Химические свойства s металлов

Обновлено: 07.01.2025

s-Элементы – это элементы, у которых происходит заполнение s-подуровня. Данные элементы находятся в главных подгруппах первой и второй групп. S-элементы первой группы включают водород и щелочные металлы, а второй группы – бериллий, магний и щелочноземельные ме­таллы. К s-элементам также относится инертный газ гелий.

s-металлы первой группы включают: литий (Li), натрий (Na), калий (К), рубидий (Rb), цезий (Сs) и франций (Fr). Данные металлы называются щелочными, так как два главных представителя (натрий и калий) образуют сильные основания – щелочи. На внешнем энер­гетическом уровне ато­мов данных элементов находится один электрон, который атомы щелочных металлов легко отдают, пре­вращаясь в однозарядные катионы. С увеличением по­рядкового номера элементов увеличиваются радиусы атомов, что приводит к усилению восстановительной активности. Щелочные металлы характеризуются незначительной твёрдостью, малой плотностью и низкими температурами плавления.

s -элементы второй группы включают: бериллий (Ве), магний (Мg) и щелочноземельные ме­таллы – кальций (Са), стронций (Sr), барий (Ва) и радий (Rа). Бе­риллий и магний существенно отличаются от остальных элементов данной группы. Бе­риллий является амфотерным металлом. Магний образует слабое основание, а щелочноземельные металлы – сильные основания. Данные металлы имеют на внешнем уровне по два электрона и сравнительно легко их отдают, превращаясь в двухзарядные катионы. Они имеют большую, чем щелочные металлы, твёрдость и довольно высокие темпера­туры плавления.

Данные металлы обладают высокой химической активностью. Их активность можно определить по положению в электрохимическом ряду. Следует обратить внимание на то, что литий по положению в электрохимическом ряду самый активный металл (φ 0 = 3,045 В), хотя по положению в периодической таблице он, в сравнении с остальными щелочными металлами, является самым слабым восстановителем.

Это является следствием того, что положение металла в электрохимическом ряду определяется суммой трех величин:

1) энергии разрушения кристаллической решетки;

2) энергии ионизации металла;

3) энергии гидратации образовавшегося иона.

Энергии разрушения кристаллической решетки для данных металлов примерно одинаковы. Энергия ионизации атома лития в подгруппе самая высокая (Е = 5,39 эВ), но энергия гидратации иона лития, благодаря малому радиусу, аномально высокая. По сумме данных трех величин литий в водном растворе электрохимически самый активный металл.

При взаимодействии щелочных металлов с кислородом воздуха: литий образует оксид (Li2О), натрий – пероксид (Na2О2), а калий, рубидий и цезий – надпероксиды (МеО2). Бериллий, магний и щелочноземельные ме­таллы легко окисляются на воздухе с образованием оксидов.

Оксиды щелочных и щелочноземельных металлов взаимодействуют с водой с об­разованием гидроксидов:

Пероксиды щелочных и щелочноземельных металлов способны взаимодей­ствовать с углекислым газом с выделением кислорода, что позволяет использовать их в системах регенерации воздуха:

Щелочные и щелочноземельные металлы также реагируют с другими неме­таллами: галогенами, серой, азотом, водородом. При этом образуются соответст­вующие галогениды, сульфиды, нитриды и гидриды. Например,

Гидриды полностью разлагаются водой с образованием водорода и гидроксида металла. Например,

Данные металлы вытесняют водород из воды, так как в элекрохимическом ряду стоят левее алюминия. Например,

Бериллий и магний с водой реагируют медленно вследствие малой растворимости образующихся гидроксидов.

Ве(ОН)2 обладает амфотерными свойствами , т.е. взаимодействует с кислотами и щелочами:

Наиболее распространенные соединения данных элементов следующие:

NаCl – хлорид натрия (поваренная соль) консервант пищевых продуктов;

NаОН – гидроксид натрия (каустическая сода). Применяется для получения мыла, очистки нефти и др.

2СО3 – карбонат натрия (кальцинированная сода);

NаНСО3 – гидрокарбонат натрия (питьевая сода);

Калий в виде калийных солей необходим для питания растений.

Магний нужен растениям, так как входит в состав хлорофилла.

СаО – оксид кальция (негашеная известь);

Са(ОН)2 – гидроксид кальция (гашеная известь) широко применяется в строительном деле;

СаSО4·2Н2О – сульфат кальция (гипс);

СаСО3 – карбонат кальция (известняк, мел, мрамор). При его термическом разложении получают негашеную известь и углекислый газ

Следует отметить, что соединения натрия, калия, кальция и магния нужны для жизнедеятельности живых организмов.

Водород и гелий также относятся к s-элементам. Данные элементы по распространенности во Вселенной занимают: водород – первое место, а гелий – второе.

Содержание водорода на Земле составляет ~1 %, но в свободном виде Н2 почти не встречается. Он входит в состав различных соединений. Водород существует в виде трех изотопов: протий 1 1Н, дейтерий 2 1D и тритий 3 1Т. В природе на 6800 атомов водорода приходится 1 атом дейтерия. Вследствие большой разницы в массах физические и химические свойства изотопов водорода и образуемых ими соединений довольно значительно отличаются. Одним из наиболее распространенных в природе химических соединений водорода является вода. На примере данного соединения будет показан общий подход при анализе строения и свойств химических соединений.

Гелий на Земле встречается только в атмосфере и содержание его невелико. В химическом отношении это инертное вещество, поэтому применяется в автогенной сварке для создания инертной среды. Температура плавления гелия – 271,4 о С (при давлении 3,0 МПа), а температура кипения – 269,9 о С, что позволяет использовать его в качестве хладоносителя в физике низких температур.

Химические свойства металлов


Свойства металлов начинают изучать на уроках химии в 8–9 классе. В этом материале мы подробно разберем химические свойства этой группы элементов, а в конце статьи вы найдете удобную таблицу-шпаргалку для запоминания.

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.

В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).

Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.

Ряд активности металлов

Металлы средней активности

Общие химические свойства металлов

Взаимодействие с неметаллами

Щелочные металлы сравнительно легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:

оксид образует только литий

натрий образует пероксид

калий, рубидий и цезий — надпероксид

Остальные металлы с кислородом образуют оксиды:

2Zn + O2 = 2ZnO (при нагревании)

Металлы, которые в ряду активности расположены левее водорода, при контакте с кислородом воздуха образуют ржавчину. Например, так делает железо:

С галогенами металлы образуют галогениды:

Медный порошок реагирует с хлором и бромом (в эфире):

При взаимодействии с водородом образуются гидриды:

Взаимодействие с серой приводит к образованию сульфидов (реакции протекают при нагревании):

Реакции с фосфором протекают до образования фосфидов (при нагревании):

Основной продукт взаимодействия металла с углеродом — карбид (реакции протекают при нагревании).

Из щелочноземельных металлов с углеродом карбиды образуют литий и натрий:

Калий, рубидий и цезий карбиды не образуют, могут образовывать соединения включения с графитом:

С азотом из металлов IA группы легко реагирует только литий. Реакция протекает при комнатной температуре с образованием нитрида лития:

Взаимодействие с водой

Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:

Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.

Неактивные металлы с водой не взаимодействуют.

Взаимодействие с кислотами

Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.

2Na + 2HCl = 2NaCl + H2

При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.

Схема взаимодействия металлов с сернистой кислотой

Схема взаимодействия металлов с азотной кислотой

Металлы IА группы:

Металлы IIА группы

Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.

Взаимодействие с солями

Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:

Zn + CuSO4 = ZnSO4 + Cu

На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.

Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.

Взаимодействие с аммиаком

Щелочные металлы реагируют с аммиаком с образованием амида натрия:

Взаимодействие с органическими веществами

Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.

Взаимодействие металлов с оксидами

Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.

3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)

Вопросы для самоконтроля

С чем реагируют неактивные металлы?

С чем связаны восстановительные свойства металлов?

Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?

Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:

Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O

Как металлы реагируют с кислотами?

Подведем итоги

От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).

Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.

Таблица «Химические свойства металлов»

Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb

Cu, Hg, Ag, Pt, Au

Восстановительная способность металлов в свободном состоянии

Возрастает справа налево

Взаимодействие металлов с кислородом

Быстро окисляются при обычной температуре

Медленно окисляются при обычной температуре или при нагревании

Взаимодействие с водой

Выделяется водород и образуется гидроксид

При нагревании выделяется водород и образуются оксиды

Водород из воды не вытесняют

Взаимодействие с кислотами

Вытесняют водород из разбавленных кислот (кроме HNO3)

Не вытесняют водород из разбавленных кислот

Реагируют с концентрированными азотной и серной кислотами

С кислотами не реагируют, растворяются в царской водке

Взаимодействие с солями

Не могут вытеснять металлы из солей

Более активные металлы (кроме щелочных и щелочноземельных) вытесняют менее активные из их солей

Взаимодействие с оксидами

Для металлов (при высокой температуре) характерно восстановление неметаллов или менее активных металлов из их оксидов

Химические свойства солей


Впервые школьники знакомятся с химическими свойствами солей в 8 классе, и для понимания дальнейшего материала без этой темы никуда. Наша статья поможет освежить знания перед контрольной или экзаменом: вспомним, какие бывают соли и как они образуются, рассмотрим типичные реакции с ними.

Соли — это сложные вещества, в состав которых входят катионы металла и анионы кислотного остатка. Иногда в состав солей входят водород или гидроксид-ион.

Классификация и номенклатура солей

Так как соли — это продукт полного или частичного замещения металлом атома водорода в кислоте, по составу их можно классифицировать следующим образом.

Кислые соли

Образованы неполным замещением атомов водорода на металл в кислоте.

В наименованиях кислых солей указывают количество водорода приставками «гидро-» или «дигидро-», название кислотного остатка и название металла. Если металл имеет переменную валентность, то в скобках указывают валентность.

Примеры кислых солей и их наименования:

LiHCO3 — гидрокарбонат лития,

NaHSO4 — гидросульфат натрия,

NaH2PO4 — дигидрофосфат натрия.

Средние соли

Образованы полным замещением атомов водорода в кислоте на металл.

Наименования средних солей складываются из названий кислотного остатка и металла. При необходимости указывают валентность.

Примеры средних солей с названиями:

CuSO4 — сульфат меди (II),

CaCl2 — хлорид кальция.

Основные соли

Продукт неполного замещения гидроксогрупп на кислотный остаток.

В наименованиях основных солей указывают количество гидроксид-ионов приставкой «гидроксо-» или «дигидроксо-», название кислотного остатка и название металла с указанием валентности.

Пример: Mg(OH)Cl — гидроксохлорид магния.

Двойные соли

В состав входят два разных металла и один кислотный остаток.

Наименование складывается из названия аниона кислотного остатка и названий металлов с указанием валентности (если металл имеет переменную валентность).

Примеры двойных солей и их наименования:

KNaSO4 — сульфат калия-натрия,

Смешанные соли

Содержат один металл и два разных кислотных остатка.

Наименования смешанных солей складываются из названия кислотных остатков (по усложнению) и названия металла с указанием валентности (при необходимости).

Примеры смешанных солей с наименованиями:

CaClOCl — хлорид-гиполхорит кальция,

PbFCl — фторид-хлорид свинца (II).

Комплексные соли

Образованы комплексным катионом или анионом, связанным с несколькими лигандами.

Называют комплексные соли по схеме: координационное число + лиганд с окончанием «-о» + комплексообразователь с окончанием «-ат» и указанием валентности + внешняя сфера, простой ион в родительном падеже.

Пример: K[Al(OH)4] — тетрагидроксоалюминат калия.

Гидратные соли

В состав входит молекула кристаллизационной воды.

Число молекул воды указывают численной приставкой к слову «гидрат» и добавляют название соли.

Пример: СuSO4∙5H2O — пентагидрат сульфата меди (II).

Получение солей

Получение средних солей

Средние соли можно образовать в ходе следующих реакций:

Так получают только соли бескислородных кислот.

Металл, стоящий левее H2 в ряду активности, с раствором кислоты:

Mg + 2HCl = MgCl2 + H2

Металл с раствором соли менее активного металла:

Основный оксид + кислотный оксид:

Основный оксид и кислота:

Основание с кислотным оксидом:

Основание с кислотой (реакция нейтрализации):

Взаимодействие соли с кислотой:

Взаимодействие возможно, если одним из продуктов реакции будет нерастворимая соль, вода или газ.

Реакция раствора основания с раствором соли:

Взаимодействие растворов двух солей с образованием новых солей:

Получение кислых солей

Кислые соли образуются при взаимодействии:

Кислот с металлами:

Кислот с оксидами металлов:

Гидроксидов металлов с кислотами:

Кислот с солями:

Аммиака с кислотами:

Получение кислых солей возможно, если кислота в избытке.

Также кислые соли образуются в ходе реакции основания с избытком кислотного оксида:

Получение основных солей

Взаимодействие кислоты с избытком основания:

Добавление (по каплям) небольших количеств щелочей к растворам средних солей металлов:

Взаимодействие солей слабых кислот со средними солями:

Получение комплексных солей

Реакции солей с лигандами:

Получение двойных солей

Двойные соли получают совместной кристаллизацией двух солей:

Химические свойства средних солей

Растворимые соли являются электролитами, следовательно, могут распадаться на ионы. Средние соли диссоциируют сразу:

Нитраты разлагаются в зависимости от активности металла соли:

Металл Левее Mg, кроме Li От Mg до Cu Правее Cu
Продукты MeNO3 + O2 MexOy + NO2 + O2 Me + NO2 + O2
Пример 2NaNO3 = 2NaNO2 + O2 2Cu(NO3)2 = 2CuO + 4NO2 + O2 2AgNO3= 2Ag + 2NO2 + O2

Соли аммония разлагаются с выделением азота или оксида азота (I), если в составе анион, проявляет окислительные свойства. В остальных случаях разложение солей аммония сопровождается выделением аммиака:

Взаимодействие солей с металлами:

Более активные металлы вытесняют менее активные металлы из растворов солей.

Некоторые соли подвержены гидролизу:

Обменные реакции соли и кислоты, соли с основаниями и взаимодействие солей с солями:

Окислительно-восстановительные реакции, обусловленные свойствами катиона или аниона:

Химические свойства кислых солей

Диссоциация. Кислые соли диссоциируют ступенчато:

Термическое разложение с образованием средней соли:

Взаимодействие солей со щелочью. В результате образуется средняя соль:

Химические свойства основных солей

Реакции солей с кислотами — образование средней соли:

Диссоциация — так же как и кислые соли, основные соли диссоциируют ступенчато.

Химические свойства комплексных солей

Избыток сильной кислоты приводит к разрушению комплекса и образованию двух средних солей и воды:

Недостаток сильной кислоты приводит к образованию средней соли активного металла, амфотерного гидроксида и воды:

Взаимодействие слабой кислоты с солью образует кислую соль активного металла, амфотерный гидроксид и воду:

При действии углекислого или сернистого газа получаются кислая соль активного металла и амфотерный гидроксид:

Реакция солей, образованных сильными кислотами с катионами Fe3+, Al3+ и Cr3+, приводит к взаимному усилению гидролиза. Продукты реакции — два амфотерных гидроксида и соль активного металла:

Разлагаются при нагревании:

Вопросы для самопроверки

С чем взаимодействуют средние соли?

Назовите типичные реакции солей.

Из предложенного списка солей выберите те, которые не реагируют с цинком: нитрит калия, бромид железа, карбонат цезия, сульфат меди.

ОСНОВНЫЕ СВОЙСТВА S- МЕТАЛЛОВ.

ЩЕЛОЧНЫЕ – металлы 1 группы, главной подгруппы.

Электронное строение валентных орбиталей ns 1 . Называются так потому, что водные растворы их оксидов – сильные основания («щёлочи»):

Li, Na, K, Rb, Cs, Fr(радиоактивен), сверху вниз по подгруппе металлические свойства растут.

Мягкие, лёгкие, серебристые, режутся ножом. Rb и Cs существуют в виде паст. Из-за высокой склонности к окислению их хранят под слоем керосина или вазелинового масла.

1. Реакции с простыми веществами

б) 2Na + Н2 = 2NаН гидрид;

в) 2Na + F2 = 2NaF фторид;

д) 2Na + S = Na2S сульфид;

е) 3Na + Р= Na3Р фосфид;

ж) 4Na + Si= Na4Si силицид.

2. Реакции со сложными веществами:

б) 2Na + 2НСl = 2NaCl + Н2 ­ ;

в) Реакции с Н2SO4 k и HNО3 идут по-разному (см. взаимодействие кислот со щелочно-земельными металлами).

Некоторые соединения Na и K

NаОН – едкий натр; каустическая сода;

NаНСО3 – питьевая сода;

2СО3 – техническая (кальцинированная) сода;

ЩЕЛОЧНО-ЗЕМЕЛЬНЫЕ – металлы 2 группы

Электронное строение валентных орбиталей ns 2 . Историческое название оксидов – «земли», при растворении в воде также получаются щёлочи, отсюда и название «щелочно-земельные»

Не все металлы этой подгруппы обладают высокой активностью:

Ве – амфотерен; ВеО, Ве(ОН)2 – тоже амфолиты;

Mg – переходный металл; Mg(OH)2 – основание средней силы, малорастворимо; Са – щелочной металл; Са(ОН)2 – малорастворимое сильное основание ;

Sr – щелочной металл, Sr(OH)2 – растворимое сильное основание;

Ва – щелочной металл; Ва(ОН)2 – растворимое сильное основание;

Для Са, Sr и Ва характерны те же химические реакции, что и для щелочных металлов. Следует особо выделить реакции очень активных металлов, Mg и Ве с Н2SO4 конц. и HNO3.

1. Щелочные и щелочно-земельные металлы восстанавливают S +6

Mg – в меньшей степени;

Ве реагирует с кислотой как малоактивный металл:

2. Реакции с HNO3 идут с большим количеством вариантов, при этом чем активнее металл и разбавленнее кислота, тем сильнее восстанавливается HNO3. Могут идти несколько параллельных реакций; может также идти одновременно реакция взаимодействие металла с водой, в которой растворена кислота.

Некоторые соединения кальция

1. Карбид Са легко разлагается водой:

2. Известняк, мел, мрамор: СаСО3

3. СаО – негашеная известь; реакция гашения:

4. Са(ОН)2 – гашеная известь;

Са(ОН)2, раствор – известковая вода;

Са(ОН)2, осадок – известковое молоко.

5. Реакция открытия СО2:

а) через известковую воду пропускают углекислый газ и выделяется осадок белого цвета:

б) при дальнейшем пропускании СО2 осадок растворяется, т.к. образуется растворимая кислая соль:

6. Жёсткость воды ( ) – совокупность свойств, обусловленная содержанием в воде ионов Са 2+ , Mg 2+ ; её наличие приводит к ряду проблем:

а) на посуде и в паровых котлах образуется накипь;

б) стирка затруднена, т.к. плохо образуется пена;

в) пища утрачивает свой вкус.

Вопросы для закрепления материала:

1.Какой газ будет выделяться при взаимодействии перекиси водорода с перманганатом калия (в присутствии серной кислоты) – а)водород? б)кислород? в)двуокись серы?

2.Что получится при помещении металлического кальция в воду – а)мел? б)негашеная известь? в)известковое молоко?

Читайте также: