000 о С), либо под действием электрического разряда, и только до оксида азота (II):

Не окисляется кислородом фтор F2 (сам фтор окисляет кислород). Не взаимодействуют с кислородом прочие галогены (хлор Cl2, бром и др.), инертные газы (гелий He, неон, аргон, криптон).

2. Окисление сложных веществ (бинарных соединений): сульфидов, гидридов, фосфидов и т.д.

При окислении кислородом сложных веществ, состоящих, как правило, из двух элементов, образуется смесь оксидов этих элементов в устойчивых степенях окисления.

Например , при сжигании пирита FeS2 образуются оксид железа (III) и оксид серы (IV):

Сероводород горит с образованием оксида серы (IV) при избытке кислорода и с образованием серы при недостатке кислорода:

А вот аммиак горит с образованием простого вещества N2, т.к. азот реагирует с кислородом только в жестких условиях:

А вот в присутствии катализатора аммиак окисляется кислородом до оксида азота (II):

3. Разложение гидроксидов. Оксиды можно получить также из гидроксидов — кислот или оснований. Некоторые гидроксиды неустойчивы, и самопроизвольную распадаются на оксид и воду; для разложения некоторых других (как правило, нерастворимых в воде) гидроксидов необходимо их нагревать (прокаливать).

гидроксид → оксид + вода

Самопроизвольно разлагаются в водном растворе угольная кислота, сернистая кислота, гидроксид аммония, гидроксиды серебра (I), меди (I):

2AgOH → Ag2O + H2O

2CuOH → Cu2O + H2O

При нагревании разлагаются на оксиды большинство нерастворимых гидроксидов — кремниевая кислота, гидроксиды тяжелых металлов — гидроксид железа (III) и др.:

4. Еще один способ получения оксидов — разложение сложных соединений — солей .

Например , нерастворимые карбонаты и карбонат лития при нагревании разлагаются на оксиды:

Соли, образованные сильными кислотами-окислителями (нитраты, сульфаты, перхлораты и др.), при нагревании, как правило, разлагаются с с изменением степени окисления:

Более подробно про разложение нитратов можно прочитать в статье Окислительно-восстановительные реакции.

Химические свойства оксидов

Значительная часть химических свойств оксидов описывается схемой взаимосвязи основных классов неорганических веществ.

Химические свойства основных оксидов

Подробно про химические свойства оксидов можно прочитать в соответствующих статьях:

Читайте также: