Химическая коррозия металлов представляет собой
Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией.
Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.
Можно выделить 3 признака, характеризующих коррозию:
- Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
- Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
- Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.
Виды коррозии металлов
Наиболее часто встречаются следующие виды коррозии металлов:
- Равномерная – охватывает всю поверхность равномерно
- Неравномерная
- Избирательная
- Местная пятнами – корродируют отдельные участки поверхности
- Язвенная (или питтинг)
- Точечная
- Межкристаллитная – распространяется вдоль границ кристалла металла
- Растрескивающая
- Подповерхностная
Основные виды коррозии металлов
С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.
Химическая коррозия металлов
Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь.
Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.
Виды химической коррозии
Химическая коррозия металлов бывает газовой и жидкостной.
Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).
Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.
При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.
Фактор Пиллинга-Бэдворса
Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла
где Vок — объем образовавшегося оксида
VМе — объем металла, израсходованный на образование оксида
Мок – молярная масса образовавшегося оксида
ρМе – плотность металла
n – число атомов металла
AMe — атомная масса металла
ρок — плотность образовавшегося оксида
Оксидные пленки, у которых α < 1, не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).
Оксидные пленки, у которых 1 < α < 2,5 являются сплошными и способны защитить металл от коррозии.
При значениях α > 2,5 условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.
Ниже представлены значения сплошности α для некоторых оксидов металлов
Металл | Оксид | α | Металл | Оксид | α |
K | K2O | 0,45 | Zn | ZnO | 1,55 |
Na | Na2O | 0,55 | Ag | Ag2O | 1,58 |
Li | Li2O | 0,59 | Zr | ZrO2 | 1.60 |
Ca | CaO | 0,63 | Ni | NiO | 1,65 |
Sr | SrO | 0,66 | Be | BeO | 1,67 |
Ba | BaO | 0,73 | Cu | Cu2O | 1,67 |
Mg | MgO | 0,79 | Cu | CuO | 1,74 |
Pb | PbO | 1,15 | Ti | Ti2O3 | 1,76 |
Cd | CdO | 1,21 | Cr | Cr2O3 | 2,07 |
Al | Al2O2 | 1,28 | Fe | Fe2O3 | 2,14 |
Sn | SnO2 | 1,33 | W | WO3 | 3,35 |
Ni | NiO | 1,52 |
Электрохимическая коррозия металлов
Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.
При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:
- Анодного – металл в виде ионов переходит в раствор.
- Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).
Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.
Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.
Водородная деполяризация
Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде:
2H + +2e — = H2 разряд водородных ионов
Кислородная деполяризация
Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде:
O2 + 4H + +4e — = H2O восстановление растворенного кислорода
Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:
- Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
- Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
- Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
- Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.
Виды электрохимической коррозии
Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:
- Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
- Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.
Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:
А: Fe – 2e — = Fe 2+
K: O2 + 4H + + 4e — = 2H2O
Катодом является та поверхность, где больше приток кислорода.
- Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
- Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
- Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
- Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
- Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.
Методы защиты от коррозии металла
Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.
Металлические покрытия
Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.
Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.
Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.
Неметаллические покрытия
Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).
Химические покрытия
В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:
оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);
азотирование – поверхность металла (стали) насыщают азотом;
воронение стали – поверхность металла взаимодействует с органическими веществами;
цементация – получение на поверхности металла его соединения с углеродом.
Изменение состава технического металла и коррозионной среды
Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.
Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.
Электрохимическая защита
Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.
Протекторная защита – один из видов электрохимической защиты – заключается в следующем.
К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.
Примеры задач с решениями на определение защитных свойств оксидных пленок, определение коррозионной стойкости металлов, а также уравнения реакций, протекающих при электрохимической коррозии металлов приведены в разделе Задачи к разделу Коррозия металлов
Электрохимическая коррозия – почему разрушаются металлы?
Электрохимическая коррозия представляет собой процесс разрушения металла в результате воздействия на него гальванических элементов, образование которых становится возможным в коррозионной среде.
1 Немного информации о коррозии металла
Обычно под коррозией металла понимают его окисление под влиянием кислот, которые присутствуют в растворах, контактирующих с металлическим изделием, либо кислорода воздуха. Коррозия наиболее часто поражает металлы, находящиеся левее водорода в так называемом ряду напряжений. Впрочем, коррозионному разрушению подвержены и многие другие материалы (неметаллические), например строительный бетон.
Коррозия возникает в результате какого-либо электрохимического или химического процесса. По этой причине ее принято подразделять на электрохимическую и химическую.
Коррозия приводит к различным разрушениям материала, которые могут быть:
- неравномерными и равномерными;
- местными и сплошными.
Если металл испытывает механические напряжения в дополнение к негативному влиянию внешней среды, наблюдается активизация (и существенная) всех коррозионных проявлений, что вызвано разрушением на поверхности изделий оксидных пленок и уменьшением показателя термоустойчивости материала.
Стоит сказать, что в некоторых случаях коррозионные процессы вызывают восстановление, а не окисление компонентов, входящих в различные металлические сплавы. Ярким примером этого является восстановление водородом содержащихся во многих сталях карбидов (такой нестандартный процесс происходит при высоких температурах и давлениях).
2 Электрохимическая коррозия и коррозионный элемент – что это?
Такая коррозия признается наиболее распространенной. Появляется она в том случае, когда среда, характеризуемая электролитической проводимостью, взаимодействует с металлом. Другими словами, ее первопричиной можно смело называть неустойчивость (термодинамическую) металлов в средах, где они находятся. Известные любому человеку примеры такой коррозии – ржавление на открытом воздухе конструкций и изделий из чугуна и разных марок стали (высоколегированной стали, углеродистые стали и так далее), днищ судов в морской воде, инженерных коммуникаций и трубопроводов, по которым транспортируются разнообразные жидкости и агрессивные составы.
Коррозионный элемент (его обычно называют гальваническим) образуется тогда, когда два металла, имеющие разные потенциалы (окислительно-восстановительные), соприкасаются. Такой элемент – это обычная гальваническая ячейка замкнутого типа. В указанной ячейке металл с меньшим потенциалом медленно растворяется, а второй компонент (с большим потенциалом) обычно не изменяет своего состояния.
Подобным изменениям чаще всего подвергаются металлы, у которых величина отрицательного потенциала высока. В них процесс ржавления (формирования коррозионного компонента) начинается уже тогда, когда на поверхность попадает малый объем постороннего включения.
3 Гальванические элементы и электродные процессы в них
Описанные гальванические элементы образуются по разным причинам. Прежде всего, они могут формироваться из-за неоднородности сплава, что приводит к:
- неравномерности распределения пленок оксидов на поверхности материала;
- неоднородности металлической фазы;
- присутствию кристаллов на границах зерен;
- различиям в процессе формирования вторичных продуктов ржавления;
- анизотропности кристаллов.
Также гальванические ячейки возникают в силу следующих причин:
- неоднородности температуры, влияний внешних токов и облучения;
- наличия зон, в которые окислитель поступает ограниченно.
Всегда нужно помнить о том, что электрохимическое ржавление подразумевает протекание в один и тот же момент времени двух процессов – анодного и катодного. С точки зрения кинетики они напрямую связаны между собой. Основной металл всегда растворяется на аноде (окислительная реакция).
Под катодным процессом понимают ситуацию, когда "лишние" электроны поглощаются атомами либо молекулами электролита. После чего происходит восстановление электронов. Катодный процесс замедляется, если отмечается замедление анодного процесса. Как видим, механизм электрохимической коррозии совсем несложен для понимания. Разобраться с ним может любой человек.
4 Что представляет собой химическая коррозия?
Под таким явлением понимают разрушение металла, вызываемое контактом коррозионной среды и материала. Причем при подобном взаимодействии наблюдается сразу два процесса:
- коррозионная среда восстанавливается;
- металл окисляется.
Электрохимическая коррозия металлов отличается от химической тем, что последняя протекает без электротока. А первопричина этих видов коррозии, коей является термодинамическая неустойчивость, остается неизменной. Металлы легко переходят в разные состояния (включая и более устойчивые), причем в этом случае отмечается снижение их термодинамического потенциала.
Существуют далее приведенные виды химкоррозии:
- в жидких составах, которые не причисляются к электролитами;
- газовая.
К жидкостям-неэлектролитам относят составы неспособные проводить электроток:
- неорганические: сера в расплавленном состоянии, жидкий бром;
- органические: бензин, керосин, хлороформ и иные.
Неэлектролиты в чистом виде с металлами не контактируют. Но при появлении в жидкостях совсем малого числа примесей сразу же "стартует" химическая коррозия металлов (причем весьма бурная). В тех ситуациях, когда реакция проходит еще и при повышенных температурах, ржавление будет происходить намного интенсивнее. А если в неэлектролитические жидкости попадает вода, запускается механизм электрохимической коррозии, описанный нами выше.
Процесс ржавления (химического) чаще всего идет в пять этапов:
- сначала к поверхности металла подходит окислитель;
- на поверхности стартует хемосорбция реагента;
- после этого начинает формироваться оксидная пленка (взаимодействие металла и окислителя);
- отмечается десорбция материала и оксидов;
- фиксируется диффузия в жидкость-неэлектролит оксидов.
Два этапа, указанные последними, отмечаются не каждый раз.
5 Газовая коррозия – какими особенностями она описывается?
Под воздействием газов металлические поверхности могут разрушаться в том случае, когда имеется высокая температура. Данное явление специалисты именуют газовой коррозией, которая признается самым распространенным вариантом химического ржавления. Известная всем вариация подобного процесса – контакт кислорода и металлической поверхности, которая характеризуется двумя показателями:
- давлением при конкретной температуре диссоциации оксидных паров;
- давлением (парциальным) кислорода.
Если давление кислорода меньше давления диссоциации, появляется чистый металл, если больше – образуется окисел. При равных величинах реакция будет полностью равновесной. Учитывая это, можно без труда рассчитать, при каких температурах возникнет опасность коррозии.
Химическая коррозия протекает с разной скоростью. Конкретная величина последней находится в зависимости от далее приведенных факторов:
Виды коррозии – как ржавеет металл?
Все виды коррозии появляются по тем или иным причинам. Ключевой из них считается неустойчивость с точки зрения термодинамики материалов к соединениям, которые имеются в рабочих средах, где функционируют изделия из металлов.
1 Как подразделяются коррозионные проявления?
Под коррозией подразумевают разрушение материалов, вызванное физико-химическим либо сугубо химическим влиянием среды. Прежде всего, коррозию делят по типу на электрохимическую и химическую, по характеру – на местную и сплошную.
Местная коррозия бывает ножевой, межкристаллитной, сквозной (сквозная коррозия известна владельцам машин, которые не следят за состоянием кузова своего транспортного средства), питтинговой, подповерхностной, нитевидной, язвенной. Она также проявляется хрупкостью, растрескиванием и пятнами. Сплошное окисление может быть избирательным, неравномерным и равномерным.
Различают следующие виды коррозии:
- биологическая – обусловлена деятельностью микроорганизмов;
- атмосферная – разрушение материалов под влиянием воздуха;
- жидкостная – окисление металлов в неэлектролитах и электролитах;
- контактная – образуется при взаимодействии в электролитической среде металлов с различными величинами стационарных потенциалов;
- газовая – становится возможной при повышенных температурах в газовых атмосферах;
- белая – часто встречается в быту (на предметах, сделанных из оцинкованной стали, на батареях отопления);
- структурная – имеет отношение к неоднородности материалов;
- щелевая – возникает исключительно в щелях и зазорах, присутствующих в металлических изделиях;
- почвенная – отмечается в почвах и грунтах;
- фреттинг-коррозия – образуется при передвижениях (колебательных) по отношению друг к другу двух поверхностей;
- внешним током – разрушение конструкции, вызываемое воздействие электротока, поступающего от какого-либо внешнего источника;
- блуждающими токами.
Кроме того, существует так называемая коррозионная эрозия – ржавление металлов при трении, коррозия под напряжением, вызванная механическим напряжением и влиянием агрессивной среды, кавитация (коррозионный процесс плюс ударный контакт конструкции с внешней атмосферой). Мы привели основные разновидности коррозии, о некоторых из которых далее расскажем более подробно.
2 Что представляет собой фреттинг-коррозия?
Подобное явление обычно фиксируется при тесном взаимодействии (плотном контакте) пластмассы или резины с металлом либо двух металлов. Разрушение материалов при этом происходит в месте их контакта из-за возникающего в данной области трения, вызываемого влиянием коррозионной среды. На конструкции в этом случае, как правило, действует относительно высокая нагрузка.
Чаще всего, фреттинг-коррозия поражает движущиеся соприкасающиеся стальные или металлические валы, элементы подшипников, разнообразные болтовые, шлицевые, заклепочные и шпоночные соединения, канаты и тросы (то есть те изделия, которые воспринимают определенные колебательные, вибрационные и вращательные напряжения).
По сути, фреттинг-коррозия образуется из-за влияния активной коррозионной среды в комбинации с износом механического характера.
Механизм этого процесса следующий:
- на поверхности контактирующих материалов под влиянием коррозионной среды появляются продукты коррозии (оксидная пленка);
- указанная пленка разрушается при трении и остается между контактирующими материалами.
С течением времени процесс разрушения оксидной пленки становится все более интенсивным, что обычно становится причиной образования контактного разрушения металлов. Фреттинг-коррозия протекает с разной скоростью, которая зависит от типа коррозионной среды, структуры материалов и нагрузок, воздействующих на них, температуры среды. Если на контактирующихся поверхностях появляется белая пленка (наблюдается процесс обесцвечивания металла), речь чаще всего идет именно о фреттинг-процессе.
Нивелировать негативные для металлоконструкций последствия, которые вызывает фреттинг-коррозия, можно следующими способами:
- Использование смазочных вязких составов. Эта методика работает, если на изделия не действуют чересчур большие нагрузки. Перед нанесением смазки поверхность металлов насыщается фосфатами (малорастворимыми) марганца, цинка или обычного железа. Данный способ защиты от фреттинг-коррозии считается временным. Он остается эффективным до тех пор, пока из-за скольжения защитный состав полностью не удаляется. Смазки, кстати, не используются для предохранения конструкций из высоколегированных сталей.
- Грамотный выбор материалов для изготовления конструкции. Фреттинг-коррозия образуется крайне редко, если объект сделан из твердых и мягких металлов. Например, стальные поверхности рекомендуется покрывать серебром, кадмием, оловом, свинцом.
- Использование дополнительных покрытий с особыми свойствами, прокладок, кобальтовых сплавов, материалов с малым показателем коэффициента трения.
Иногда фреттинг-коррозия предупреждается посредством создания поверхностей, контактирующих между собой, с минимальной величиной скольжения. Но такая методика применяется очень редко, ввиду объективной сложности ее реализации.
3 Основные типы атмосферной коррозии
Под данным видом коррозионного разрушения материалов понимают коррозию, которой подвергаются сооружения и конструкции, функционирующие в приземной атмосферной части. Атмосферная коррозия бывает мокрой, влажной и сухой. Последняя из указанных протекает по химической схеме, первые две – по электрохимической.
Атмосферная коррозия влажного типа становится возможной тогда, когда на металлах имеется небольшая по толщине (не более одного микрометра) пленка влаги. На ней и происходит конденсация влажных капелек. Конденсационный процесс может идти по адсорбционной, химической либо капиллярной схеме.
Атмосферная коррозия сухого типа возникает без наличия влажной пленки на поверхности металлов. На первых этапах разрушение материала идет достаточно быстро, но затем скорость ржавления существенно замедляется. Сухая атмосферная коррозия может протекать и намного активнее, если на конструкции воздействуют какие-либо газовые соединения, присутствующие в атмосфере (сернистые и другие газы).
Атмосферная коррозия мокрого типа образуется при стопроцентной влажности воздуха. Ей подвержены любые объекты, которые эксплуатируются в воде либо постоянно подвергаются воздействию влаги (например, обливаются водой).
Атмосферная коррозия наносит серьезный ущерб конструкциям из металлов, поэтому для борьбы с ней создаются различные методики:
- Уменьшение влажности (относительной) воздуха. Сравнительно несложный и при этом очень эффективный способ, который заключается в осушении воздуха и подогреве помещений, где эксплуатируются металлоконструкции. Атмосферная коррозия при такой методике сильно замедляется.
- Покрытие поверхностей неметаллическими (лаки, краски, пасты, смазочные композиции) и металлическими (никелевые и цинковые) составами.
- Легирование металлов. Атмосферная коррозия становится менее бурной в тех случаях, когда в металл привносят фосфор, титан, хром, медь, алюминий, никель в незначительных количествах. Они приостанавливают анодный процесс либо переводят стальные поверхности в пассивное состояние.
- Использование ингибиторов – летучих или контактных. К летучим относят дициклогексиламин, бензоаты, карбонаты, моноэтаноламин. А самым известным ингибитором контактного типа является нитрит натрия.
4 Коротко о газовой и других видах коррозии
Газовая коррозия отмечается, как правило, при повышенных температурах в атмосфере сухих паров и газов. Больше всего от нее страдают предприятия химической, нефтегазовой и металлургической промышленности, так как она поражает емкости, где производится переработка химических соединений и веществ, двигатели специальных машин, химические установки и агрегаты, газовые турбины, оборудование для термообработки и плавления стали и металлов.
Протекает газовая коррозия при окислении:
- углекислого газа (углекислотная коррозия);
- сероводорода (сероводородная коррозия);
- водорода, хлора, различных галогенов, метана.
Наиболее часто газовая коррозия обусловлена воздействием кислорода. Разрушение металлов при ней идет по далее приведенной схеме:
- ионизация металлической поверхности (появляются электроны и катионы, которые насыщают оксидную пленку);
- диффузия (к газовой фазе) электронов и катионов;
- ослабление межатомных связей в кислородной молекуле, вызванное адсорбцией (физической) на металлической поверхности кислорода;
- адсорбция химического типа, приводящая к созданию плотной пленки оксидов.
После этого ионы кислорода проникают вглубь пленки, где они контактируют с катионами металла. Газовая коррозия, вызываемая влиянием других химических соединений, проходит по аналогичному принципу.
Явление водородной коррозии стали отмечается в технологическом оборудовании, которое работает в водородных атмосферах при высоких (от 300 МПа) давлениях и температурах более +200 °С. Такая коррозия образуется за счет контакта карбидов, входящих в стальные сплавы, с водородом. Визуально она плохо заметна (поверхность конструкции не имеет явных повреждений), но при этом прочностные показатели стальных изделий существенно уменьшаются.
Существует также понятие коррозии с водородной деполяризацией. Этот процесс может происходить при определенной величине парциального давления в среде, с которой контактирует электролит. Обычно явление коррозии с водородной деполяризацией наблюдается в двух случаях:
- при низкой активности в электролитическом растворе ионов металла;
- при повышенной активности в электролите ионов водорода.
Углекислотная коррозия поражает нефтяное оборудование и трубопроводы, которые функционируют в средах, содержащих двуокись углерода. В наши дни такой вид коррозионного разрушения предотвращают путем эксплуатации нержавеющих сталей с малым уровнем легирования. Оптимальные результаты, как показала практика, отмечаются при использовании сплавов с включением хрома от 8 до 13 процентов.
«Рыжая чума», или что мы знаем о ржавчине и коррозии
Пожалуй, каждый автомобилист согласится с тем, что именно ржавчина – одна из самых неприятных проблем, способных омрачить настроение любого автовладельца. Казалось бы, ещё вчера машина радовала взгляд безупречным глянцем лакокрасочного покрытия и вдруг – по кузову полезли «жуки», появились рыжие пятна. На первых порах ничего, кроме эстетического неудовольствия автовладельца, ржавчина под собой не подразумевает. Да и сквозные дыры в крыльях или дверях автомобиля, возникающие в запущенных случаях, неприятны, но, практически неопасны. А вот когда процесс глубоко поразил детали силового каркаса кузова или подвеску машины, последствия могут быть весьма печальными. «Страшилки» про сложившиеся при ДТП «домиком» кузова старых автомобилей – как раз из этой «оперы».
Да что там машины! Ржавчина является одной из главных причин аварий таких титанических железных конструкций, как мосты. Так, 28 июня 1983 года в США произошла катастрофа с мостом через реку Мианус (Mianus). В результате падения в воду с высоты 21 метра двух автомобилей и двух тракторных прицепов погибли 3 человека и ещё 3 были серьёзно травмированы.
Участок межштатного 95-го моста длиной 100 футов через реку Мианус в Гринвиче, Коннектикут, рухнул 29 июня 1983 года. Фотография Боба Чайлда
Согласно заключению комиссии Национального совета по безопасности на транспорте, разрушение было вызвано механической поломкой наружного кронштейна, удерживающего пролёт моста, и его обоих штифтов («пальцев»). Ржавчина образовалась в подшипнике «пальца» кронштейна. Ее объем всегда превышает объем исходной металлической детали, что приводит к неравномерному сопряжению друг с другом деталей конструкции. В случае с данным мостом, масса ржавчины отодвинула внутренний кронштейн от конца штифта, скрепляющего между собой наружный и внутренний кронштейны. (При этом возникло усилие, превышающее допустимые проектом пределы для зажимов, удерживающих эти «пальцы»!) В результате вся масса пролета переместилась на внешний кронштейн. Такая непредвиденная нагрузка на него вызвала усталостную трещину в «пальце». Когда два тяжелых грузовика въехали в данную секцию моста, штифты окончательно разрушились, и пролет упал в реку…
Вообще, процесс коррозии и образования ржавчины сопровождает нас с незапамятных времён. Одновременно с открытием железа и началом железного века человечество столкнулось и с возникновением ржавчины на создаваемых им орудиях труда и предметах быта.
Что такое ржавчина?
Что же такое ржавчина? В обычной жизни этим словом обозначают красные оксиды железа, образующимся в ходе его реакции с кислородом в присутствии воды или влажного воздуха. При наличии кислорода, воды и неограниченного времени любое количество железа, в конце концов, полностью разрушается, превратившись в ржавчину. Физически она представляет собой рыхлый порошок светло-коричневого цвета.
Процесс превращения железа в ржавчину называется коррозией – самопроизвольным разрушением металлов и их сплавов в результате химического, электрохимического или физико-химического взаимодействия с окружающей средой. Разрушение металлов и сплавов по физическим причинам не является коррозией, а характеризуется терминами «истирание» и «износ».
С точки зрения химии коррозия металлов чаще представляет собой процесс их окисления и превращения в оксиды. Ржавление железа – также химическая коррозия. В виде упрощенных уравнений она может быть описана так:
4Fe + 3O2 + 2H2O = 2Fe2O3⋅H2O или 4Fe + 3O2 + 6H2O = 4Fe(OH)3
Т.о. ржавчина состоит из гидратированного оксида железа (III) Fe2O3⋅H2O, гидроксида железа (III) Fe(OH)3 и метагидроксида железа FeO(OH).
Интересно, что ржавчиной, как правило, называют продукты коррозии железа и его сплавов, (например, стали), хотя на самом деле целый ряд металлов также подвергается коррозии.
Однако, многие металлы (Cu, Ti, Zn, Cr, Al и др.) при коррозии покрываются плотной, хорошо скрепленной с ними оксидной пленкой (слой пассивации). Он не позволяет кислороду воздуха и воде проникнуть в более глубокие слои металла и потому предохраняет его от дальнейшего окисления (коррозии).
Взять, к примеру, алюминий – в химическом отношении это очень активный металл, хорошо реагирующий с водой с бурным выделением газа водорода:
2Al + 3H2O = Al2O3+ 3H2 ↑
Но, по причине той же высокой активности, чистый алюминий также хорошо реагирует и с кислородом воздуха. В результате этого взаимодействия поверхность металла покрывается прочной плотной плёнкой оксида Al2O3. Оксидная плёнка защищает алюминий от дальнейшего взаимодействия с водой и кислородом. Именно по этой причине нагреваемая в алюминиевой кастрюльке вода хоть и кипит, но не вступает в реакцию с металлом. (Потому такая посуда может служить длительное время.)
Как ни странно, химически чистое железо относительно устойчиво к воздействию чистой воды и сухого кислорода. Как и у алюминия, плотно скреплённое с поверхностью металла оксидное покрытие защищает основную массу железа от дальнейшего окисления.
Однако, надо отметить, что химически чистое железо в своей деятельности человечество практически не применяет. На практике наша цивилизация использует сталь и чугун – сплавы железа с углеродом (и другими химическими элементами), содержащие не менее 45% железа.
В реальной жизни в воздухе наших городов содержатся оксиды серы, азота, углерода и ряд других; а в воде – растворённые газы и соли. Поэтому процесс коррозии металлов и его продукты зачастую выглядят не так просто, как в учебнике химии за 9 класс. Так, бронзовые статуи, корродируя, покрываются слоем хорошо знакомой нам зелёной патины, представляющей собой с точки зрения химии не гидроксид, а основной сульфат меди (II) (CuOH)2SO4.
В отличие от оксида алюминия и появляющейся на бронзовой (медной) поверхности патины, ржавчина, образующаяся на сплавах железа, не создаёт никакой защиты для нижележащего металла.
Усугубляет ситуацию с коррозией железа содержание неметаллических примесей в его сплавах. Например, наличие серы в сплаве лишь способствует развитию ржавчины. Обычно она присутствует, как сульфид FeS, но может быть и в виде других химических соединений. В процессе коррозии сульфид железа разлагается с выделением газа сероводорода (H2S), который сам по себе является хорошим катализатором дальнейшей коррозии железа:
FeS + 2HCl = H2S ↑+ FeCl2
Нас удивляет хорошая сохранность (а значит, устойчивость к коррозии) ряда железных предметов, дошедших из глубины веков до наших дней. Одна из причин этого – низкое содержание в них серы. В сплавы железа сера обычно попадает из каменноугольного кокса при выплавке железа из руды в доменной печи. А вот в древние времена для производства этого металла использовался не каменный, а, практически не содержащий серы, древесный уголь…
По выраженности поражения различают сплошную и местную коррозию металлов. Как ни странно, но сплошная коррозия не представляет большой опасности для металлических конструкций и агрегатов. Считается, что она предсказуема, а ее последствия могут быть относительно легко смоделированы. Поэтому при проектировании металлоконструкций, эксплуатирующихся в водной среде или под открытым небом, в соответствии с технически обоснованными нормами, учитываются и будущие потери металла на коррозию.
Усугубляющие факторы
А вот местная коррозия гораздо опаснее, несмотря на то, что потери металла из-за неё могут быть вполне небольшими. Один из самых опасных видов местной коррозии – точечная. Ведь снижая прочность на отдельных участках, она значительно уменьшает общую надёжность конструкций, сооружений и агрегатов. Суть её заключается в формировании сквозных поражений деталей – образовании в них точечных полостей, называемых питтингами.
Развитию местной коррозии очень способствуют морская вода и растворы солей, в частности хлориды (особенно хлорид натрия – NaCl). Во многих странах его используют для плавления снега и льда, разбрасывая зимой на дорогах и тротуарах. В присутствии NaCl лёд и снег превращаются в воду, с дальнейшим образованием соляных растворов.
При этом не учитывается, что соли (и особенно хлориды) являются активаторами коррозии! Отлично диссоциируя в воде и взаимодействуя с образующейся из-за выбросов предприятий серной кислотой, хлориды образуют соляную кислоту (HCl). А ведь она сама по себе является триггером коррозии! (Вспомним приведенную выше реакцию с входящим в состав стали сульфидом железа.) Какие ещё нужны доказательства, что зимняя соляная «каша» приводит к ускоренному разрушению металла деталей, узлов и агрегатов транспортных средств?
Экономические потери от коррозии металлов
Экономические потери от коррозии металлов огромны. Современная цивилизация тратит значительные материальные и финансовые ресурсы на борьбу с коррозией трубопроводов, мостов и морских конструкций, судов, деталей машин, а также различного технологического оборудования.
Как уже говорилось, из-за планирования возможной коррозии приходится завышать прочность таких важных и нагруженных узлов и агрегатов, как паровые котлы, реакторы, лопатки и роторы турбин, опоры морских буровых платформ. Это автоматически увеличивает расход металла на их изготовление, а, значит, приводит к дополнительным экономическим затратам.
За два века работы металлургической промышленности в мире было выплавлено огромное количество металла. При этом, потери на коррозию составляют около 30% от его годового мирового производства! Более того – около 10% подвергшегося коррозии металла безвозвратно теряется в виде ржавчины.
По оценкам ряда экспертов, ущерб от коррозии металлов бюджету промышленно развитых стран составляет от 2 до 4 % их валового национального продукта. Так, по данным Национальной ассоциации инженеров-коррозионистов (National Association of Corrosion Engineers – NACE) в США потери от коррозии и затраты на борьбу с ней составляют 3,1 % ВВП. Для Германии это обходится в 2,8 % от ВВП.
P.S. Казалось бы, проблемы коррозии автомобильных кузовов, узлов и агрегатов меркнут на фоне вопросов защиты от коррозии таких грандиозных железных сооружений, как мосты и Эйфелева башня. Но, это только на первый взгляд. А если учесть численность мирового автопарка? Так, по данным Международной ассоциации автопроизводителей (OICA), в 2015 году в мире эксплуатировалось 947 млн. легковых и 335 млн. коммерческих автомобилей. Ожидается, что к 2035 году мировой автопарк достигнет 2-миллиардной отметки.
При этом, коррозией в той или иной степени, рано или поздно поражается практически 100% транспортных средств. Кроме того, надо учесть, что кузов – самая дорогая деталь автомобиля, а кузовные работы (и слесарные, и малярные) достаточно материалоёмкие и очень недешёвые.
Поэтому, проблема изыскания новых и совершенствование старых способов защиты от коррозии актуальна, как для всей тяжёлой промышленности в целом, так и для автомобильной отрасли в частности.
___________
KROWN — ЗА НАМИ НЕ ЗАРЖАВЕЕТ
Центр антикоррозийной защиты автомобилей
Коррозия металлов
Всякое явление или процесс вокруг нас связан с химией. Скажем, ржавление железа. Хоть раз в жизни вы наверняка задумывались, почему одни металлы ржавеют и разрушаются, а другие — нет. И что такого особенного в нержавеющей стали, что этот процесс ей нипочем? Обо всем это мы и поговорим в сегодняшней статье.
О чем эта статья:
Коротко о главном
Коррозия металлов или ржавление в химии — это явление, которое возникает из-за взаимодействия металлической пластинки с веществами окружающей среды (кислородом воздуха или кислотами, с которыми может реагировать металлическое изделие).
Обычно окисляются металлы, включая железо, которые находятся левее водорода в ряду напряжений.
Чаще всего встречаются химическая и электрохимическая коррозии. Чтобы понять, чем они отличаются друг от друга, давайте сравним их по нескольким критериям в таблице ниже.
Таблица 1. Сравнение химической и электрохимической коррозии металлов
Признаки сравнения
Химическая коррозия
Электрохимическая коррозия
Разрушение металлов в из-за взаимодействия с газами или растворами, которые не проводят электрический ток
Разрушение металла, при котором возникает электрический ток в воде или среде другого электролита
При контакте железа с цинком коррозии подвергается цинк:
Zn 0 - 2e - = Zn 2+ .
Защитить металл от коррозии можно по-разному: покрытием защитными материалами, электрохимическими методами, шлифованием и т. д. Далее — подробно обо всем этом.
Что такое коррозия
Коррозия — это самопроизвольное разрушение элементов, чаще всего металлов, под действием химического или физико-химического влияния окружающей среды.
Иными словами, из-за химического воздействия железо начинает ржаветь. Это весьма сложный процесс, который состоит из несколько этапов. Но суммарное уравнение коррозии выглядит так:
Часто под коррозией понимают химическую реакцию между материалом и средой либо между их компонентами, которая протекает на границе раздела фаз. Обычно это окисление металла. Например:
Некоторые металлы, даже активные, покрываются плотной оксидной пленкой при коррозии. Это одна из их характерных черт. Оксидная пленка не дает окислителям проникнуть в более глубокий слой и поэтому защищает металл от коррозии. Алюминий обычно устойчив при контакте с воздухом и водой, даже горячей. Тем не менее, если поверхность алюминия покрыть ртутью, то образуется амальгама. Она разрушает оксидную пленку, и алюминий начинает быстро превращаться в белые хлопья метагидроксида алюминия:
Коррозии подвергаются и многие малоактивные металлы. Например, поверхность медного изделия покрывается патиной — зеленоватым налетом. Это происходит потому, что на ней образуются смеси основных солей.
Химическая коррозия
Химическая коррозия — это процесс разрушения металла, который связан с реакцией между металлом и коррозионной средой.
Химическая коррозия протекает без воздействия электрического тока, и в результате этой реакции металлы окисляются. Этот вид коррозии можно разделить на два подвида:
газовая коррозия — металл корродирует под воздействием различных газов при высоких температурах;
коррозия в жидкостях — неэлектролитах.
Их них более распространенной считают газовую коррозию. Она протекает во время прямого контакта твердого тела с активным газом воздуха. Чаще всего это кислород. В результате на поверхности тела образуется пленка продуктов химической реакции между веществом и газом. Дальше эта пленка мешает контакту корродирующего материала с газом. При высоких температурах газовая коррозия развивается интенсивно. Возникшая при этом пленка называется окалиной, которая со временем становится толще.
Важную роль в процессе коррозии играет состав газовой среды. Но для каждого металла он индивидуален и изменяется с переменой температур.
Электрохимическая коррозия
Электрохимическая коррозия — это разрушение металла, которое протекает при его взаимодействии с окружающей средой электролита.
Этот вид коррозии считают наиболее распространенным. Самым важным происхождением электрохимической коррозии является то, что металл неустойчив в окружающей среде с точки зрения термодинамики. Вот несколько ярких примеров этой реакции: ржавчина в трубопроводе, на обшивке днища морского судна и на различных металлоконструкциях в атмосфере.
В механизме электрохимической коррозии обычно выделяют два направления: гомогенное и гетерогенное. Разберем их подробнее в таблице ниже.
Гомогенный механизм электрохимической коррозии
Гетерогенный механизм электрохимической коррозии
Поверхность металла рассматривается как однородный слой.
У твердых металлов поверхность неоднородна из-за структуры сплава, в котором атомы по-разному расположены в кристаллической решетке.
Растворение металла происходит из-за термодинамической возможности для катодного или анодного процессов.
Неоднородность можно наблюдать при наличии в сплаве каких-либо включений.
Скорость, с которой протекает электрохимическая коррозия, зависит от времени протекания процесса.
В электрохимической коррозии протекает одновременно два процесса на аноде и на катоде, которые зависят друг от друга. Растворение основного металла происходит только на анодах. Анодный процесс заключается в том, что ионы металла отрываются и переходят в раствор:
В результате происходит реакция окисления металла. В данном случае анод заряжается отрицательно.
При катодном процессе избыточные электроны переходят в молекулы или атомы электролита, которые, в свою очередь, восстанавливаются. На катоде идет реакция восстановления. Он носит заряд положительного электрода.
Торможение одного процесса приводит к торможению и другого процесса. Окисление металла может происходить только в анодном процессе.
Как защитить металлы от коррозии
От коррозии можно и нужно защищаться. Чтобы уберечь металлы от этой реакции, их покрывают защитными материалами, обрабатывают электрохимическими методами, шлифованием и т. д. Рассмотрим все эти способы подробнее.
Способ № 1. Защитные покрытия.
Для защиты от коррозии металлические изделия покрывают другим металлом, т. е. производят никелирование, хромирование, цинкование, лужение и т. д. Еще один вариант защиты — покрыть поверхность металла специальными лаками, красками, эмалями.
Способ № 2. Легирование.
Легирование — это введение добавок, которые образуют защитный слой на поверхности металла. Например, при легировании железа хромом и никелем получают нержавеющую сталь.
Способ № 3. Протекторная защита.
Протекторная защита — это способ уберечь металл от коррозии, при котором металлическое изделие соединяют с более активным металлом. Этот второй металл в итоге и разрушается в первую очередь.
Способ № 4. Электрохимическая защита.
Чтобы защитить металлы от электрохимической коррозии, нейтрализуют ток, который возникает при ней. Это делают с помощью постоянного тока, который пропускают в обратном направлении.
Способ № 5. Изменение состава среды путем добавления ингибиторов.
Для защиты от коррозии используют специальные средства, которые ее замедляют — ингибиторы. Они изменяют состояние поверхности металла — образуют труднорастворимые соединения с катионами металла. Защитные слои, образованные ингибиторами, всегда тоньше наносимых покрытий.
Способ № 6. Замена корродирующего металла на другие материалы: керамику и пластмассу.
Способ № 7. Шлифование поверхностей изделия.
Проверьте себя
Что такое коррозия?
Где в повседневной жизни можно встретить ржавление железа и других металлов? Приведите примеры.
Гидроксид железа Fe(OH)3 называют:
Что является причиной возникновения коррозии?
Чем отличаются химический и электрохимический типы коррозии?
Что такое коррозионная среда?
Узнайте все о коррозии металлов и разберитесь в других темах за 9 класс на онлайн-курсах по химии в Skysmart! Наши преподаватели помогут выяснить, где скрываются пробелы в знаниях, и восполнить их. Никаких скучных задач и сухих лекций — только интерактивные упражнения, опыты и теория простым языком. Все это поможет разобраться даже в тех темах, которые не давались в школе. Ждем на бесплатном вводном уроке!
Читайте также: