График плавления и отвердевания металла
Плавление — это процесс превращения вещества из твёрдого состояния в жидкое.
Наблюдения показывают, что если измельчённый лёд, имеющий, например, температуру –10 °С, оставить в тёплой комнате, то его температура будет повышаться. При 0 °С лёд начнет таять, а температура при этом не будет изменяться до тех пор, пока весь лёд не превратится в жидкость. После этого температура образовавшейся изо льда воды будет повышаться.
Это означает, что кристаллические тела, к которым относится и лед, плавятся при определённой температуре, которую называют температурой плавления. Важно, что во время процесса плавления температура кристаллического вещества и образовавшейся в процессе его плавления жидкости остаётся неизменной.
В описанном выше опыте лёд получал некоторое количество теплоты, его внутренняя энергия увеличивалась за счёт увеличения средней кинетической энергии движения молекул. Затем лёд плавился, его температура при этом не менялась, хотя лёд получал некоторое количество теплоты. Следовательно, его внутренняя энергия увеличивалась, но не за счёт кинетической, а за счёт потенциальной энергии взаимодействия молекул. Получаемая извне энергия расходуется на разрушение кристаллической решетки. Подобным образом происходит плавление любого кристаллического тела.
Аморфные тела не имеют определённой температуры плавления. При повышении температуры они постепенно размягчаются, пока не превратятся в жидкость.
Кристаллизация
Кристаллизация — это процесс перехода вещества из жидкого состояния в твёрдое состояние. Охлаждаясь, жидкость будет отдавать некоторое количество теплоты окружающему воздуху. При этом будет уменьшаться её внутренняя энергия за счёт уменьшения средней кинетической энергии его молекул. При определённой температуре начнётся процесс кристаллизации, во время этого процесса температура вещества не будет изменяться, пока всё вещество не перейдет в твёрдое состояние. Этот переход сопровождается выделением определённого количества теплоты и соответственно уменьшением внутренней энергии вещества за счёт уменьшения потенциальной энергии взаимодействия его молекул.
Таким образом, переход вещества из жидкого состояния в твёрдое состояние происходит при определённой температуре, называемой температурой кристаллизации. Эта температура остаётся неизменной в течение всего процесса плавления. Она равна температуре плавления этого вещества.
На рисунке приведён график зависимости температуры твёрдого кристаллического вещества от времени в процессе его нагревания от комнатной температуры до температуры плавления, плавления, нагревания вещества в жидком состоянии, охлаждения жидкого вещества, кристаллизации и последующего охлаждения вещества в твёрдом состоянии.
Удельная теплота плавления
Различные кристаллические вещества имеют разное строение. Соответственно, для того, чтобы разрушить кристаллическую решётку твёрдого тела при температуре его плавления, необходимо ему сообщить разное количество теплоты.
Удельная теплота плавления — это количество теплоты, которое необходимо сообщить 1 кг кристаллического вещества, чтобы превратить его в жидкость при температуре плавления. Опыт показывает, что удельная теплота плавления равна удельной теплоте кристаллизации.
Удельная теплота плавления обозначается буквой λ. Единица удельной теплоты плавления — [λ] = 1 Дж/кг.
Значения удельной теплоты плавления кристаллических веществ приведены в таблице. Удельная теплота плавления алюминия 3,9*10 5 Дж/кг. Это означает, что для плавления 1 кг алюминия при температуре плавления необходимо затратить количество теплоты 3,9*10 5 Дж. Этому же значению равно увеличение внутренней энергии 1 кг алюминия.
Чтобы вычислить количество теплоты Q, необходимое для плавления вещества массой m, взятого при температуре плавления, следует удельную теплоту плавления λ умножить на массу вещества: Q = λm .
Эта же формула используется при вычислении количества теплоты, выделяющегося при кристаллизации жидкости.
Конспект урока «Плавление и кристаллизация. Удельная теплота плавления».
Плавление и отвердевание кристаллических тел
В твердых кристаллических телах молекулы расположены упорядоченно, образуя кристаллическую решетку, структура которой воспроизводится во всем объеме – такое расположение частиц называется дальним порядком. При нагревании тела кинетическая энергия молекул увеличивается, и при достижении температуры плавления структура решетки начинает разрушаться, твердое тело теряет форму — начинается процесс плавления. При охлаждении происходит отвердевание — переход из жидкой фазы в твердую.
Почему происходит плавление
В твердом состоянии молекулы и атомы находятся в узлах решетки, совершая непрерывные колебания вблизи фиксированного положения. Такие колебания не нарушают кристаллическую структуру. Прочность решетки обеспечивается межмолекулярными связями. В процессе нагрева тела происходит передача тепловой энергии, которая преобразуется во внутреннюю энергию молекул, увеличивая их скорость и частоту колебаний. При достижении некоторого критического значения температуры Tпл (температуры плавления) происходит разрыв межмолекулярных связей, молекулы покидают свои места, что приводит к изменению формы тела, которое начинает переходить в жидкое состояние.
Рис. 1. Примеры строения кристаллических решеток: графит, алмаз,NaCl.
Итак, плавлением называется процесс перехода из твердого состояния в жидкое.
Что такое отвердевание
Наблюдения показывают, что если расплавленное вещество охладить, то при достижении температуры Tотв (температура отвердевания) начинается обратный процесс перехода из жидкого состояния в твердое. Этот фазовый переход называется отвердеванием или кристаллизацией. Экспериментально доказано, что для кристаллических тел Tпл = Tотв. “Горячие” молекулы”, при охлаждении теряют скорость и отдают тепло в окружающую среду. Внутренняя энергия уменьшается, частицы под воздействием сил молекулярного взаимодействия начинают “занимать” постоянные места, восстанавливая структуру решетки.
Процессы плавления и отвердевания происходят не скачкообразно, а постепенно, так, что одновременно могут соседствовать твердая и жидкая компоненты. Эксперименты показывают, что до окончания плавления (или отвердевания) всей массы вещества, его температура остается постоянной.
Металлы, температура плавления которых больше 1650 0 С, называют тугоплавкими. Например, температура плавления вольфрама равна 3370 0 С. Поэтому из него делают долговечные нити накаливания для ламп. Тугоплавкие металлы и их сплавы незаменимы в ракетостроении, атомной энергетике, металлургии, космической технике — везде, где необходимы высокие жаропрочные свойства.
Графическое представление процессов плавления и отвердевания
График плавления и отвердевания кристаллических тел дает наглядное представление о временной зависимости этих фазовых переходов.
Рис. 2. График плавления и отвердевания вода-лед.
Обычная вода является хорошим примером для иллюстрации обсуждаемых явлений. На представленном графике по оси абсцисс отложено время t, а по оси ординат — температура. Пускай изначально, в момент времени t = 0, когда температура льда (кристалла) была равна -40 0 С, начнется подача тепла — нагрев. Рассмотрим далее временную зависимость температурной зависимости T(t):
- На участке АВ, от -40 0 С до 0 0 С (температура плавления льда) существует лед в кристаллическом виде;
- Участок ВС — происходит стадия плавления, присутствуют одновременно лед и вода. Температура остается постоянной, равной 0 0 С;
- СD — в точке С закончилось плавление, существует только жидкая фаза — вода;
- DЕ — в точке D прекратился нагрев, происходит остывание вплоть до точки Е, т.е. до температуры 0 0 С. Присутствует только вода в жидком виде;
- EF — в точке Е, начинается отвердевание, появляются кристаллы льда, но одновременно присутствует и жидкая фаза. Температура остается постоянной, равной 0 0 С;
- FK — в точке F произошло полное отвердевание, остается только лед в кристаллическом виде, температура которого постепенно понижается.
Что такое удельная теплота плавления
Удельной теплотой плавления λ (греческая буква “лямбда”), называется физическая величина, равная количеству тепла, которое необходимо передать твердому телу массой 1 кг, чтобы полностью перевести его в жидкую фазу. Формула удельной теплоты плавления выглядит так:
m — масса плавящегося вещества, кг;
Q — количество тепла, переданное веществу при плавлении, Дж.
Значения λ для разных веществ определяют экспериментально. Размерность λ следует из формулы (1):
Зная λ, можно рассчитать количество тепла Q, которое необходимо сообщить телу массой m для его полного расплавления:
При отвердевании ровно такое же количество тепла будет возвращено в окружающую среду.
Некоторые вещества при нагревании минуют стадию плавления и сразу испаряются. Такой процесс называют сублимацией или возгонкой. Примером такого вещества может служить кристаллический йод. Обратный переход из газообразного состояния, проходящий без образования жидкой фазы, называется десублимацией. Примерами таких переходов служат образование кристаллов йода из паров йода и выпадение инея и снежинок из водяных паров воздуха.
Рис. 3. Образование узоров инея на стекле.
Что мы узнали?
Итак, мы узнали, что плавление и отвердевание кристаллических тел происходит при одинаковых температурах. В процессе плавления и отвердевания температура вещества остается постоянной. Удельной теплотой плавления λ называется величина, равная количеству тепла, которое необходимо передать твердому телу массой 1 кг, для полного превращения его в жидкое состояние.
График плавления и отвердевания кристаллических тел
Если вещество в твердом состоянии будет отдавать энергию — оно будет остывать. При этом с определенной температуры начинает происходить процесс плавления — тело переходит из твердого состояния в жидкое.
Если же мы будем сообщать энергию жидкости (нагревать ее), то с определенной температуры начнется процесс отвердевания (кристаллизации). Жидкость перейдет в твердое состояние.
Процесс плавления кристаллического тела довольно сложный. Для того чтобы более детально его изучить, мы рассмотрим график зависимости температуры твердого тела от времени его последовательного нагревания и охлаждения.
График плавления льда и отвердевания воды
В качестве кристаллического тела будем рассматривать лёд. График плавления льда и отвердевания воды изображен на рисунке 1. Здесь по горизонтальной оси отложено время, а по вертикальной — температура льда. Для нагревания льда будем использовать обычную горелку.
Рисунок 1. График зависимости температуры льда от времени нагревания
Разберем каждый участок графика.
- Точка A
Это наша начальная точка, начало наблюдения за процессом. Здесь температура льда была равна $-40 \degree C$
- Участок AB
Идет нагревание льда, его температура увеличивается с $-40 \degree C$ до $0 \degree C$
- Точка B
Достигнув температуры $0 \degree C$, лед начинает плавится. Это его температура плавления.
- Участок BC
Лед плавится, но его температура в это время не увеличивается. Процессу плавления соответствует именно этот участок графика.
В течение всего времени плавления температура льда не меняется, хотя мы продолжаем его нагревать
- Точка C
В этот момент весь лед расплавился и превратился в воду
- Участок CD
На это участке графика идет нагревание воды до $+40 \degree C$
- Точка D
Вода имеет температуру $+40 \degree C$. В этот момент мы выключаем горелку
- Участок DE
Температура воды снижается, она охлаждается
- Точка E
Температуры воды достигает $0 \degree C$. Начинается ее отвердевание (кристаллизация)
- Участок EF
На этом участке графика идет процесс отвердевания (кристаллизации) воды.
Пока вся вода не затвердеет, ее температура не изменится
- Точка F
В этот момент вся вода превратится в лёд
- Участок FK
Температура льда понижается
Графики плавления олова и свинца
На графиках часто указывают какой-то один процесс (либо отвердевание, либо плавление), но для нескольких веществ. Это делается для наглядного сравнениях их свойств.
Подобный график представлен на рисунке 2.
Рисунок 2. Графики для процесса плавлении олова и свинца
Процесс плавления олова соответствует участку CD, а процесс плавления свинца — участку AB.
Участок AB находится выше участка CD. Это означает, что свинец имеет большую температуру плавления, чем олово. На графике отмечены эти температуры. Для свинца это $327 \degree C$, а для олова $232 \degree C$.
Также мы можем судить о времени процесса плавления. Участок AB имеет большую длину, чем участок CD. Значит, свинец плавился большее время, чем олово. При этом, свинец начал плавиться раньше.
Одно и то же вещество может находиться в трех разных агрегатных состояниях в зависимости от условий. Например, лед, вода и водяной пар (рисунок 1).
Соответственно, это одно вещество в твердом, жидком и газообразном состоянии. Эти состояния отличаются друг от друга расположением, характером движения и взаимодействия молекул. В жидких и твердых телах, в отличии от газов, молекулы не могут далеко удалиться друг от друга. Изначально они расположены близко друг к другу. Их средняя кинетическая энергия недостаточна для того, чтобы совершить работу по преодолению сил молекулярного притяжения.
Тем не менее, на практике мы часто наблюдаем, как тела переходят из твердого состояния в жидкое, и наоборот. Например, процесс таяния льда или его замерзания. На данном уроке мы более подробно рассмотрим эти процессы, узнаем при каких условиях они проходят.
Плавление и температура плавления
- Если мы сообщим телу достаточную энергию, то возможно перевести его из твердого состояния в жидкое (расплавить лед) и из жидкого в газообразное (превратить воду в пар)
- Если же тело будет отдавать энергию, то оно может перейти из газообразного состояния в жидкое и из жидкого в твердое
Плавление — это переход вещества из твердого состояния в жидкое.
Чтобы началось плавление тела, его необходимо нагреть до определенной температуры.
Температура плавления вещества — это температура, при которой вещество плавится.
Разные вещества плавятся при разных температурах. Лед начнет плавится, если мы возьмем его в руку. А чтобы расплавить железо понадобится специальная печь. Кусок олова или свинца можно расплавить в стальной ложке.
В таблице 1 представлены температуры плавления различных веществ. Вы можете заметить, что их диапазон очень широк.
Вещество | $t_, \degree C$ | Вещество | $t_, \degree C$ |
Водород | -259 | Цинк | 420 |
Кислород | -219 | Алюминий | 660 |
Азот | -210 | Серебро | 962 |
Спирт | -114 | Латунь | 1000 |
Ртуть | -39 | Золото | 1064 |
Лед | 0 | Медь | 1085 |
Цезий | 29 | Чугун | 1200 |
Калий | 63 | Сталь | 1500 |
Натрий | 98 | Железо | 1539 |
Олово | 232 | Платина | 1772 |
Свинец | 327 | Осмий | 3045 |
Янтарь | 360 | Вольфрам | 3387 |
Отвердевание и температура отвердевания
Процесс, обратный плавлению, называется отвердеванием или кристаллизацией.
Отвердевание (кристаллизация) — это переход вещества из жидкого состояния в твердое.
Чтобы началось отвердевание тела, оно должно остыть до определенной температуры.
Температура отвердевания (кристаллизации) вещества — это температура, при которой вещество отвердевает (кристаллизуется).
Доказано, что вещества плавятся при той же температуре, при которой отвердевают. Что это означает? Например, вода кристаллизуется при $0 \degree C$. А лед при этой же температуре плавится.
Удельная теплота плавления
Рассматривая график плавления и отвердевания льда в прошлом уроке, мы выяснили, что во время процесса плавления температура льда не меняется. Температура продолжит расти только тогда, когда лед полностью перейдет в жидкость. То же самое мы наблюдали и при кристаллизации воды.
Но, когда лед плавится, он все равно получает энергию. Ведь во время плавления мы не выключаем горелку — лед получает какое-то количество теплоты от сгорающего в спиртовке (или другом нагревателе) топлива. Куда уходит эта энергия? Вы уже знаете закон сохранения энергии — энергия не может исчезнуть.
На данном уроке мы подробно рассмотрим, что происходит во время процесса плавления, как изменяется энергия и температура. Это позволит нам перейти к новому определению — удельной теплоте плавления.
Изменение внутренней энергии и температуры при плавлении
Так на что же уходит энергия, которую мы сообщаем телу, при плавлении?
Вы знаете, что в кристаллических твердых телах атомы (или молекулы) расположены в строгом порядке (рисунок 1). Они не двигаются так активно, как в газах или жидкостях. Тем не менее, они также находятся в тепловом движении — колеблются.
Взгляните еще раз на график плавления и отвердевания льда (рисунок 2).
Нагревание льда идет на участке AB. В это время увеличивается средняя скорость движения его молекул. Значит, возрастает и их средняя кинетическая энергия и температура. Размах колебаний атомов (или молекул) увеличивается.
Так происходит то того момента, пока нагреваемое тело не достигнет температуры плавления.
При температуре плавления нарушается порядок в расположении частиц в кристаллах.
Так вещество начинает переход из твердого состояния в жидкое.
Значит, энергия, которую получает тело после достижения температуры плавления, расходуется на разрушение кристаллической решетки. Поэтому температура тела не повышается — участок графика BC.
Изменение внутренней энергии и температуры при отвердевании
При отвердевании происходит обратное.
Средняя скорость движения молекул и их средняя кинетическая энергия в жидкости (расплавленном веществе) уменьшается при охлаждении. Этому соответствует участок графика DE на рисунке 2.
Теперь силы притяжения между молекулами могут удерживать их друг около друга. Расположение частиц становится упорядоченным — образуется кристалл (участок графика EF).
Куда расходуется энергия, которая выделяется при кристаллизации? Температура тела остается постоянной во время этого процесса. Значит, энергия расходуется на поддержание этой температуры, пока тело полностью не отвердеет.
Теперь мы можем сказать, что
При температуре плавления внутренняя энергия вещества в жидком состоянии больше внутренней энергии такой же массы вещества в твёрдом состоянии.
Эта избыточная энергия выделяется при кристаллизации и поддерживает температуру тела на одном уровне во время всего процесса отвердевания.
Опытным путем доказано, что для превращения твердых кристаллических тел одинаковой массы в жидкость необходимо разное количество теплоты. Тела при этом рассматриваются при их температурах плавления.
Удельная теплота плавления — это физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой $1 \space кг$, чтобы при температуре плавления полностью перевести его в жидкое состояние.
- обозначается буквой $\lambda$
- единица измерения — $1 \frac$
Удельная теплота плавления некоторых веществ
В таблице 1 представлены экспериментально полученные величины удельной теплоты плавления для некоторых веществ.
Вещество | $\lambda, \frac$ | Вещество | $\lambda, \frac$ |
Алюминий | $8.9 \cdot 10^5$ | Сталь | $0.84 \cdot 10^5$ |
Лёд | $3.4 \cdot 10^5$ | Золото | $0.67 \cdot 10^5$ |
Железо | $2.7 \cdot 10^5$ | Водород | $0.59 \cdot 10^5$ |
Медь | $2.1 \cdot 10^5$ | Олово | $0.59 \cdot 10^5$ |
Парафин | $1.5 \cdot 10^5$ | Свинец | $0.25 \cdot 10^5$ |
Спирт | $1.1 \cdot 10^5$ | Кислород | $0.14 \cdot 10^5$ |
Серебро | $0.87 \cdot 10^5$ | Ртуть | $0.12 \cdot 10^5$ |
Удельная теплота плавления золота составляет $0.67 \cdot 10^5 \frac$. Что это означает?
Для того чтобы расплавить кусок золота массой $1 \space кг$, взятого при температуре $1064 \degree C$ (температура плавления золота), до жидкого состояния, нам потребуется затратить $0.67 \cdot 10^5 \space Дж$ энергии.
Опытным путем доказано, что
при отвердевании кристаллического вещества выделяется точно такое же количество теплоты, которое поглощается при его плавлении.
То есть, при кристаллизации расплавленного золота массой $1 \space кг$ выделится $0.67 \cdot 10^5 \space Дж$ энергии.
Чтобы вычислить количество теплоты $Q$, необходимое для плавления кристаллического тела массой $m$, взятого при его температуре плавления и нормальном атмосферном давлении, нужно удельную теплоту плавления $\lambda$ умножить на массу тела $m$:
$Q = \lambda m$.
Мы можем выразить из этой формулы массу $m$ и удельную теплоту плавления $\lambda$:
Количество теплоты, которое выделится при отвердевании, рассчитывается по этой же формуле. Но при этом необходимо помнить, что внутренняя энергия тела будет уменьшаться.
Упражнения
Упражнение №1
В кастрюлю положили лёд массой $2 \space кг$. Его температура была равна $0 \degree C$. Рассчитайте количество энергии, которое понадобилось, чтобы полностью растопить лёд и превратить его в кипяток с температурой $100 \degree C$. Количество теплоты, затраченное на нагревание кастрюли не учитывать.
Рассчитайте количество энергии, которое понадобится для превращения в кипяток ледяной воде той же массы и температуры, что и лёд.
Для расчёта нам понадобится значение удельный теплоемкости воды $c$, которое можно посмотреть в таблице.
Дано:
$m = 2 \space кг$
$t_1 = 0 \degree C$
$t_2 = 100 \degree C$
$\lambda = 3.4 \cdot 10^5 \frac$
$с = 4.2 \cdot 10^3 \frac$
Посмотреть решение и ответ
Решение:
Чтобы рассчитать количество теплоты, которое понадобиться, чтобы превратить лёд в кипящую воду, нам понадобиться сначала его расплавить. Количество теплоты $Q_1$, затраченное на плавление льда, рассчитаем по формуле $Q_1 = \lambda m$.
$Q_1 = 3.4 \cdot 10^5 \frac \cdot 2 \space кг = 6.8 \cdot 10^5 \space Дж$
Теперь у нас есть вода с температурой $0 \degree C$. Для расчёта количества теплоты $Q_2$, необходимого для нагревания воды используем формулу $Q_2 = cm(t_2 — t_1)$.
$Q_2 = 4.2 \cdot 10^3 \frac \cdot 2 \space кг \cdot (100 \degree C — 0 \degree C) = 8.4 \cdot 10^3 \frac \cdot 100 \degree C = 8.4 \cdot 10^5 \space Дж$.
Тогда, для превращения куска льда в кипяток нам потребуется количество теплоты:
$Q = Q_1 + Q_2 = 6.8 \cdot 10^5 \space Дж + 8.4 \cdot 10^5 \space Дж = 15.2 \cdot 10^5 \space Дж$.
Если теперь мы возьмем вместо льда воду при $0 \degree C$, то для ее превращения в кипяток, нужно просто ее нагреть. Это количество теплоты мы уже рассчитали:
$Q_2 = 8.4 \cdot 10^5 \space Дж$.
Ответ: $Q = 15.2 \cdot 10^5 \space Дж$, $Q_2 = 8.4 \cdot 10^5 \space Дж$.
Упражнение №2
Сколько энергии потребуется для того, чтобы расплавить железо массой $10 \space кг$ с начальной температурой $29 \degree C$?
Удельная теплоемкость железа — $460 \frac$, температура плавления — $1539 \degree C$.
Дано:
$m = 10 \space кг$
$t_1 = 29 \degree C$
$t_2 = 1539 \degree C$
$c = 460 \frac$
$\lambda = 2.7 \cdot 10^5 \frac$
Чтобы рассчитать общее затраченное количество теплоты $Q = Q_1 + Q_2$, нужно рассчитать отдельно количество теплоты $Q_1$, затраченное на нагревание железа до температуры плавления, и количество теплоты $Q_2$, затраченное на его плавление.
$Q_1 = cm(t_2 — t_1)$.
$Q_1 = 460 \frac \cdot 10 \space кг \cdot (1539 \degree C — 19 \degree C) = 4600 \frac \cdot 1510 \degree C = 6 \space 946 \space 000 \space Дж \approx 69 \cdot 10^5 \space Дж$.
$Q_2 = \lambda m$.
$Q_2 = 2.7 \cdot 10^5 \frac \cdot 10 \space кг = 27 \cdot 10^5 \space Дж$.
$Q = Q_1 + Q_2 = 69 \cdot 10^5 \space Дж + 27 \cdot 10^5 \space Дж = 96 \cdot 10^5 \space Дж$.
Ответ: $Q = 96 \cdot 10^5 \space Дж$.
Упражнение №3
На заводе охлаждают стальную деталь от $800 \degree C$ до $0 \degree C$. При этом она растопила лёд массой $3 \space кг$, взятый при $0 \degree C$. Определите массу детали, если вся выделенная ей энергия пошла на растопку льда.
Удельная теплоемкость стали — $500 \frac$.
Дано:
$m_1 = 3 \space кг$
$\lambda_1 = 3.4 \cdot 10^5 \frac$
$c_2 = 500 \frac$
$t_1 = 800 \degree C$
$t_2 = 0 \degree C$
При плавлении лёд поглотит количество теплоты $Q_1 = \lambda_1 m_1$.
При охлаждении стальная деталь выделит количество теплоты $Q_2 = c_2m_2(t_2 — t_1)$.
По закону сохранения энергии эти энергии будут равны:
$Q_1 = Q_2$.
Т.е., $\lambda_1 m_1 = c_2m_2(t_2 — t_1)$.
Читайте также: