Физические свойства металлов и методы их оценки

Обновлено: 07.01.2025

Предметом металловедения является изучение связей между составом, обработкой, строением и свойствами металлов и сплавов. Центральным звеном этих связей является внутреннее строение, структура металлов.

Внутреннее строение определяется в первую очередь:

Составом металла или сплава (первая главная связь). При данном составе строение изменяется в зависимости от отработки (вторая главная связь).

В настоящее время применяются два различных вида обработки, изменяющие строение: термическая обработка и пластическая деформация. В свою очередь внутреннее строение определяет свойства металлов и сплавов (третья главная связь). Изучение этих трех главных связей составляет содержание науки металловедения.

Металловедение является научной основой изыскания сплавов, обладающих сочетанием определенных полезных технических свойств. Так как свойства зависят не только от состава, но и от обработки, то металловедение является научной основой технологических процессов, связанных с термической обработкой и пластическим деформированием. Одна и таже сталь в результате термической обработки может быть пластичной и малопрочной или высокопрочной, но хрупкой. После холодной пластической деформации прочность металла или сплава может повыситься в 2-3 раза, а последующий нагрев возвратит металл в пластичное состояние. Последние годы предложены технологические процессы комбинированной (термомеханической) обработки, которые сочетают термическую обработку и пластическую деформацию.

ГЛАВА I

СТРОЕНИЕ МЕТАЛЛОВ И СПЛАВОВ

МЕТАЛЛОГРАФИЯ И ЕЕ ЗАДАЧИ

Сегодня вряд ли можно назвать хотя бы одну отрасль промышленности, в которой не применяются металлы. В энергомашиностроении, тяжелом и транспортном машиностроении, станкостроении, в автомобильной промышленности и многих других отраслях промышленности основное оборудование изготовляется из металла. Поэтому разработка и освоение технологии производства современных металлов и сплавов, необходимых нашей промышленности, является одной из важнейших задач науки и практики.

Металловедение - наука, изучающая связь между составом, строением и свойствами металлов и сплавов и закономерности их изменения при воздействии различных факторов (механических, химических, тепловых, электромагнитных, радиоактивных и др.).

Металлография является одним из разделов науки о металлах - металловедения. Металлография изучает влияние химического состава и различных видов обработки на структуру металлов.

Большой вклад в развитие науки о металлах внесли отечественные ученые. Первые металлографические исследования железа и его сплавов провел в России П. П. Аносов (1799-1851), который применил микроскоп для изучения структуры стали и ее изменения после конки и термообработки и установил существование связи между строением и свойствами стали.

Основы научного металловедения были заложены русским металлургом Д. К. Черновым (1839-1921), который открыл зависимость свойств стали от температуры нагрева и охлаждения, выявил взаимосвязь структур и свойств стали. Работы Д. К. Чернова являются основой современного металловедения, и теории термической обработки стали. В начале XX в. Н.С. Курнаков вместе с учениками провел исследования многих сплавов, построил диаграммы состояния и установил зависимости между составом, структурой и свойствами различных сплавов, применив методы физико-химического анализа.

В создании теории и практики термической обработки металлов многое сделано С. С. Штейнбергом и его учениками. Для развития металловедения имеют большое значение работы отечественных ученых Г. В. Курдюмова, Д. В. Садовского, А. А. Бочвара, С. Т. Конобеевского. Многое для развития технологии термической и химико-термической обработки сплавов сделали Н. А. Минкевич, Н. Т. Гудцов, А. А. Бочвар и др.

МЕТАЛЛЫ И СПЛАВЫ

Строение. По своему строению все твердые вещества делятся на аморфные и кристаллические. Аморфными называют твердые вещества, атомы которых расположены в пространстве беспорядочно (стекло, многие пластмассы, смолы и др.). Кристаллическими называют твердые вещества, атомы (ионы) которых расположены в пространстве в строгом, периодически повторяющемся порядки и образуют кристаллическую решетку (металлы, соли и др.).

Кристаллическая решетка состоит из большого количества одинаковых элементарных ячеек, образованных атомами металла. Однако кристаллическая решетка реальных металлов имеет ряд нарушений. Это, например (рис. 1),


Рис. 1. Схема кристаллической решетки:

1- вакансия, 2- дислокация

вакансии 1 - незанятые атомами узлы кристаллической решетки, дислокации 2 - нарушения в расположении целого ряда атомов.

Характеристиками кристаллической решетки являются: период решетки - расстояние а и с (рис. 2) между центрами двух соседних атомов по ребру элементарной ячейки. Периоды решетки измеряют в ангстремах (1А=10 -8 см) и килоиксах ( 1КХ= 1,00202 ×10-8 см); координационное число К - количество атомов, находящихся на наиболее близком и равном расстоянии от любого выбранного атома в решетке; атомный радиус - половина расстояния между центрами ближайших атомов и кристаллической решетке без искажений; базис решетки - количество атомов в одной элементарной ячейке решетки; коэффициент компактности η решетки - отношение объема, занимаемого атомами, ко всему объему решетки.

Существует большое количество кристаллических решеток различной сложности. Большинство металлов имеет простейшие типы кристаллических решеток: кубическую объемно-центрированную (ОЦК) - рис. 2, а, кубическую гранецентрированную (ГЦК) - рис. 2,б, гексагональную плотноупакованную (ГПУ) рис. 2, в.


Рис.2 . Типы кристаллических решеток металлов.

Кубическую объемно-центрированную решетку имеют Fе (при температуре ниже 910°С), Сг, Мо, Nb, Ва, V, Nа и др. ОЦК решетка имеет период а, координационное число К=8, базис решетки равен 2, коэффициент компактности η = 68%.

Кубическую гранецентрированную решетку имеют Fе (при температуре выше 910°С), А1, Ni, Сu, Аu, Рb, Аg, Рtи др. ГЦК решетка имеет период а, координационное число К=12, базис решетки равен 4, коэффициент компактности η = 74%.

Гексагональную плотноупакованную решетку имеют Мg, Zn, Ве, Os, Rе и другие металлы. ГПУ решетка имеет периоды а и с (с/а = 1,633), координационное число К=12, базис решетки равен 6, коэффициент компактности η=74%.

Упрощенно можно считать, что атомы металлов состоят из положительно заряженных ядер и отрицательно заряженных частиц - электронов. Электроны движутся вокруг ядра на различных расстояниях, образуя электронную оболочку. Наружные (валентные) электроны атомов металла, находящегося в жидком и твердом состояниях, слабо притягиваются ядром и могут свободно «переходить» от одного атома к другому, как бы образуя «электронный газ».

Атомно-кристаллическим строением объясняются физико-химические и механические свойства металлов (высокая электро- и теплопроводность, металлический блеск, пластичность и др.).

Все металлы представляют собой поликристаллические вещества, т. е. состоят из множества мелких (10 -1 – 10 -3 см) кристалликов неправильной формы. Эти кристаллики называются кристаллитами или зернами. Зерна металла имеют различную ориентацию в пространстве. Зерна (рис. 3, а) состоят из совсем маленьких мало разориентированных участков – блоков- 10-5 – 10 -3 см. (рис. 3,б).


Рис.3. Схема ориентации зерен (а) и блоков (б) в металле.

Чистые металлы (содержат 9,99-99,999% основного металла) применяют в промышленности в ограниченном количестве и только для специальных целей. Наиболее широкое применение находят различные сплавы.

Сплавы получают различными способами. Чаще всего сплавы получают сплавлением двух или нескольких металлов или металлов с неметаллами. Химические элементы, образующие сплав, называются компонентами. Сплав состоит из одной или нескольких фаз. Фаза - это часть сплава, имеющая одинаковые состав и агрегатное состояние и отделенная от остальных частей поверхностью раздела. Чистый твердый металл является однофазной системой, а затвердевающий металл двухфазной системой: кристаллы - твердая фаза, а расплав - жидкая фаза.

Кристаллизация. Процесс перехода чистого металла из жидкого состояния в твердое называется кристаллизацией. Процесс кристаллизации схематически можно представить следующим образом (рис. 4). Нагретый жидкий металл постепенно охлаждается от температуры Т до температуры плавления Тпл При этой температуре Тпл начинается процесс кристаллизации металла, который продолжается определенное время от t1 до t2. В этот период температура металла не понижается, так как процесс идет с выделением теплоты. Процесс кристаллизации начинается с образования мельчайших твердых частиц - зародышей. Зародыши являются центрами кристаллизации. Из них растут твердые кристаллы. До определенного момента количество центров кристаллизации увеличивается, и сами кристаллы растут до соприкосновения друг с другом, при этом количество жидкого металла все время уменьшается. Когда весь жидкий металл превращается в твердый - процесс кристаллизации закончен, дальше происходит охлаждение уже твердого металла.


Рис.4. Схема кристаллизации металлов.

Строение сплава зависит от характера взаимодействия компонентов, которые его образуют. Если компоненты образуют раствор не только в жидком состоянии, но и в твердом - это твердый раствор. Он однофазный (рис. 5, а), имеет одну кристаллическую решетку. Если атомы одного компонента частично замещают атомы другого компонента в кристаллической решетке (рис. 5, б), то это твердый раствор замещения. Если же атомы одного компонента располагаются между атомами другого компонента в кристаллической решетке (рис. 5, в), то это твердый раствор внедрен и я.


Рис.6. Кристаллическая решетка металла:

а- чистый металл, б- твердый раствор замещения, в- твердый раствор внедрения

Компоненты сплава в результате химического взаимодействия могут образовать химическое соединение.

Компоненты могут не образовывать твердого раствора и не вступать в химическое соединение. В этом случае сплав представляет собой механическую смесь компонентов.

Черные и цветные металлы. Металлы условно делятся на две большие группы: черные и цветные.

К черным металлам относятся Fе, Со, N1, Мn, тугоплавкие металлы Nb, Тi, W и др. (их температура плавления выше 1539°С), урановые металлы (актиноиды) Тh, U, Pu и другие, редкоземельные металлы (лантаноиды) Се, La и др. К цветным металлам относятся легкие металлы (Ве, Мg, А1), благородные металлы (Аg, Аu, Рt), Сu, легкоплавкие металлы (Zn, Сd, Sn. Рb) и др.

МАКРО- И МИКРОСТРУКТУРА

Одной из характеристик металла является его структура. Под структурой металла понимают взаимное расположение различных фаз, их форму и размер.

Макроструктура - это строение металла или сплава, видимое невооруженным глазом или при небольшом увеличении (30 - 40раз). С помощью анализа макроструктуры в металле обнаруживают крупные неметаллические включения, пористость, усадочные раковины, трещины, выявляют направление волокон после обработки металла давлением.

Микроструктура - это строение металла или сплава, видимое при больших увеличениях с помощью микроскопа. С помощью анализа микроструктуры определяют величину и расположение зерен металла, размеры и количество мелких неметаллических включений и различных фаз в металле, контролируют состояние структуры поверхностного слоя изделия, выявляют микродефекты (мелкие трещины, раковины и т. д.).

Установлено, что структура металла является одним из основных факторов, определяющих свойства металлических изделий. С помощью макро- и микроанализа металла заготовок и изделий своевременно выявляют дефекты металла, которые могут понизить эксплуатационные свойства и надежность изделий в работе. Поэтому контроль структуры производят на всех этапах изготовления изделий: от выплавки металла до термической обработки готовых деталей.

Изучение структуры металла проводят на специально подготовленных плоских и гладких поверхностях - шлифах. Приготовление шлифа заключается в шлифовке и последующей полировке металла. Полировку металла проводят двумя способами: механическим (на абразивных материалах) и электролитическим (с помощью растворения в специальном реактиве под действием электрического тока).

Для выявления структуры металла существуют различные способы. Чаще всего применяют химическое травление. При этом способе на поверхность шлифа воздействуют специальным реактивом (в зависимости от цели исследования), который выявляет границы зерен, различные фазы, неметаллические включения, поверхностные , слои, поры, трещины и прочие детали строения металла.

Для практических целей обычно проводят исследование макроструктуры и микроструктуры.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что изучает наука металловедение?

2. Кто провел первые металлографические исследования железа и его сплавов?

Физические, химические, механические и технологические свойства металлов

Чтобы правильно выбрать материал для определённых целей, необходи­мо знать свойства металлов. Так, например, для изготовления режущих инструментов требуются прочные, твердые и износоустойчивые металлические мате­риалы.

Физические свойства металлов и сплавов определяются цве­том, удельным весом, плотностью, температурой плавления, тепло­вым расширением, тепло- и электропроводностью, а также магнит­ными свойствами.

Физические свойства металлов характеризуются определенными числовыми значениями, которые приведены в таблице 1.

Физические свойства некоторых металлов

Металл Символ Цвет Плотность, кг/м 3 Температура плавления, °С Удел. электро- сопротивление при 20 °С, 10 -6 Ом∙м
Алюминий Al Серебристо-белый 2700 658,7 0,029
Вольфрам W Блестящий белый 19300 3380 0,053
Железо Fe Серебристо-белый 7800 1539 0,100
Кобальт Co Серебристо-белый 8900 1490 0,062
Магний Mg Блестящий серебристо-белый 1700 650 0,047
Медь Cu Красный 8900 1083 0,017
Никель Ni Серебристо-белый с серова­тым оттенком 8900 1452 0,070
Олово Sn Серебристо-белый 7300 231,9 0,124
Свинец РЬ Синевато-серый 11400 327,4 0,220
Титан Ti Серебристо-белый 4500 1668 0,470
Хром Сr Блестящий серовато-белый 7100 1550 0,150
Цинк Zn Синевато-серый 7100 419,5 0,060

Отношение массы тела к его объему является постоянной вели­чиной для данного вещества и называется плотностью.

Плотность и удельный вес имеют большое значение при вы­боре металлических материалов для изготовления различных из­делий. Так, детали и конструкции в приборостроении, в авиа- и вагоностроении наряду с высокой прочностью должны обладать малой плотностью. Из металлов, наиболее широко применяемых в технике, наименьшую плотность имеют магний и алюминий.

Все металлы как тела кристаллического строения переходят при определенной температуре из твердого состояния в жидкое и наоборот. Температура, при которой металл переходит из твердого состояния в жидкое, называется температурой плавления.

Температура плавления является важным физическим свой­ством металлов. Знание температуры плавления металлов и спла­вов необходимо в металлургии, в литейном производстве, при горя­чей обработке металлов давлением, при сварке, пайке и других процессах, сопровождающихся нагреванием металлических мате­риалов.

Способность металлов передавать тепло­ту от более нагретых частей тела к менее нагретым называется теплопроводностью.

Среди металлических материалов лучшей теплопроводностью обладают серебро, медь, алюминий. Эти же металлы являются и лучшими проводниками электрического тока.

Теплопроводность металлов имеет большое практическое значе­ние. Из металлов и сплавов, обладающих высокой теплопроводно­стью, изготовляют детали машин, которые при работе поглощают или отдают теплоту.

Металлы и сплавы с низкой теплопроводностью для полного прогрева нуждаются в медленном и длительном нагревании. Быст­рый нагрев и быстрое охлаждение таких металлических материа­лов может вызвать образование трещин. Это необходимо учиты­вать при термической обработке, горячей обработке давлением, литье в металлические формы и т. д.

Различные вещества, в том числе и металлы, при нагревании расширяются, при охлаждении - сжима­ются. Неодинаковость величины теплового линейного расширения материалов характеризуется коэффициентом линейного расшире­ния α, который показывает, на какую долю первоначальной длины l0 при 0 °С удлинилось тело вследствие нагревания его на 1°С. Единица измерения α - °С -1 .

Тепловое расширение металлов необходимо учитывать при изго­товлении и эксплуатации точных измерительных приборов и инст­рументов, изготовлении литейных форм, горячей обработке метал­лов давлением и в других случаях, связанных с нагреванием и охлаждением.

Детали точных приборов и измерительных инструментов изго­тавливаются из материалов с малым коэффициентом линейного расширения, детали автоматически действующих механизмов, которые, удлиняясь, должны замыкать электрическую цепь, делают из мате­риалов с большим коэффициентом линейного расширения.

Электропроводностью называется способность металлов про­водить электрический ток.

Высокой электропроводностью обладают те металлы, которые хорошо, т. е. без потерь на тепло, проводят электрический ток.

Магнитные свойства. Некоторые металлы намагничиваются под действием магнитного поля. После удаления магнитного поля они обладают остаточным магнетизмом. Это явление впервые обнаружено на железе и получило название ферромагнетизма. Сильно выраженными магнитными свойствами обладают желе­зо, никель, кобальт и их сплавы. Перечисленные выше металличе­ские материалы называют ферромагнитными. У остальных металлов и сплавов магнитные свойства выражены крайне слабо, поэтому практически они считаются немагнитными.

Магнитные превращения не связаны с изменением кристаллической решетки или микроструктуры, они обусловлены изменениями в характере межэлектронного взаимодействия.

Магнитной проницаемостью называют способность металлов намагничиваться под действием магнитного поля.

При нагреве ферромагнитные свойства металла уменьшаются постепенно: вначале слабо, затем резко, и при определённой температуре (точка Кюри) исчезают (точка Кюри для железа - 768°С, у никеля - 360° С, у кобальта - 1130° С.). Выше этой температуры металлы становятся парамагнетиками (слабомагнитными материалами).

К химическим свойствам металлов следует отнести их спо­собность сопротивляться химическому или электрохимическому воздействию различных сред (коррозии) при нормальных и высо­ких температурах.

Рассмотренные выше физические свойства металлов обна­руживаются в явлениях, не сопровождающихся изменением вещест­ва. Так, например, нагрев металлов или прохождение через метал­лы электрического тока не сопровождается химическими измене­ниями их. При химических же явлениях происходит превращение металлов в другие вещества с иными свойствами.

Многие металлы подвергаются химическому изменению под воз­действием внешней среды, т. е. разрушаются от коррозии. Мерой коррозионной стойкости служит скорость распростране­ния коррозии металлов в данной среде и в данных условиях: чем эта скорость меньше, тем металл более коррозионностоек.

Высокой коррозионной стойкостью в атмосфере и в агрессивных средах обладают никель, титан и их сплавы. Титан и его сплавы по коррозионной стойкости приближаются к благородным ме­таллам.

Прочность — это способность материала сопротивляться дейст­вию внешних сил без разрушения.

Упругость — это способность материала восстанавливать свою первоначальную форму и размеры после прекращения действия внешних сил, вызвавших деформацию.

Пластичность — это способность материала изменять свою форму и размеры под действием внешних сил, не разрушаясь, и сохра­нять полученные деформации после прекращения действия внеш­них сил.

Механическими свойствами металлов называется совокуп­ность свойств, характеризующих способность металлических мате­риалов сопротивляться воздействию внешних усилий (нагрузок).

К механическим свойствам металлических материалов относят­ся: прочность, твердость, пластичность, упругость, вязкость, хруп­кость, усталость, ползучесть и износостойкость.

Твердость - способность металла оказывать сопротивление проникновению в него другого, более твердого тела.

Прочность - способность металла сопротивляться разрушению под действием внешних сил.

Для определения прочности образец металла установленной формы и размера испытывают на наибольшее разрушающее напряжение при растяжении, которое называют пределом прочности (временное сопротивление).

Пластичность - способность металла, не разрушаясь, изменять форму под нагрузкой и сохранять ее после прекращения действия нагрузки.

Вязкость – способность металла оказывать сопротивление быстровозрастающим (ударным) нагрузкам.

Технологические свойства металлов и сплавов характеризу­ют их способность поддаваться различным методам горячей и хо­лодной обработки. К технологическим свойствам металлов и спла­вов относятся литейные свойства, ковкость, свариваемость, обраба­тываемость режущими инструментами, прокаливаемость.

Обрабатываемость металлов характеризуется их механическими свойствами: твердостью, прочностью, пластичностью.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.

Износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

Коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.

Жаростойкость – это способность материала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.

Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах. Хладоломкостью называется склонность металла к переходу в хрупкое состояние с понижением температуры. Хладоломкими являются железо, вольфрам, цинк и другие металлы, имеющие объемноцентрированную кубическую и гексагональную плотноупакованную кристаллическую решетку.

Красноломкасть - склонность металла к переходу в хрупкое состояние с повышением температуры.

При выборе материала для создания конструкции необходимо полностью учитывать механические, технологические и эксплуатационные свойства.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.01)

Лекция по теме "СТРОЕНИЕ,СВОЙСТВА МЕТАЛЛОВ И МЕТОДЫ ИХ ИСПЫТАНИЯ"

Металлы – один из классов конструкционных материалов, характеризующийся определенным набором свойств:

К физическим свойствам металлов относят плотность, температуру плавления, цвет, блеск, непрозрачность, теплопроводность, электропроводность, тепловое расширение. По плотности металлы разделяют на легкие (до 3000 кг/м 3 ) и тяжелые (от 6000 кг/м 3 и выше); по температуре плавления — на легкоплавкие (до 973 К) и тугоплавкие (свыше 1173 К). Каждый металл или сплав обладает определенным, присущим ему цветом.

Прочностьспособность металла в определенных условиях и пределах не разрушаясь воспринимать те или иные воздействия, нагрузки. Это свойство учитывается при изготовлении и проектировании изделий, выборе того или иного металла, сплава. Наибольшее напряжение, которое может выдержать металл, не разрушаясь, называют пределом прочности, или временным сопротивлением разрыву. Образцы для измерения прочности подвергают испытанию на специальной разрывной машине, которая постепенно, с возрастающей силой растягивает образец до полного разрыва.

Упругость — свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших деформацию. Наибольшее напряжение, после которого металл возвращается к своей первоначальной форме, называют пределом упругости. Если при дальнейшем повышении нагрузки напряжение превышает предел упругости и удлинение сохраняется после разгрузки образца, такое состояние называют остаточным удлинением. Далее наступает предел текучести, т.е. образец продолжает удлиняться без увеличения нагрузки.

Пластичность — свойство металла под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные (пластические) деформации после устранения этих сил . Данное свойство также определяется и измеряется на разрывной машине. Высокой пластичностью обладают золото, серебро, платина и их сплавы. Менее пластичны медь, алюминий, свинец. Это свойство металлов имеет большое значение в давильном и штамповочном производстве, волочении, прокатке.

Твердость — свойство металлов сопротивляться проникновению в них другого тела под действием внешней нагрузки, что необходимо учитывать при выборе инструментов для обработки металлов резанием. Например, важно знать твердость обрабатываемого металла, чтобы подобрать соответствующую фрезу или сверло. Испытания металлов на твердость проводят на специальных приборах — твердометрах.

Выносливость — свойство металлов сопротивляться действию повторных нагрузок . Температурные условия значительно влияют на механические свойства металлов: при нагревании их прочность понижается, а пластичность увеличивается; при охлаждений некоторые металлы становятся хрупкими, например, сталь некоторых марок, цинк и его сплавы. Нехладноломкими являются алюминий и медь.

Хрупкость — некоторые металлы обладают хрупкостью и при нормальных условиях, примером является серый чугун. В производстве изделий учитывается способность металлов поддаваться обработке, т.е. такие их технологические свойства, как ковкость, жидкотекучесть, литейная усадка, свариваемость, спекаемость, обрабатываемость резанием и некоторые другие.

Ковкостьспособность металлов подвергаться ковке и другим видам обработки давлением (прокатке, прессованию, волочению, штамповке). Металлы могут коваться в холодном состоянии (золото, серебро, медь), а также в горячем (сталь).

Износостойкостьспособность материала сопротивляться поверхностному разрушению под действием внешнего трения.

Коррозионная стойкостьспособность материала сопротивляться действию агрессивных кислотных, щелочных сред.

Жаростойкостьэто способность материала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочностьэто способность материала сохранять свои свойства при высоких температурах.

Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах.

Антифрикционность – способность материала прирабатываться к другому материалу.

Жидкотекучесть — свойство расплавленного металла заполнять литейную форму. Высокой жидкотекучестью обладают цинк и его сплавы, чугун, бронза, олово, силумин (сплав алюминия с кремнием), латунь, некоторые магниевые сплавы. Низкой жидкотекучестью обладают сталь, красная медь, чистое серебро.

Литейная усадка —уменьшение объема металла при переходе из жидкого состояния в твердое. Это необходимо учитывать при изготовлении формы для отливки. Отливка получается всегда меньше модели, по которой сделана форма. Металлы с большой усадкой для литья почти не используют.

Свариваемость — способность металла прочно соединяться путем местного нагрева и расплавления свариваемых кромок изделия. Сплавы свариваются труднее, чистые металлы — легче. Легко свариваются изделия из малоуглеродистой стали. Плохо поддаются сварке чугун и высокоуглеродистые легированные стали.

Из химических свойств металлов и их сплавов наиболее важными в производстве художественных изделий являются растворение (взаимодействие с кислотами и щелочами) и окисление (антикоррозийная стойкость, т.е.стойкость к воздействию окружающей среды — газов, воды и т.д.).

Растворение (разъедание) — способность металлов растворяться в сильных кислотах и едких щелочах. Это свойство широко используется в различных областях производства художественных изделий. Растворение бывает частичное и полное. Частичное применяется для создания чистой поверхности изделия.

Окисление — способность металлов соединяться с кислородом и образовывать окислы металлов.

Данные свойства обусловлены особенностями строения металлов.

Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определённым порядком – периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решётка.

Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Элементарная ячейка – элемент объёма из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл.

Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:

· размеры ребер элементарной ячейки. a, b, c – периоды решетки – расстояния между центрами ближайших атомов. В одном направлении выдерживаются строго определенными.

· углы между осями ().

· координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке.

· базис решетки количество атомов, приходящихся на одну элементарную ячейку решетки.

Рис. Схема кристаллической решетки

Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа;

· примитивный – узлы решетки совпадают с вершинами элементарных ячеек;

· базоцентрированный – атомы занимают вершины ячеек и два места в противоположных гранях;

· объемно-центрированный – атомы занимают вершины ячеек и ее центр;

· гранецентрированный – атомы занимают вершины ячейки и центры всех шести граней

В металлических материалах, как правило, формируются три типа кристаллических решеток: объемноцентрированная кубическая (ОЦК), гранецентрированная кубическая (ГЦК) и гексагональная плотноупакованная (ГП). Элементарные ячейки ОЦК, ГЦК и ГП решеток показаны на рис. 9.

http://refdb.ru/images/944/1886968/863f04d8.png

Рис. Типы кристаллических решеток металлов.

а) Г.Ц.К, б) О.Ц.К., в) Г.П.У.

Основными типами кристаллических реш¨ток являются:

  1. Объемно - центрированная кубическая (ОЦК), атомы располагаются в вершинах куба и в его центре
  2. Гранецентрированная кубическая (ГЦК), атомы располагаются в вершинах куба и по центру каждой из 6 граней
  3. Гексагональная, в основании которой лежит шестиугольник:
    • простая – атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита);
    • плотноупакованная (ГПУ) – имеется 3 дополнительных атома в средней плоскости (цинк).

ОЦК решетку имеют такие металлы, как вольфрам, молибден, ниобий, низкотемпературные модификации железа, титана, щелочные металлы и ряд других металлов. Серебро, медь, алюминий, никель, высокотемпературная модификация железа и ряд других металлов имеют ГЦК решетку. ГП решетка у магния, цинка, кадмия, высокотемпературной модификации титана.

2. Физическая природа деформации металлов

Деформацией называется изменение формы и размеров тела под действием напряжений.

Напряжение – сила, действующая на единицу площади сечения детали.

Напряжения и вызываемые ими деформации могут возникать при действии на тело внешних сил растяжения, сжатия и т.д.,

Деформация металла под действием напряжений может быть упругой и пластической.

Упругой называется деформация, полностью исчезающая после снятия вызывающих ее напряжений.

При упругом деформировании изменяются расстояния между атомами металла в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места, и деформация исчезает.

Упругая деформация на диаграмме деформации характеризуется линией ОА (рис.).

Рис. Диаграмма зависимости деформации металла от действующих напряжений

Зависимость между упругой деформацией и напряжением выражается законом Гука

где: Е - модуль упругости.

Пластической или остаточной называется деформация после прекращения действия вызвавших ее напряжений.

В результате развития пластической деформации может произойти вязкое разрушение путем сдвига.

Механические свойства определяют поведение материала при деформации и разрушении от действия внешних нагрузок.

В зависимости от условий нагружения механические свойства могут определяться при:

статическом нагружении – нагрузка на образец возрастает медленно и плавно.

динамическом нагружении – нагрузка возрастает с большой скоростью, имеет ударный характер.

Прочность – способность материала сопротивляться деформациям и разрушению.

Испытания проводятся на специальных машинах, которые записывают диаграмму растяжения, выражающую зависимость удлинения образца (мм) от действующей нагрузки Р, т.е. .

Но для получения данных по механическим свойствам перестраивают: зависимость относительного удлинения от напряжения

Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

3. Методы определения твердости

О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля, Виккерса, микротвердости).

Наибольшее распространение получили методы Бринелля, Роквелла, Виккерса. Схемы испытаний представлены на рис. 7.1.

Рис. Схемы определения твердости: а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

3.1. Твердость по Бринеллю ( ГОСТ 9012)

Испытание проводят на твердомере Бринелля (рис.7.1 а)

В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм, в зависимости от толщины изделия.

Нагрузка Р, в зависимости от диаметра шарика и измеряемой твердости: для термически обработанной стали и чугуна – , литой бронзы и латуни – , алюминия и других очень мягких металлов – .

Продолжительность выдержки: для стали и чугуна – 10 с, для латуни и бронзы – 30 с.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля.

Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка F:

Стандартными условиями являются D = 10 мм; Р = 3000 кгс; = 10 с. В этом случае твердость по Бринеллю обозначается НВ 250, в других случаях указываются условия: НВ D / P / , НВ 5/ 250 /30 – 80.

3.2. Метод Роквелла ГОСТ 9013

Основан на вдавливании в поверхность наконечника под определенной нагрузкой (рис. 7.1 б)

Индентор для мягких материалов (до НВ 230) – стальной шарик диаметром 1/16” (1,6 мм), для более твердых материалов – конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка (10 ктс) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р1, втечение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой.

В зависимости от природы материала используют три шкалы твердости (табл. 7.1)

Шкалы для определения твердости по Роквеллу

3.3. Метод Виккерса

Твердость определяется по величине отпечатка (рис.7.1 в).

В качестве индентора используется алмазная четырехгранная пирамида.с углом при вершине 136 o .

Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка F:

Нагрузка Р составляет 5…100 кгс. Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонкие изделия, поверхностные слои. Высокая точность и чувствительность метода.

Способ микротвердости – для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра).

Аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливании Р составляют 5…500 гс

3.4. Метод царапания.

Алмазным конусом, пирамидой или шариком наносится царапина, которая является мерой. При нанесении царапин на другие материалы и сравнении их с мерой судят о твердости материала.

Можно нанести царапину шириной 10 мм под действием определенной нагрузки. Наблюдают за величиной нагрузки, которая дает эту ширину.

3.5. Динамический метод (по Шору)

Шарик бросают на поверхность с заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал.

Свойства и методы испытания металлов

Свойства металлов принято подразделять на механические, физические, химические, технологические и эксплуатационные.

Механические свойства. Механические свойства характеризуют способность материала сопротивляться действию внешних сил. К основным механическим свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность и др.

Прочность – способность тела сопротивляться деформации и разрушению под действием внешних нагрузок.

Твердость – способность материала сопротивляться проникновению в него другого, более твердого тела, не получающего остаточной деформации.

Вязкость – способность материала сопротивляться разрушению под действием динамических нагрузок. Поскольку многие материалы, вязкие в условиях медленного нагружения, становятся хрупкими при быстром (ударном) приложении нагрузки, то широко применяется определение ударной вязкости.

Хрупкость – способность тела разрушаться под действием внешних сил практически без пластической деформации.

Упругость – свойство твердого тела восстанавливать свою форму и объем после снятия нагрузки, вызвавшей деформацию. В конструкциях упругость проявляет себя в жесткости – способности сопротивляться деформации.

Пластичность – способность тела остаточно, не разрушаясь изменять свою форму и размеры под действием внешних сил.

Механические свойства металлов определяют при статическом (кратковременном и длительном) и динамическом нагружении, при циклическом приложении нагрузки и другими методами.

Статическое нагружение характеризуется медленным приложением и плавным возрастанием нагрузки от нуля до некоторого максимального значения. Статические испытания проводят на растяжение, сжатие, кручение, изгиб и твердость.

Наибольшее распространение получил метод растяжения – самый жесткий вид испытаний. Испытания проводятся на 5 или 10 кратных образцах ( l 0 = 5 d 0 или 10 d 0 , где l 0 – длина образца, а d 0 – его диаметр), что позволяет соблюдать геометрическое подобие и получать сравнимые результаты для всех металлов. Испытания на растяжение дают информацию о прочности, упругости и пластичности материалов. Рассмотрим диаграмму растяжения малоуглеродистой отожженной стали (рис. 1.1а).

А0

Рис. 1.1. Диаграмма растяжения малоуглеродистой стали

В начальной стадии диаграммы материалы испытывают только упругую деформацию, которая полностью исчезает после снятия нагрузки. До точки «a» эта деформация пропорциональна нагрузке или действующему напряжению:

где P - приложенная нагрузка, F0- начальная площадь поперечного сечения образца.

Теоретический предел пропорциональности – максимальное напряжение, до которого сохраняется линейная зависимость между напряжением (нагрузкой) и деформацией:

Прямолинейную зависимость между напряжением и деформацией можно выразить законом Гука:

где ε = Δl/l0∙100% – относительная деформация, Δl – абсолютное удлинение, l0 – начальная длина образца; Е – коэффициент пропорциональности (tg α), характеризующий упругие свойства материала – называется модулем нормальной упругости, с его увеличением возрастает жесткость изделий, поэтому Е часто называют модулем жесткости.

Теоретический предел упругости – максимальное напряжение, до которого образец получает только упругую деформацию:

Прочность характеризуется пределом текучести физическим и условным.

Физический предел текучести – напряжение, при котором происходит увеличение деформации при постоянной нагрузке:

На диаграмме пределу текучести соответствует участок « c – d », когда наблюдается пластическая деформация (удлинение) - «течение» металла при постоянной нагрузке.

Большая часть металлов и сплавов не имеет площадки текучести, и для них определяют условный предел текучести – напряжение, вызывающее остаточную деформацию, равную 0,2% от начальной расчетной длины образца (рис. 1.1б):

При дальнейшем нагружении пластическая деформация все больше увеличивается, равномерно распределяясь по всему объему образца.

В точке «В», где нагрузка достигает максимального значения, в наиболее слабом месте образца начинается образование «шейки» – сужения поперечного сечения, и деформация сосредотачивается именно на этом участке, то есть из равномерной переходит в местную. Напряжение в этот момент называют пределом прочности.

Предел прочности (временное сопротивление) при растяжении – напряжение, соответствующее максимальной нагрузке, которую выдерживает образец до разрушения:

За точкой «В» в связи с развитием шейки нагрузка уменьшается, в точке «к» при нагрузке «Рк» происходит разрушение образца.

Истинный предел прочности (истинное сопротивление разрушению) – максимальное напряжение, выдерживаемое материалом в момент, предшествующий разрушению образца:

где Fк – конечная площадь поперечного сечения образца в месте разрушения.

Твердость измеряется путем вдавливания в испытуемый образец твердого наконечника различной формы. Определение твердости проводят тремя наиболее распространенными методами.

По методу Бринелля под действием нагрузки в испытуемое тело внедряется стальной закаленный шарик. Число твердости обозначается НВ и представляет собой отношение статической нагрузки к площади поверхности отпечатка шарика.

По методу Роквелла в испытуемую поверхность в два этапа нагружения вдавливается индентор – алмазный конус с углом при вершине 120° или стальной шарик с диаметром 1,588мм. Число твердости обозначается НRС (конус) или НRВ (шар) и характеризуется разницей глубин проникновения индентора при первом и втором этапах нагружения.

По методу Виккерса в испытуемую поверхность вдавливается алмазная четырехгранная пирамида с углом α = 136° между противоположными гранями. Число твердости HV определяют так же, как и в способе Бринелля, отношением нагрузки к площади поверхности отпечатка пирамиды.

Пример расшифровки обозначений: Н –Hard (твердость), B – Brinell, R – Rokwell, V – Vikkers , B – Ball – (шар), C – Cone (конус)

При динамических испытаниях нагрузка прилагается с большой скоростью – ударом и определяется, таким образом, ударная вязкость. Производят испытания на маятниковом копре на стандартных образцах с надрезом. Испытания при пониженных температурах позволяют определять склонность металла к хладноломкости – резкому возрастанию хрупкости.

Физические свойства металлов. К физическим свойствам металлов и сплавов относятся: температура плавления, плотность, температурный коэффициент, электросопротивление и теплопроводность. Физические свойства сплавов обусловлены их составом и структурой.

Химические свойства. К химическим свойствам относится способность материалов к химическому взаимодействию с другими веществами и агрессивными средами.

Технологические свойства. Способность материала подвергаться различным методам горячей и холодной обработки определяют по его технологическим свойствам. К ним относятся литейные свойства, деформируемость, свариваемость и обрабатываемость режущим инструментом и др. Эти свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.

Литейные свойства определяются жидкотекучестью, усадкой и склонностью сплавов к ликвации.

Деформируемость – способность металлов и сплавов принимать необходимую форму под влиянием внешней нагрузки без разрушения и при наименьшем сопротивлении нагрузки.

Свариваемость – способность металлов и сплавов образовывать неразъемные соединения требуемого качества.

Эксплуатационные или служебные свойства. В зависимости от условий работы машины или конструкции определяют служебные свойства: коррозийную стойкость, хладостойкость, жаропрочность, жаростойкость, износостойкость и др.

Коррозионная стойкость – сопротивление сплава действию агрессивных сред (кислотных и щелочных).

Хладостойкость – способность сплава сохранять пластические свойства при температурах ниже нуля.

Жаропрочность – способность сплава сохранять механические свойства при высоких температурах.

Жаростойкость – способность сплава сопротивляться окислению в газовой среде при высоких температурах.

Износостойкость – способность материала сопротивляться разрушению поверхностных слоев при трении.

Антифрикционность – способность сплава прирабатываться к другому сплаву.

ФИЗИЧЕСКИЕ, ХИМИЧЕСКИЕ И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

Одним из основных факторов, обеспечивающих выпуск надежной и качественной продукции машиностроительных предприятий, является правильный выбор металлов для различных изделий и конструкций. Для этого надо хорошо знать условия работы деталей и конструкций и свойства предназначаемых, для них металлов.

Свойства металлов и сплавов делятся на несколько групп: физические, механические, химические, технологические, специальные.

Физические свойства металлов. Плотность (кг/м 3 ) - отношение массы металла к его объему. Металлы с малой плотностью применяют при изготовлении легких конструкций, например сплавы магния и алюминия в самолетостроении.

Температура плавления (°С) - температура, при которой металл переходит в жидкое состояние. Легкоплавкие сплавы - алюминий с Тпл 660°С, олово с Тпл 232°С, тугоплавкие - вольфрам с Тпл 3416°С, железо с Тпл 1539°С.

Тепловое расширение - равномерное увеличение объема (длины) тела при нагревании. Характеризуется коэффициентом расширения α (град -1 ). Этот коэффициент показывает относительное изменение линейных размеров тела при изменении температуры на один градус.

Обычно определяют средний коэффициент линейного расширения ее, характеризующий тепловое расширение в широком интервале температур: от 0° или 20°С до заданной.

Коэффициент объемного расширения в три раза больше коэффициента линейного расширения.

Тепловое расширение при выборе металлов учитывают для конструкций, работающих при переменных и повышенных температурах.

Коэффициент линейного расширения углеродистой стали при 20°С составляет 12 ×10 -6 , вольфрама - 4,3×10 -6 дуралюмина - 22×10 -6 град -1 .

Теплопроводность [Вт/(м×К)] - способность передавать теплоту от нагретых зон более холодным.

Коэффициент теплопроводности λ показывает, какое количество теплоты может пройти перпендикулярно площади 1 м 2 на расстояние 1 м при разности температур 1К на противоположных сторонах куба.

Теплопроводность учитывается при конструировании узлов, в которых металл не должен перегреваться. Коэффициент теплопроводности стали 45,4, алюминия 209,3, серебра 418,7 Вт/(м×К).

Электропроводность - способность металла проводить электрический ток.

С повышением температуры электропроводность уменьшается, с понижением - повышается. Электропроводность учитывается при выборе материала для изготовления электрических проводов и различных датчиков.

Удельное электросопротивление алюминия 2,69×10 -6 , вольфрама - 5,5×10 -6 , меди - 1,67 ×10 -6 Ом/см при 20°С.

Магнитные свойства характеризуются магнитной восприимчивостью - способностью вещества намагничиваться в магнитном поле. Хорошо намагничивающиеся вещества называют ферромагнетиками. Это железо, никель, кобальт и ряд сплавов. Их применяют в электротехнике и приборостроении.

Химические свойства металлов. К этим свойствам относят способность металлов вступать в реакцию с рабочей средой. Распространенным явлением является коррозия - разрушение металлов вследствие химического и электрохимического взаимодействия их с внешней средой. Из-за коррозии ежегодно теряется ~1,5% всего эксплуатируемого металла. Поэтому применяют специальные методы защиты металлов от коррозии, а также коррозионно-стойкие в различных средах сплавы.

Технологические свойства металлов. Пригодность металла для изготовления различных конструкций и деталей не всегда можно оценить по физическим и механическим свойствам. Для более точной оценки качества металла проводят определение его технологических свойств. К ним относятся литейные свойства, свариваемость, способность обрабатываться давлением и резанием. Определение технологических свойств проводится с помощью специальных проб. Ниже рассматриваются некоторые из них. Известно, что сталь одной марки, но разных плавок может иметь различную пластичность. Для выбора способа горячей обработки давлением необходима предварительная оценка пластичности.

Определение ковкости проводят на пробах массой до 1 кг, отлитых по ходу плавки или разливки. Процесс определения ковкости заключается в том, что пробы в форме стаканчика проковывают на квадратный стержень сечением 15×15 мм. Затем стержень загибают молотком на 180° до соприкосновения сторон.

Ковкость считается хорошей при отсутствии на пробе надрывов, трещин и других дефектов, Ковкость считается удовлетворительной при появлении на наружных гранях пробы незначительных надрывов. Считают, что при разрушении пробы или появлении больших надрывов и трещин сталь непригодна для горячей обработки давлением.

Проба на свариваемость служит для определения способности стали принимать заданный по размерам и форме загиб по месту сварки.

Испытание заключается в загибе сваренного образца в месте сварки по одному из следующих вариантов: загиб до определенного угла, загиб вокруг оправки до параллельности сторон; загиб до соприкосновения сторон образца. Сталь считают выдержавшей пробу при отсутствии в образце после загиба трещин, надрывов, расслоений или излома. Такая сталь, имеющая сварные швы, может подвергаться пластической деформации.

Листовая сталь испытывается на загиб по такой же схеме, но без разрезки и сварки образца. Сохранение сплошности после испытания считается признаком того, что образец выдержал пробу.

Существует ряд других технологических проб, применяемых в различных производствах.

Читайте также: