Характер гидроксидов у металлов

Обновлено: 22.01.2025

Оксиды — это неорганические соединения, состоящие из двух химических элементов, одним из которых является кислород в степени окисления -2. Единственным элементом, не образующим оксид, является фтор, который в соединении с кислородом образует фторид кислорода. Это связано с тем, что фтор является более электроотрицательным элементом, чем кислород.

Данный класс соединений является очень распространенным. Каждый день человек встречается с разнообразными оксидами в повседневной жизни. Вода, песок, выдыхаемый нами углекислый газ, выхлопы автомобилей, ржавчина — все это примеры оксидов.

Классификация оксидов

Все оксиды, по способности образовать соли, можно разделить на две группы:

В свою очередь, солеобразующие оксиды подразделяют на 3 группы:

  • Основные оксиды — (Оксиды металлов — Na2O, CaO, CuO и т д)
  • Кислотные оксиды — (Оксиды неметаллов, а так же оксиды металлов в степени окисления V-VII — Mn2O7,CO2, N2O5, SO2, SO3 и т д)
  • Амфотерные оксиды (Оксиды металлов со степенью окисления III-IV а так же ZnO, BeO, SnO, PbO)

Данная классификация основана на проявлении оксидами определенных химических свойств. Так, основным оксидам соответствуют основания, а кислотным оксидам — кислоты. Кислотные оксиды реагируют с основными оксидами с образованием соответствующей соли, как если бы реагировали основание и кислота, соответствующие данным оксидам:Аналогично, амфотерным оксидам соответствуют амфотерные основания, которые могут проявлять как кислотные, так и основные свойства:Химические элементы проявляющие разную степень окисления, могут образовывать различные оксиды. Чтобы как то различать оксиды таких элементов, после названия оксиды, в скобках указывается валентность.

CO2 – оксид углерода (IV)

Физические свойства оксидов

Оксиды весьма разнообразны по своим физическим свойствам. Они могут быть как жидкостями (Н2О), так и газами (СО2, SO3) или твёрдыми веществами (Al2O3, Fe2O3). Приэтом оснОвные оксиды, как правило, твёрдые вещества. Окраску оксиды также имеют самую разнообразную — от бесцветной (Н2О, СО) и белой (ZnO, TiO2) до зелёной (Cr2O3) и даже чёрной (CuO).

Химические свойства оксидов

Основные оксиды

Некоторые оксиды реагируют с водой с образованием соответствующих гидроксидов (оснований):Основные оксиды реагируют с кислотными оксидами с образованием солей:Аналогично реагируют и с кислотами, но с выделением воды:Оксиды металлов, менее активных чем алюминий, могут восстанавливаться до металлов:

Кислотные оксиды

Кислотные оксиды в реакции с водой образуют кислоты: Некоторые оксиды (например оксид кремния SiO2) не взаимодействуют с водой, поэтому кислоты получают другими путями.

Кислотные оксиды взаимодействуют с основными оксидами, образую соли:Таким же образом, с образование солей, кислотные оксиды реагируют с основаниями:Если данному оксиду соответствует многоосновная кислота, то так же может образоваться кислая соль:Нелетучие кислотные оксиды могут замещать в солях летучие оксиды:

Амфотерные оксиды

Как уже говорилось ранее, амфотерные оксиды, в зависимости от условий, могут проявлять как кислотные, так и основные свойства. Так они выступают в качестве основных оксидов в реакциях с кислотами или кислотными оксидами, с образованием солей: И в реакциях с основаниями или основными оксидами проявляют кислотные свойства:

Получение оксидов

Оксиды можно получить самыми разнообразными способами, мы приведем основные из них.

Большинство оксидов можно получить непосредственным взаимодействием кислорода с химических элементом: При обжиге или горении различных бинарных соединений:Термическое разложение солей, кислот и оснований :Взаимодействие некоторых металлов с водой:

Применение оксидов

Оксиды крайне распространены по всему земному шару и находят применение как в быту, так и в промышленности. Самый важный оксид — оксид водорода, вода — сделал возможной жизнь на Земле. Оксид серы SO3 используют для получения серной кислоты, а также для обработки пищевых продуктов — так увеличивают срок хранения, например, фруктов.

Оксиды железа используют для получения красок, производства электродов, хотя больше всего оксидов железа восстанавливают до металлического железа в металлургии.

Оксид кальция, также известный как негашеная известь, применяют в строительстве. Оксиды цинка и титана имеют белый цвет и нерастворимы в воде, потому стали хорошим материалом для производства красок — белил.

Оксид кремния SiO2 является основным компонентом стекла. Оксид хрома Cr2O3 применяют для производства цветных зелёных стекол и керамики, а за счёт высоких прочностных свойств — для полировки изделий (в виде пасты ГОИ).

Оксид углерода CO2, который выделяют при дыхании все живые организмы, используется для пожаротушения, а также, в виде сухого льда, для охлаждения чего-либо.

Основания (гидроксиды). Свойства, получение, применение

Гидроксид хрома

Ещё со школы нам известно, что основаниями называют соединения, где атомы металла связаны с одной или несколькими гидроксогруппами — KOH, Ca(OH)2 и т. п. Однако понятие «основания» на самом деле шире, и существует две теории оснований — протонная (теория Брёнстеда — Лоури) и электронная (теория Льюиса). Основания и кислоты Льюиса мы рассмотрим в отдельной статье, поэтому возьмём определение из теории Брёнстеда (далее в данной статье — только основания Брёнстеда): Основания (гидроксиды) — это вещества или частицы, способные принимать (отщеплять) протон от кислоты. Согласно такому определению, свойства основания зависят от свойств кислоты — например, вода или уксусная кислота ведут себя как основания в присутствии более сильных кислот:

Номенклатура оснований

Названия оснований образуются весьма просто — сначала идёт слово «гидроксид», а затем название металла, который входит в данное основание. Если металл имеет переменную валентность, это отражают в названии.

KOH — гидроксид калия
Ca(OH)2 — гидроксид кальция
Fe(OH)2 — гидроксид железа (II)
Fe(OH)3 — гидроксид железа (III)

Существует также основание NH4OH (гидроксид аммония), где гидроксогруппа связана не с металлом, а катионом аммония NH4 + .

Классификация оснований

Основания можно классифицировать по следующим признакам:

  1. По растворимости основания делят на растворимые — щёлочи (NaOH, KOH) и нерастворимые основания (Ca(OH)2, Al(OH)3).
  2. По кислотности (количеству гидроксогрупп) основания делят на однокислотные (KOH, LiOH) и многокислотные (Mg(OH2), Al(OH)3).
  3. По химическим свойствам их делят на оснóвные (Ca(OH)2, NaOH) и амфотерные, то есть проявляющие как основные свойства, так и кислотные (Al(OH)3, Zn(OH)2).
  4. По силе (по степени диссоциации) различают:
    а) сильные (α = 100 %) – все растворимые основания NaOH, LiOH, Ba(OH)2, малорастворимый Ca(OH)2.
    б) слабые (α < 100 %) – все нерастворимые основания Cu(OH)2, Fe(OH)3 и растворимое NH4OH.

Сила оснований

Для оснований можно количественно выразить их силу, то есть способность отщеплять протон от кислоты. Для этого используют константу основности Kb — константу равновесия для реакции между основанием и кислотой, причём в качестве кислоты выступает вода. Чем выше значение константы основности, тем выше сила основания и тем сильнее его способность отщеплять протон. Также вместо самой константы часто используют показатель константы основности pKb. Например, для аммиака NH3 имеем:

Оксиды и гидроксиды металлов

Нажмите, чтобы узнать подробности

презентация к уроку по теме "Оксиды и гидроксиды металлов". Урок-обобщение. Сравниваются свойства металлов 1,2,3 групп главных подгрупп и их кислородных соединений.

Просмотр содержимого документа
«Оксиды и гидроксиды металлов»

или = водород + основание (если основание не растворимо в воде)

Реакция протекает только в том случае, если

металл находится в ряду активности до водорода.

Основание – сложное вещество, в котором каждый атом металла связан с одной или несколькими гидроксогруппами.

в степенях окисления +1 и +2 проявляют основные свойства ,

Заполнить таблицу: Сравнительная характеристика оксидов и гидроксидов

металлов главных подгрупп I - III групп

Вопросы для сравнения

I группа

II группа

Степень окисления Ме в оксиде.

2. Физические свойства.

III группа

3. Химические свойства (сравнить).

4. Способы получения оксидов.

Взаимодействие:

б) с кислотами

в) с кислотными оксидами

г) с амфотерными оксидами

д) со щелочами

5. Формула гидроксида.

Степень окисления Ме в гидроксиде.

6. Физические свойства

7. Химические свойства (сравнить).

8. Способы получения гидроксидов.

а) действие на индикаторы

г) с растворами солей

д) с неметаллами

е) со щелочами

ж) с амфотерными оксидами и гидроксидами

з) отношение к нагреванию

Свойства оксидов и гидроксидов в периоде изменяются от основных через амфотерные к кислотным, т.к. увеличивается положительная степень окисления элементов. Na 2 O , Mg +2 O , Al 2 O 3 основные амфотерный Na +1 O Н , Mg +2 (O Н ) 2 , Al +3 (O Н ) 3 щелочь Слабое Амфотерный основание гидроксид В главных подгруппах основные свойства оксидов и гидроксидов возрастают сверху вниз .

Свойства оксидов и гидроксидов в периоде изменяются от основных через амфотерные к кислотным, т.к. увеличивается положительная степень окисления элементов.

Na 2 O , Mg +2 O , Al 2 O 3

основные амфотерный

Na +1 O Н , Mg +2 (O Н ) 2 , Al +3 (O Н ) 3

щелочь Слабое Амфотерный

основание гидроксид

В главных подгруппах основные свойства оксидов и гидроксидов возрастают сверху вниз .

Соединения металлов I А группы Оксиды щелочных металлов Общая формула Ме 2 О Физические свойства: Твердые, кристаллические вещества, хорошо растворимые в воде. Li 2 O , Na 2 O – бесцветные, К 2 О, Rb 2 O – желтые, Cs 2 О – оранжевый. Способы получения: Окислением металла получается только оксид лития 4 Li + O 2 → 2 Li 2 O (в остальных случаях получаются пероксиды или надпероксиды). Все оксиды (кроме Li 2 O ) получают при нагревании смеси пероксида (или надпероксида) с избытком металла: Na 2 O 2 + 2Na → 2Na 2 O KO 2 + 3K → 2K 2 O Химические свойства Типичные основные оксиды: Взаимодействуют с водой, образуя щелочи: Na 2 О + H 2 O → 2. Взаимодействуют с кислотами, образуя соль и воду: Na 2 О + Н Cl → 3. Взаимодействуют с кислотными оксидами, образуя соли: Na 2 О + SO 3 → 4. Взаимодействуют с амфотерными оксидами, образуя соли: Na 2 О + ZnO → Na 2 ZnO 2

Соединения металлов I А группы

Оксиды щелочных металлов

Общая формула Ме 2 О

Физические свойства: Твердые, кристаллические вещества, хорошо растворимые в воде.

Li 2 O , Na 2 O – бесцветные, К 2 О, Rb 2 O – желтые, Cs 2 О – оранжевый.

Способы получения:

Окислением металла получается только оксид лития

4 Li + O 2 → 2 Li 2 O

(в остальных случаях получаются пероксиды или надпероксиды).

Все оксиды (кроме Li 2 O ) получают при нагревании смеси пероксида (или надпероксида) с избытком металла:

Na 2 O 2 + 2Na → 2Na 2 O

KO 2 + 3K → 2K 2 O

Химические свойства

Типичные основные оксиды:

Взаимодействуют с водой, образуя щелочи: Na 2 О + H 2 O →

2. Взаимодействуют с кислотами, образуя соль и воду: Na 2 О + Н Cl →

3. Взаимодействуют с кислотными оксидами, образуя соли: Na 2 О + SO 3 →

4. Взаимодействуют с амфотерными оксидами, образуя соли: Na 2 О + ZnO → Na 2 ZnO 2

Гидроксиды щелочных металлов Общая формула – МеОН Физические свойства: Белые кристаллические вещества, гигроскопичны, хорошо растворимы в воде (с выделением тепла). Растворы мылкие на ощупь, очень едкие. NaOH – едкий натр КОН – едкое кали Сильные основания - Щелочи. Основные свойства усиливаются в ряду: LiOH → NaOH → KOH → RbOH → CsOH Способы получения: 1. Электролиз растворов хлоридов: 2NaCl + 2H 2 O → 2NaOH + H 2 + Cl 2 2. Обменные реакции между солью и основанием: K 2 CO 3 + Ca(OH) 2 → CaCO 3  + 2KOH 3. Взаимодействие металлов или их основных оксидов (или пероксидов и надпероксидов) с водой: 2 Li + 2 H 2 O → 2 LiOH + H 2 Li 2 O + H 2 O → 2 LiOH Na 2 O 2 + 2 H 2 O → 2 NaOH + H 2 O 2

Гидроксиды щелочных металлов

Общая формула – МеОН

Физические свойства: Белые кристаллические вещества, гигроскопичны, хорошо растворимы в воде (с выделением тепла). Растворы мылкие на ощупь, очень едкие.

NaOH – едкий натр

КОН – едкое кали

Сильные основания - Щелочи. Основные свойства усиливаются в ряду:

LiOH → NaOH → KOH → RbOH → CsOH

1. Электролиз растворов хлоридов:

2NaCl + 2H 2 O → 2NaOH + H 2 + Cl 2

2. Обменные реакции между солью и основанием:

K 2 CO 3 + Ca(OH) 2 → CaCO 3  + 2KOH

3. Взаимодействие металлов или их основных оксидов (или пероксидов и надпероксидов) с водой:

2 Li + 2 H 2 O → 2 LiOH + H 2

Li 2 O + H 2 O → 2 LiOH

Na 2 O 2 + 2 H 2 O → 2 NaOH + H 2 O 2

Химические свойства 1. Изменяют цвет индикаторов: Лакмус – на синий Фенолфталеин – на малиновый Метил-оранж – на желтый 2. Взаимодействуют со всеми кислотами. NaOH + HCl → NaCl + H 2 O 3. Взаимодействуют с кислотными оксидами. 2NaOH + SO 3 → Na 2 SO 4 + H 2 O 4. Взаимодействуют с растворами солей, если образуется газ или осадок. 2 NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4 5. Взаимодействуют с некоторыми неметаллами (серой, кремнием, фосфором) 2 NaOH +Si + H 2 O → Na 2 SiO 3 + 2H 2 ↑ 6. Взаимодействуют с амфотерными оксидами и гидроксидами 2 NaOH + Zn О + H 2 O → Na 2 [ Zn ( OH ) 4 ] 2 NaOH + Zn (ОН) 2 → Na 2 [ Zn ( OH ) 4 ] 7. При нагревании не разлагаются, кроме LiOH .

1. Изменяют цвет индикаторов:

Лакмус – на синий

Фенолфталеин – на малиновый

Метил-оранж – на желтый

2. Взаимодействуют со всеми кислотами.

NaOH + HCl → NaCl + H 2 O

3. Взаимодействуют с кислотными оксидами.

2NaOH + SO 3 → Na 2 SO 4 + H 2 O

4. Взаимодействуют с растворами солей, если образуется газ или осадок.

2 NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4

5. Взаимодействуют с некоторыми неметаллами (серой, кремнием, фосфором)

2 NaOH +Si + H 2 O → Na 2 SiO 3 + 2H 2 ↑

6. Взаимодействуют с амфотерными оксидами и гидроксидами

2 NaOH + Zn О + H 2 O → Na 2 [ Zn ( OH ) 4 ]

2 NaOH + Zn (ОН) 2 → Na 2 [ Zn ( OH ) 4 ]

7. При нагревании не разлагаются, кроме LiOH .

Соединения металлов главной подгруппы II группы Оксиды металлов II А группы Общая формула МеО Физические свойства: Твердые, кристаллические вещества белого цвета, малорастворимые в воде. Способы получения: Окисление металлов (кроме Ba , который образует пероксид) 2Са + О 2 → 2СаО 2) Термическое разложение нитратов или карбонатов CaCO 3 → CaO + CO 2 2Mg(NO 3 ) 2 → 2MgO + 4NO 2 + O 2 Химические свойства ВеО – амфотерный оксид Оксиды Mg , Ca , Sr , Ba – основные оксиды Взаимодействуют с водой(кроме ВеО), образуя щелочи( Mg ( OH ) 2 – слабое основание): СаО + H 2 O → 2. Взаимодействуют с кислотами, образуя соль и воду: СаО + Н Cl → 3. Взаимодействуют с кислотными оксидами, образуя соли: СаО + SO 3 → 4. ВеО взаимодействует со щелочами: ВеО + 2 NaOH + H 2 O → Na 2 [Ве( OH ) 4 ]

Соединения металлов главной подгруппы II группы

Оксиды металлов II А группы

Общая формула МеО

Физические свойства: Твердые, кристаллические вещества белого цвета, малорастворимые в воде.

Окисление металлов (кроме Ba , который образует пероксид)

2) Термическое разложение нитратов или карбонатов

CaCO 3 → CaO + CO 2

2Mg(NO 3 ) 2 → 2MgO + 4NO 2 + O 2

ВеО – амфотерный оксид

Оксиды Mg , Ca , Sr , Ba – основные оксиды

Взаимодействуют с водой(кроме ВеО), образуя щелочи( Mg ( OH ) 2 – слабое основание):

2. Взаимодействуют с кислотами, образуя соль и воду: СаО + Н Cl →

3. Взаимодействуют с кислотными оксидами, образуя соли: СаО + SO 3 →

4. ВеО взаимодействует со щелочами: ВеО + 2 NaOH + H 2 O → Na 2 [Ве( OH ) 4 ]

Гидроксиды металлов II А группы Общая формула – Ме(ОН) 2 Физические свойства: Белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов. Ве(ОН) 2 – в воде нерастворим. Основные свойства усиливаются в ряду: Ве(ОН) 2 → Mg (ОН) 2 → Ca (ОН) 2 → Sr (ОН) 2 → В a (ОН) 2 Способы получения: Реакции щелочноземельных металлов или их оксидов с водой: Ba + 2 H 2 O → Ba ( OH ) 2 + H 2 CaO (негашеная известь) + H 2 O → Ca ( OH ) 2 (гашеная известь)

Гидроксиды металлов II А группы

Общая формула – Ме(ОН) 2

Физические свойства: Белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов. Ве(ОН) 2 – в воде нерастворим.

Основные свойства усиливаются в ряду:

Ве(ОН) 2 → Mg (ОН) 2 → Ca (ОН) 2 → Sr (ОН) 2 → В a (ОН) 2

Реакции щелочноземельных металлов или их оксидов с водой:

Ba + 2 H 2 O → Ba ( OH ) 2 + H 2

CaO (негашеная известь) + H 2 O → Ca ( OH ) 2 (гашеная известь)

Химические свойства Ве(ОН) 2 – амфотерный гидроксид Mg (ОН) 2 – слабое основание Са(ОН) 2 , Sr (ОН) 2, Ва(ОН) 2 – сильные основания – щелочи. Изменяют цвет индикаторов: Лакмус – на синий Фенолфталеин – на малиновый Метил-оранж – на желтый 2. Взаимодействуют с кислотами, образуя соль и воду: Ве(ОН) 2 + Н 2 SO 4 → 3. Взаимодействуют с кислотными оксидами: Са(ОН) 2 + SO 3 → 4. Взаимодействуют с растворами солей, если образуется газ или осадок: Ва(ОН) 2 + K 2 SO 4 → Гидроксид бериллия взаимодействует со щелочами: Ве(ОН) 2 + 2 NaOH → Na 2 [Ве( OH ) 4 ] При нагревании разлагаются: Са(ОН) 2 →

Ве(ОН) 2 – амфотерный гидроксид

Mg (ОН) 2 – слабое основание

Са(ОН) 2 , Sr (ОН) 2, Ва(ОН) 2 – сильные основания – щелочи.

Изменяют цвет индикаторов:

2. Взаимодействуют с кислотами, образуя соль и воду:

Ве(ОН) 2 + Н 2 SO 4 →

3. Взаимодействуют с кислотными оксидами:

4. Взаимодействуют с растворами солей, если образуется газ или осадок:

Ва(ОН) 2 + K 2 SO 4 →

Гидроксид бериллия взаимодействует со щелочами:

Ве(ОН) 2 + 2 NaOH → Na 2 [Ве( OH ) 4 ]

При нагревании разлагаются: Са(ОН) 2 →

Соединения металлов главной подгруппы III группы Соединения алюминия Оксид алюминия Al 2 O 3 O = Al – O – Al = O Физические свойства: Глинозем, корунд, окрашенный – рубин (красный), сапфир (синий). Твердое тугоплавкое ( t° пл.=2050 ° С) вещество; существует в нескольких кристаллических модификациях. Способы получения: Сжигание порошка алюминия: 4 Al + 3 O 2 → 2 Al 2 O 3 Разложение гидроксида алюминия: 2 Al ( OH ) 3 → Al 2 O 3 + 3 H 2 O

Соединения металлов главной подгруппы III группы

Соединения алюминия

Оксид алюминия

Al 2 O 3

O = Al – O – Al = O

Физические свойства: Глинозем, корунд, окрашенный – рубин (красный), сапфир (синий).

Твердое тугоплавкое ( t° пл.=2050 ° С) вещество; существует в нескольких кристаллических модификациях.

Сжигание порошка алюминия: 4 Al + 3 O 2 → 2 Al 2 O 3

Разложение гидроксида алюминия: 2 Al ( OH ) 3 → Al 2 O 3 + 3 H 2 O

Химические свойства Al 2 O 3 - амфотерный оксид с преобладанием основных свойств; с водой не реагирует. 1) Реагирует с кислотами и растворами щелочей: Как основной оксид: Al 2 O 3 + 6 HCl → 2 AlCl 3 + 3 H 2 O Как кислотный оксид: Al 2 O 3 + 2 NaOH + 3 H 2 O → 2 Na [ Al ( OH ) 4 ] 2) Сплавляется со щелочами или карбонатами щелочных металлов: Al 2 O 3 + Na 2 CO 3 → 2 NaAlO 2 (алюминат натрия) + CO 2 Al 2 O 3 + 2 NaOH → 2 NaAlO 2 + H 2 O

Al 2 O 3 - амфотерный оксид с преобладанием основных свойств; с водой не реагирует.

1) Реагирует с кислотами и растворами щелочей:

Как основной оксид: Al 2 O 3 + 6 HCl → 2 AlCl 3 + 3 H 2 O

Как кислотный оксид: Al 2 O 3 + 2 NaOH + 3 H 2 O → 2 Na [ Al ( OH ) 4 ]

2) Сплавляется со щелочами или карбонатами щелочных металлов:

Al 2 O 3 + Na 2 CO 3 → 2 NaAlO 2 (алюминат натрия) + CO 2

Al 2 O 3 + 2 NaOH → 2 NaAlO 2 + H 2 O

Гидроксид алюминия Al ( OH ) 3 Физические свойства: белое кристаллическое вещество, нерастворимое в воде. Способы получения: 1) Осаждением из растворов солей щелочами или гидроксидом аммония: AlCl 3 + 3NaOH → Al(OH) 3 + 3NaCl Al 2 (SO 4 ) 3 + 6NH 4 OH → 2Al(OH) 3 + 3(NH 4 ) 2 SO 4 Al 3+ + 3 OH ¯ → Al ( OH ) 3 (белый студенистый) 2) Слабым подкислением растворов алюминатов: Na[Al(OH) 4 ] + CO 2 → Al(OH) 3 + NaHCO 3 Химические свойства Al ( OH ) 3 - а мфотерный гидроксид : 1) Реагирует с кислотами и растворами щелочей: Как основание Al ( OH ) 3 + 3 HCl → AlCl 3 + 3 H 2 O Как кислота Al ( OH ) 3 + NaOH → Na [ Al ( OH ) 4 ] (тетрагидроксоалюминат натрия) При нагревании разлагается: 2 Al ( OH ) 3 → Al 2 O 3 + 3 H 2 O

Гидроксид алюминия Al ( OH ) 3

Физические свойства: белое кристаллическое вещество,

нерастворимое в воде.

1) Осаждением из растворов солей щелочами или гидроксидом аммония:

AlCl 3 + 3NaOH → Al(OH) 3 + 3NaCl

Al 2 (SO 4 ) 3 + 6NH 4 OH → 2Al(OH) 3 + 3(NH 4 ) 2 SO 4

Al 3+ + 3 OH ¯ → Al ( OH ) 3 (белый студенистый)

2) Слабым подкислением растворов алюминатов:

Na[Al(OH) 4 ] + CO 2 → Al(OH) 3 + NaHCO 3

Al ( OH ) 3 - а мфотерный гидроксид :

Как основание Al ( OH ) 3 + 3 HCl → AlCl 3 + 3 H 2 O

Как кислота Al ( OH ) 3 + NaOH → Na [ Al ( OH ) 4 ]

При нагревании разлагается: 2 Al ( OH ) 3 → Al 2 O 3 + 3 H 2 O

Заполнить таблицу: Сравнительная характеристика оксидов и гидроксидов металлов главных подгрупп I - III групп Вопросы для сравнения I группа Общая формула оксида. II группа Степень окисления Ме в оксиде. 2. Физические свойства. III группа 3. Химические свойства (сравнить). 4. Способы получения оксидов. Характер оксидов Взаимодействие: а) с водой б) с кислотами в) с кислотными оксидами г) с амфотерными оксидами д) со щелочами 5. Формула гидроксида. Степень окисления Ме в гидроксиде. 6. Физические свойства 7. Химические свойства (сравнить). Характер гидроксидов 8. Способы получения гидроксидов. Взаимодействие: а) действие на индикаторы б) с кислотами в) с кислотными оксидами г) с растворами солей д) с неметаллами е) со щелочами ж) с амфотерными оксидами и гидроксидами з) отношение к нагреванию

Основания


О чем эта статья:

Основания (гидроксиды) — это сложные вещества, которые состоят из катиона металла и гидроксильной группы (OH).

Общая формула оснований: Me(OH)n, где Me — химический символ металла, n — индекс, который зависит от степени окисления металла.

Примеры оснований: NaOH, Ba(OH)2, Fe(OH)2.

Названия оснований

Названия гидроксидов строятся по систематической номенклатуре следующим образом:

Пишем слово «гидроксид».

Указываем название второго химического элемента в родительном падеже.

Если второй элемент имеет переменную валентность, то указываем валентность элемента в этом соединении в скобках римской цифрой.

Примеры названий оснований:

Ni(OH)2 — гидроксид никеля (II);

Al(OH)3 — гидроксид алюминия.

У некоторых оснований существуют и тривиальные названия. Собрали их в таблице.

Тривиальные названия некоторых оснований

По растворимости в воде

В зависимости от растворимости в воде выделяют:

щелочи. Эти основания растворимы в воде: NaOH, KOH, Ba(OH)2 и другие. Ca(OH)2, хотя малорастворим, тоже относится к щелочам из-за своей едкости;

нерастворимые основания. К таким основаниям относятся Fe(OH)2, Cu(OH)2 и другие;

амфотерные гидроксиды. К амфотерным относятся те основания, которые образованы металлами со степенью окисления +3 или +4. Эти основания отличаются тем, что проявляют как основные свойства, так и кислотные.

Также есть основания, которые относятся к амфотерным, но образованы металлом с иной степенью окисления: Zn(OH)2, Pb(OH)2, Sn(OH)2, Be(OH)2.

Напомним, что растворимость мы проверяем по таблице растворимости кислот и оснований в воде.

По числу гидроксогрупп

В зависимости от количества гидроксильных групп, способных замещаться на кислотный остаток, выделяют следующие виды оснований:

однокислотные: KOH, NaOH;

Физические свойства оснований

Основания при обычных условиях — это твердые кристаллические вещества без запаха, нелетучие, чаще всего белого цвета. В таблице приведены основания, которые имеют иную окраску.

Гидроксид лития LiOH

Гидроксид магния Mg(OH)2

Гидроксид кальция Ca(OH)2

Химические свойства оснований

Растворы щелочей изменяют окраску индикатора

Гидроксид-ионы, которые содержатся в растворе щелочи, взаимодействуют с индикатором, образуя новые соединения. Признак реакции — окраска раствора.

Взаимодействие с кислотными оксидами

Щелочи вступают в реакцию с любыми кислотными оксидами. Нерастворимые основания взаимодействуют только с кислотными оксидами, которые соответствуют сильным кислотам.

Кислотный оксид + основание = соль + вода

Взаимодействие с кислотами

Щелочи вступают в реакцию со всеми кислотами. Нерастворимые основания могут взаимодействовать только с сильными кислотами.

Основание + кислота = соль + вода

Взаимодействие основания с кислотой называют реакцией нейтрализации — это частный случай реакции обмена.

Взаимодействие с солями

Основания взаимодействуют с растворимыми солями по обменному механизму. В результате такой реакции должен выделиться осадок или газ (CO2, SO2, NH3).

Основание + соль = другое основание + другая соль

Термическое разложение

При нагревании нерастворимые основания разлагаются на соответствующий оксид (степень окисления металла остается неизменной) и воду.

Нерастворимое основание оксид металла + вода

Взаимодействие амфотерных гидроксидов со щелочами

Продукты реакции зависят от условий ее проведения.

При сплавлении двух оснований:

Амфотерный гидроксид (тв) + щелочь (тв) = средняя соль + вода

Если реакция проводится в растворе:

Амфотерный гидроксид (р-р) + щелочь (р-р) = комплексная соль

Получение оснований

Взаимодействие металла с водой

Активные металлы (металлы групп IA и IIA, кроме Be и Mg) активно взаимодействуют с водой при обычных условиях с образованием щелочей.

Нерастворимые основания данным способом получить невозможно, за исключением Mg(OH)2.

Металл + вода = гидроксид металла + водород

Гидроксид магния можно получить данным способом, но только при нагревании:

Взаимодействие оксидов щелочных и щелочноземельных металлов с водой

Этим способом получают только растворимые в воде основания.

Оксид металла + вода = щелочь

Электролиз

Гидроксид натрия и калия в промышленности получают с помощью электролиза — через раствор хлорида калия проводят постоянный электрический ток:

Электролиз хлорида натрия протекает по аналогичной схеме.

Получение нерастворимых оснований при взаимодействии соли со щелочью

Растворимая соль + щелочь = нерастворимое основание + другая соль

Вопросы для самопроверки

Вспомните определение оснований и приведите 2 примера этих веществ.

Какие виды оснований существуют? Чем они отличаются?

К какому виду оснований относится Zn(OH)2?

Взаимодействуют ли основания с основными оксидами? Приведите примеры веществ, с которыми основания вступают в реакцию.

Можно ли получить гидроксид алюминия с помощью взаимодействия алюминия с водой?

Основания и другие темы по химии изучать интереснее, когда понимаешь, как применять знания в реальной жизни. На онлайн-курсах по химии в Skysmart преподаватели приводят яркие примеры: от процессов в природе до использования химических реакций в промышленности. Приходите учиться — вводный урок бесплатный!

Нажмите, чтобы узнать подробности

Читайте также: