Физические свойства металлов таблица 9 класс
Занимая в таблице Менделеева I-II группы, а также побочные подгруппы III-VIII групп, атомы металлов способны отдавать валентные электроны, тем самым окисляться. По группе сверху вниз число электронных слоев увеличивается, радиус атомов растет, как и способность отдавать электроны (металлические свойства атомов). В периодах слева направо радиус атомов уменьшается, металлические свойства снижаются. Поэтому самыми активными металлами в периодах являются металлы I-II групп.
Физические и химические свойства металлов
Своими физическими, как и химическими, свойствами металлы обязаны строению кристаллической решетки. Она состоит из положительно заряженных ионов, которые постоянно колеблются вокруг определенного положения равновесия. Кроме того, имеются свободные электроны, которые перемещаются по всему объему. Именно благодаря им, для металлов характерны следующие свойства: металлический блеск, ковкость, пластичность, тепло- и электропроводность.
Из металлов изготавливают детали и инструменты, корпуса машин, зеркала, бытовую и промышленную химию.
Такое широкое применение на практике металлы нашли благодаря своим особым свойствам:
- Пластичность. Могут легко менять свою форму в нужном направлении, от вытягивания в проволоку до прокатывания в листы.
- Характерный блеск и отсутствие прозрачности. Объяснение этому свойству кроется во взаимодействии электронов с падающим на поверхность светом.
- Электропроводность. При появлении разности потенциалов движение свободных электронов становится направленным: от отрицательного полюса к положительному. Электропроводность металлов уменьшается с повышением температуры. Происходит это по причине усиления интенсивности колебаний атомов и ионов в узлах кристаллической решетки, что значительно затрудняет осуществление направленного движения частиц.
- Теплопроводность. Свободные электроны очень подвижны. Поэтому наблюдается быстрое выравнивание температуры по всей массе металлического тела. Наибольшей теплопроводностью обладают висмут и ртуть.
- Твердость. Благодаря такому свойству, металлы нашли применение для изготовления режущих инструментов. Самым твердым металлом является хром, самыми мягкими являются металлы щелочной группы (рубидий, цезий, калий, натрий, литий). Их можно резать обычным ножом. Твердость металла можно определить по специальной шкале Мооса, для металлов эта характеристика находится в интервале от 0,2 до 6,0.
- Плотность. Значение плотности зависит от массы и радиуса атома. Самым легким является литий, самым тяжелым — осмий. Для сравнения, их плотность равна 0 , 53 г / с м 3 и 22 , 6 г / с м 3 соответственно. Если плотность металла менее 5 г / с м 3 , то он относится к группе легких.
- Температура плавления. Существует металлы легкоплавкие, к примеру, ртуть, и тугоплавкие, например, вольфрам. В целом, те металлы, которые имеют температуру плавления более 1000 о С , отнесены к тугоплавким. Те, для которых она ниже, считаются низкоплавкими.
Подробное описание механических свойств
Механические свойства металлов не определяются расчетным путем. Для них существуют специальные экспериментальные процедуры, в ходе которых проверяется степень деформации, характер прочности, способность к пластичности и т.д.
К основным механическим свойствам относят:
- Прочность. Когда говорят, что металл прочен, понимают, что под действием механических факторов он способен сохранять свою кристаллическую структуру. Среди таких факторов числятся: статические (нагрузка в статике), динамические (нагрузка в движении), ударные. Чем выше прочность испытуемого металла, тем конструкция из него будет долговечнее. Это особенно важно в отраслях промышленности, изготавливающих оборудование для использования в жизни людей.
- Пластичность. В нуждах производства либо быта часто нужна металлическая пластичность. Это способность металла либо сплавов с его участием изменять свою геометрию, увеличиваться либо уменьшаться в объеме. Такое видоизменение не должно разрушить нормальную кристаллическую решетку.
- Твердость. Металлические конструкции почти невозможно повредить либо изменить руками. И все же ощущения от надавливания на алюминий либо железо будут различными. Испытать твердость можно с помощью прибора Бриннеля (как вариант, изобретения Ровелла). Прибор Бриннеля подразумевает определение твердости путем вдавливания в образец металла шара сильной закалки. В изобретении Ровелла используется алмазная пирамида.
Размер следа, возникшего при давлении, позволяет установить твердость исследуемого состава.
Важно обратить внимание на то, что понятие «прочность» не является синонимом «твердости». Не редки варианты, когда твердые предметы являются хрупкими.
- Ударная вязкость. Свойство свидетельствует о способности тела противостоять ударам. Единицей измерения является джоуль на с м 3 .
- Упругость. На твердое тело могут воздействовать различные силы, в т.ч. вызывающие его деформацию. Упругие материалы способны по окончании воздействия силы восстанавливать свою форму. Это также можно объяснить особенностями строения кристаллической решетки.
К механическим свойствам металлов, например, железа, практики относят также такие характеристики, как наличие надежности, долговечности, практичности, живучести.
Эксплуатационные характеристики
Кроме общих физических свойств, металлы обладают такой особенностью, как эксплуатационные характеристики. Под этим понятием понимается показатель, демонстрирующий надежность, долговечность и практичность детали, конструкции, изготовленной из металла либо его сплава. Такой показатель формируется на основании обобщения результатов технических испытаний, разнопрофильных замеров.
К такой категории показателей относят жаропрочность, хладостойкость, стойкость к коррозии, антифрикционные характеристики, циклическая вязкость и т.п.
Под «износостойкостью» понимают способность материала, из которого изготовлены различные конструкции, противостоять абразивному износу, в т.ч. при наличии процессов трения поверхностей деталей (инструментов) при работе.
Группа металлов с циклической вязкостью способны выдерживать знакопеременные динамические давления. При этом они не разрушаются. Детали, изготовленные из таких металлов, — идеальный вариант для изготовления рессор автомобилей, пружин различных вариаций. Детали, изготовленные из металлов с циклической вязкостью, способны функционировать в неблагоприятных условиях длительные отрезки времени.
Определение понятия «Демпфирование» гласит, что металл способен гасить колебания, рассеивать их, а также противостоять направленным нагрузкам. К таким материалам относят серые литейные чугуны. Они годны для изготовления станин станков, кронштейнов и т.п.
Одной из общих эксплуатационных характеристик является жаропрочность. Краткое описание сводится к способности материалов выдерживать серьезные механические нагрузки, особенно при высоких температурах. Показатель жаропрочности определяется тугоплавкостью химических веществ. Для современных двигателей такая характеристика очень важна. В ходе самого процесса происходит ослабление химических связей, поэтому снижаются упругость, вязкость, твердость. В результате этого деталь постепенно приходит в негодность. Если в не жаропрочные углеродистые стали добавить в определенных количествах алюминий (магний, титан), они повысят жаропрочность до 600оС. Если же в состав материала вводить никель (кобальт), он будет устойчив вплоть до 1000оС.
Жаростойкость характеризует способность металла не подвергаться коррозии. Насколько велика жаростойкость, можно определить по глубине коррозии. Высокой устойчивостью обладают легированные стали, чугуны, сплавы с хромом, никелем, вольфрамом, ванадием. Эти элементы проявляют жаростойкость при 800-1000оС и выше.
Хладностойкость показывает, насколько материал может сохранить вязкость при отрицательных температурах.
Антифрикционность является свойством, показывающим, насколько материал способен снизить трение между соприкасающимися поверхностями в механизмах и деталях. Антифрикционные материалы используют для изготовления подшипников для различных механизмов.
Прирабатываемость — возможность конструкций, изготовленных из определенных материалов, «подстраиваться» в рабочем процессе, например, увеличивать площадь соприкосновения, уменьшать температуру поверхности или давление на нее.
Таблица, примеры
Физические свойства металлов изучались давно и серьезно. Сегодня существуют различные таблицы, содержащие обобщенные данные о химических свойствах, механических и эксплуатационных характеристиках. Например, в электрохимическом ряду напряжения металлов они расположены в порядке уменьшения своей восстановительной способности.
Прочие свойства металлов отражены в таблице.
ρ > 5000 к г / м 3 – тяжелые металлы: Zn, Fe, Ni, Cr, Pb, Ag, Au, Os
Самый легкий металл — литий:
ρ = 530 к г / м 3 ;
самый тяжелый — осмий:
ρ = 22600 к г / м 3
Твердость некоторых металлов по шкале Мооса:
Самые мягкие металлы: K, Rb, Cs, Na
самый твердый металл — Cr (режет стекло)
Au, Ag, Cu, Sn, Pb, Zn, Fe
В ряду наблюдается уменьшение пластичности
Из пластичного золота можно изготовить фольгу толщиной
Тпл > 1000°С – тугоплавкие металлы: Au, Cu, Ni, Fe, Pt, Ta, Nb, Mo, W;
Самая низкая температура плавления у ртути — 39°С,
самая высокая — у вольфрама — 3410°С
Ag, Cu, Au, Al, W, Fe
В ряду наблюдается уменьшение теплопроводности
В ряду наблюдается уменьшение электропроводности
Существуют таблицы, которые связывают общие физические свойства и электронное строение их атомов, а также положение в таблице Д.И.Менделеева.
Металлы
К металлам относится большая часть элементов периодической системы – 82 химических элементов. Какими свойствами они обладают, и чем отличаются от неметаллов?
Общая характеристика
Металлами называют группу элементов, в виде простых веществ, которые обладают металлическими свойствами (пластичность, ковкость, блеск, электронная проводимость и т. д.)
Основное отличие элементов-металлов – они обладают только восстановительными свойствами, а в реакциях могут только окисляться. В соединениях они могут иметь только положительные степени окисления как в элементарных положительно заряженных ионах, так и в сложных ионах, где они образуют положительные центры.
Рис. 1. Список металлов.
Как правило, на внешнем уровне элементов металлов находится небольшое число электронов (1-3), значения электроотрицательности невысокие. К металлам относятся все s-элементы (кроме водорода и гелия), d- и f-элементы, а также p-элементы под чертой бор-астат. Для типичных металлов характерен большой размер атомов, что способствует легкости отдачи валентных электронов. Образующиеся положительные ионы устойчивы, так как имеют завершенную внешнюю электронную оболочку.
Физические и химические свойства
Все металлы, кроме ртути, при нормальных условиях в виде простых веществ находятся в твердом агрегатном состоянии и образуют металлическую кристаллическую решетку.
Рис. 2. Металлы в таблице Д.И. Менделеева.
Таблица «Металлы»
В следующей таблицы представлены группы основных металлов:
Группа металлов | Металл |
Щелочные | литий, натрий, калий и т.д. |
Щелочноземельные | кальций, стронций, барий и т.д. |
Переходные | уран, титан, железо, платина и т.д. |
постпереходные | алюминий, свинец, олово и т.д. |
Тугоплавкие | молибден, вольфрам |
Цветные | медь, титан, магний и т.д. |
Благородные | золото, серебро и т.д. |
Металлы пластичны и ковки, особенно если на внешнем электронном уровне атомов по одному электрону: слои атомов перемещаются относительно друг друга без разрушения кристаллической решетки (щелочные металлы, медь, серебро, золото). В атомах непластичных хрупких металлов хрома и марганца – большое число валентных электронов.
Плотность, твердость, температура плавления металлов изменяются в широком диапазоне и зависят от атомной массы, строения атома и геометрии кристаллической решетки. Самый легкий металл – литий (плотность 0,53 г/см 3 ), самый тяжелый – осмий (плотность 22,5 г/см 3 ). Металлы с плотностью больше 5 г/см 3 относят к тяжелым, меньше 5 г/см 3 – к легким металлам.
Самая низкая температура плавления у ртути (-39 градусов по Цельсию), самый тугоплавкий металл – вольфрам (температура плавления 3410 градусов по Цельсию.) Энергия атомизации вольфрама составляет 836 кДж/моль, а температура кипения его 5930 градусов.
Металлы вступают в реакцию как с простыми, так и со сложными веществами. Как типичные восстановители металлы реагируют почти со всеми неметаллами-окислителями (кислород, сера, азот и т. д.):
Также металлы реагируют с такими сложными веществами, как оксиды и гидроксиды, разбавленные растворы кислот, с растворенными в воде щелочами.
В пределах одного и того же периода металлические свойства ослабевают, а неметаллические усиливаются; в пределах одной и той же группы (в главной подгруппе) металлические свойства усиливаются, а неметаллические ослабевают
Рис. 3. Металлы главных подгрупп.
Нахождение металлов и способы их получения
Самый распространенный на земле элемент-металл – алюминий. За ним следуют железо, кальций, натрий.
Некоторые металлы встречаются в природе в самородном состоянии (золото, ртуть, платина), но в основном они находятся в природе в виде оксидов и солей.
Получение металлов происходит с помощью металлургии (получение из руд), пирометаллургии (получение с помощью реакции восстановления при высокой температуре), гидрометаллургии (извлечение из руд в виде растворимых соединений), электрометаллургии (получение металлов электролизом расплавов и растворов их соединений).
Что мы узнали?
Металлы – вещества, которые обладают высокой электро- и теплопроводностью, ковкостью, пластичностью и металлическим блеском. В данной статье по химии 9 класса рассматриваются их физические и химические свойства, формулы класса металлов, а также способы получения.
1. Общая характеристика элементов металлов
Из \(118\) известных на данный момент химических элементов \(96\) образуют простые вещества с металлическими свойствами, поэтому их называют металлическими элементами .
Металлические химические элементы в природе могут встречаться как в виде простых веществ, так и в виде соединений. То, в каком виде встречаются металлические элементы в природе, зависит от химической активности образуемых ими металлов.
Металлические элементы, образующие химически активные металлы ( Li–Mg ), в природе чаще всего встречаются в виде солей (хлоридов, фторидов, сульфатов, фосфатов и других).
Соли, образуемые этими металлами, являются главной составной частью распространённых в земной коре минералов и горных пород.
В растворённом виде соли натрия, кальция и магния содержатся в природных водах. Кроме того, соли активных металлов — важная составная часть живых организмов. Например, фосфат кальция Ca 3 ( P O 4 ) 2 является главной минеральной составной частью костной ткани.
Металлические химические элементы, образующие металлы средней активности ( Al–Pb ), в природе чаще всего встречаются в виде оксидов и сульфидов.
Металлические элементы, образующие химически неактивные металлы ( Cu–Au ), в природе чаще всего встречаются в виде простых веществ.
Рис. \(7\). Самородное золото Au | Рис. \(8\). Самородное серебро Ag | Рис. \(9\). Самородная платина Pt |
Исключение составляют медь и ртуть, которые в природе встречаются также в виде химических соединений.
В Периодической системе химических элементов металлы занимают левый нижний угол и находятся в главных (А) и побочных (Б) группах.
Рис. \(13\). Положение металлов в Периодической системе. Знаки металлических химических элементов расположены ниже ломаной линии B — Si — As — Te
В электронной оболочке атомов металлов на внешнем энергетическом уровне, как правило, содержится от \(1\) до \(3\) электронов. Исключение составляют только металлы \(IV\)А, \(V\)А и \(VI\)А группы, у которых на наружном энергетическом уровне находятся соответственно четыре, пять или шесть электронов.
В атомах металлов главных подгрупп валентные электроны располагаются на внешнем энергетическом уровне, а у металлов побочных подгрупп — ещё и на предвнешнем энергетическом уровне.
Радиусы атомов металлов больше, чем у атомов неметаллов того же периода. В силу отдалённости положительно заряженного ядра атомы металлов слабо удерживают свои валентные электроны.
Рис. \(14\). Характер изменения радиусов атомов химических элементов в периодах и в группах. Радиусы атомов металлов существенно больше, чем радиусы атомов неметаллов, находящихся в том же периоде
Главное отличительное свойство металлов — это их сравнительно невысокая электроотрицательность (ЭО) по сравнению с неметаллами.
Рис. \(15\). Величины относительных электроотрицательностей (ОЭО) некоторых химических элементов (по Л. Полингу). ОЭО металлических химических элементов уступает соответствующей величине неметаллических химических элементов
Атомы металлов, вступая в химические реакции, способны только отдавать электроны, то есть окисляться, следовательно, в ходе превращений могут проявлять себя в качестве восстановителей .
Физические свойства металлов: твердость, плотность и др.
Металлы имею такие физические свойства, как твердость, температуру плавления, плотность, пластичность, электропроводность, теплопроводность и цвет.
Твёрдость:
Все металлы, кроме ртути и, условно, франция, при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью.
Таблица твёрдости металлов по шкале Мооса:
Твёрдость | Металл |
0.2 | Цезий |
0.3 | Рубидий |
0.4 | Калий |
0.5 | Натрий |
0.6 | Литий |
1.2 | Индий |
1.2 | Таллий |
1.25 | Барий |
1.5 | Стронций |
1.5 | Галлий |
1.5 | Олово |
1.5 | Свинец |
1.5 | Ртуть |
1.75 | Кальций |
2.0 | Кадмий |
2.25 | Висмут |
2.5 | Магний |
2.5 | Цинк |
2.5 | Лантан |
2.5 | Серебро |
2.5 | Золото |
2.59 | Иттрий |
2.75 | Алюминий |
3.0 | Медь |
3.0 | Сурьма |
3.0 | Торий |
3.17 | Скандий |
3.5 | Платина |
3.75 | Кобальт |
3.75 | Палладий |
3.75 | Цирконий |
4.0 | Железо |
4.0 | Никель |
4.0 | Гафний |
4.0 | Марганец |
4.5 | Ванадий |
4.5 | Молибден |
4.5 | Родий |
4.5 | Титан |
4.75 | Ниобий |
5.0 | Иридий |
5.0 | Рутений |
5.0 | Тантал |
5.0 | Технеций |
5.0 | Хром |
5.5 | Бериллий |
5.5 | Осмий |
5.5 | Рений |
6.0 | Вольфрам |
6.0 | β-Уран |
Температура плавления:
Температуры плавления чистых металлов лежат в диапазоне от −38,83 °C (ртуть) до 3422 °C (вольфрам).
Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые металлы, например, олово и свинец, могут расплавиться на обычной электрической или газовой плите.
В зависимости от температуры плавления металлы делятся на: легкоплавкие (до 600 °C); среднеплавкие (от 600 до 1600 °C); тугоплавкие (выше 1600 °C).
Таблица температуры плавления легкоплавких металлов и сплавов:
Название металла | Температура плавления, о С |
Ртуть | -38,83 |
Франций | 25 |
Цезий | 28,44 |
Галлий | 29,7646 |
Рубидий | 39,3 |
Калий | 63,5 |
Натрий | 97,81 |
Индий | 156,5985 |
Литий | 180,54 |
Олово | 231,93 |
Полоний | 254 |
Висмут | 271,3 |
Таллий | 304 |
Кадмий | 321,07 |
Свинец | 327,46 |
Цинк | 419,53 |
Таблица температуры плавления среднеплавких металлов и сплавов:
Название металла | Температура плавления, о С |
Сурьма | 630,63 |
Нептуний | 639 |
Плутоний | 639,4 |
Магний | 650 |
Алюминий | 660,32 |
Радий | 700 |
Барий | 727 |
Стронций | 777 |
Церий | 795 |
Иттербий | 824 |
Европий | 826 |
Кальций | 841,85 |
Лантан | 920 |
Празеодим | 935 |
Германий | 938,25 |
Серебро | 961,78 |
Неодим | 1024 |
Прометий | 1042 |
Актиний | 1050 |
Золото | 1064,18 |
Самарий | 1072 |
Медь | 1084,62 |
Уран | 1132,2 |
Марганец | 1246 |
Бериллий | 1287 |
Гадолиний | 1312 |
Тербий | 1356 |
Диспрозий | 1407 |
Никель | 1455 |
Гольмий | 1461 |
Кобальт | 1495 |
Иттрий | 1526 |
Эрбий | 1529 |
Железо | 1538 |
Скандий | 1541 |
Тулий | 1545 |
Палладий | 1554,9 |
Протактиний | 1568 |
Таблица температуры плавления тугоплавких металлов и сплавов:
Название металла | Температура плавления, о С |
Лютеций | 1652 |
Титан | 1668 |
Торий | 1750 |
Платина | 1768,3 |
Цирконий | 1855 |
Хром | 1907 |
Ванадий | 1910 |
Родий | 1964 |
Технеций | 2157 |
Гафний | 2233 |
Рутений | 2334 |
Иридий | 2466 |
Ниобий | 2477 |
Молибден | 2623 |
Тантал | 3017 |
Осмий | 3033 |
Рений | 3186 |
Вольфрам | 3422 |
Плотность:
В зависимости от плотности металлы делят на лёгкие (плотность от 0,53 до 5 г/см³) и тяжёлые (от 5 до 22,6 г/см³).
Самым лёгким металлом является литий (плотность 0,53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22,6 г/см³ — ровно в два раза выше плотности свинца ), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.
Пластичность:
Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними.
Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0,003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются.
Пластичность зависит и от чистоты металла . Так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы, такие, как золото, серебро, свинец, алюминий, осмий, могут срастаться между собой, но на это могут уйти десятки лет.
Электропроводность:
Все металлы хорошо проводят электрический ток, обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля.
Серебро, медь и алюминий имеют наибольшую электропроводность. По этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также и натрий. В экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.
Теплопроводность:
Теплопроводность металлов зависит от подвижности свободных электронов.
Поэтому ряд теплопроводностей похож на ряд электропроводностей, и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла. Широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.
Наименьшая теплопроводность — у висмута и ртути.
Цвет у большинства металлов примерно одинаковый — светло-серый, иногда с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.
Металлы подразделяются на цветные и черные.
Чёрные металлы – железо и сплавы на его основе (стали, ферросплавы, чугуны). К чёрным металлам также зачастую относят марганец и, иногда, – хром и ванадий.
Цветные металлы — это особый класс нержавеющих металлов и сплавов, в составе которых нет железа. Металлы называются цветными, потому что каждый из них имеет определенный окрас. К цветным металлам относятся медь, молибден, свинец, цинк, олово, никель, кадмий, кобальт, алюминий, титан, магний, висмут, вольфрам, ртуть, золото, платину, серебро, палладий, родий, рутений, осмий, иридий.
Читайте также: