Физическая природа электропроводности металлов
Проводниковые свойства проявляют металлы, металлические сплавы, графит (модификация углерода) и электролиты. Металлы относятся к проводникам с электронной проводимостью. В электролитах (растворы кислот, солей, щелочей) перенос электрических зарядов осуществляют ионы.
2.1.1. Физическая природа электропроводности металлов
Металлы имеют кристаллическое строение: в узлах кристаллической решетки находятся положительно заряженные ионы, окруженные коллективизированными электронами (электронным газом).
Современные представления об электронном строении металлов, распределении электронов по энергетическим состояниям, их взаимодействии с другими элементарными частицами и кристаллической решеткой дает квантовая теория, основы которой были разработаны советским ученым Я.И.Френкелем и немецким физиком А.Зоммерфельдом.
Свободные электроны хаотически перемещаются по кристаллу со средней тепловой скоростью и = 10 5 м/с. В электрическом поле напряженностью Е электроны получают добавочную скорость упорядоченного движения v - скорость дрейфа, благодаря чему и возникает электрический ток. Плотность тока зависит от скорости дрейфа, заряда электрона е и концентрации свободных электронов n .
Скорость дрейфа в реальных условиях существенно меньше скорости теплового движения электронов v
воднике при плотности тока j = 1 А/мм 2 скорость дрейфа составляет v = 1 . 10 -4 м/с.
За время τ между столкновениями с узлами кристаллической решетки на длине свободного пробега l , электроны, двигаясь с уско-
рением a = e E , приобретают скорость дрейфа: m e
Приравнивая аналитическое выражение закона Ома (1.1) к выражению (2.1) с учетом (2.2), получим формулу для удельной проводимости
Выразим произведение m e . и через концентрацию свободных электронов, используя квантовую статистику, базирующуюся на принципе Паули, согласно которому в каждом энергетическом состоянии может находиться только один электрон, а на каждом энергетическом уровне - не более двух (с антипараллельными спинами). Тогда при температуре абсолютного нуля ( Т = 0 К) половина из общего числа свободных электронов в кристалле ( n /2) займет наиболее низкие энергетические уровни.
В квантовой теории вероятность заполнения электронами энергетических состояний с энергией уровня Э определяется функцией Ферми
где Э F - энергия Ферми, т.е. максимальная энергия, которую может иметь электрон в металле при температуре абсолютного нуля.
Из формулы (2.4) следует, что при Э = Э F , вероятность заполнения электронами уровня Ферми равна 0,5. Энергия Ферми для большинства металлов составляет от 3 до 15 эВ. Уровни, расположенные ниже уровня Ферми ( Э < Э F ), с вероятностью >0,5 заполнены электронами, а уровни, лежащие выше уровня Ферми ( Э > Э F ), с такой же вероятностью свободны от электронов.
В соответствии с квантовой статистикой Ферми-Дирака концентрация свободных электронов в металле определяется путем интег-
рирования по всем заполненным энергетическим состояниям, что дает следующее выражение
Выразив из этого соотношения значение энергии Ферми через концентрацию электронов и, учитывая, что Э F = m e и 2Подставляя m e и в формулу (2.3), найдем выражение для
удельной проводимости металлов
Концентрация свободных электронов в чистых металлах, характер их распределения по энергиям и энергия Ферми с повышением температуры почти не изменяются. Например, при нагреве серебра от 0 до 1000 К энергия Ферми уменьшается лишь на 0,2%. Такие малые изменения в широком температурном диапазоне можно не учитывать. Следовательно, формула (2.6) справедлива при любой температуре. Поэтому электропроводность металла определяется, в основном, средней длиной свободного пробега электронов, которая зависит от электронного строения атомов и типа кристаллической решетки. Длина свободного пробега для некоторых металлов дана в табл. 1.
Длина свободного пробега электронов в некоторых металлах при 0 ° С
Наибольшая длина свободного пробега наблюдается в металлах с гранецентрированной кубической кристаллической решеткой (Ag, Cu, Au), которые и являются лучшими проводниками.
Переходные металлы (Fe, Ni, Co, Cr, Mn, V, Zr, Nb, Mo, W, Hf, Ta, Re, Pt и др.) имеют меньшую электропроводность, что связано с их специфическим электронным строением. В этих элементах внутренние d - или f -оболочки неполностью заполнены электронами. В электрическом поле часть валентных электронов из внешней s - оболочки переходят на свободные уровни внутренних оболочек, что приводит к уменьшению числа свободных электронов, участвующих в проводимости.
Особенности электронного строения переходных металлов являются причиной многих их специфических свойств: тепловых, магнитных, склонности к полиморфизму, переменной валентности и др.
И в заключение, у чистых металлов при нагреве средняя энергия электронов практически остается без изменения, что свидетельствует о малой теплоемкости электронного газа.
2.1.2. Температурная зависимость удельного сопротивления металлов
Рассмотрим движение свободных электронов в виде плоских электронных волн, длина которых λ определяется соотношением де Бройля (1.3). Такая электронная волна распространяется в строго периодическом потенциальном поле без рассеяния энергии. Это означает, что в идеальном кристалле длина свободного пробега электронов равна бесконечности, а сопротивление электрическому току равно нулю.
Причинами рассеяния электронов в реальных металлах, создающего электрическое сопротивление, являются:
• тепловые колебания узлов кристаллической решетки ( ρ т - тепловая составляющая электрического сопротивления);
• примеси и дефекты структуры ( ρ ост - составляющая ρ , обусловленная нетепловыми факторами).
Известно, что эффективное рассеяние энергии электронов происходит в том случае, если размер рассеивающих центров (дефектов) превышает 1/4 длины волны. В металлах энергия электронов
проводимости составляет 3…15 эВ, этой энергии соответствует длина электронной волны λ = 0,3…0,7нм. Поэтому любые микронеоднородности и несовершенства кристаллического строения вызывают снижение проводимости.
Итак, удельное сопротивление реальных металлов представляет собой сумму двух составляющих:
Относительное изменение удельного сопротивления металлов при изменении температуры характеризует температурный ко-
Физическая природа электропроводности металлов.
Основные сведения о МЭТ. Материалы- это исходные вещества для производства продукции или вспомогательные вещества для проведения производственных процессов.Материалы делятся на:Сырье - это материалы, которые подлежат дальнейшей обработке (древесина, газ, руда).Полуфабрикаты - это материалы уже обработанные, но которые должны еще пройти стадии обработки для того чтобы стать готовым изделием.По общей специализации материалы делятся на: проводники, полупроводники, диэлектрики, магнитные материалы
Классификация материалов.
Материалы используемые в электронной технике, подразделяют на 1) электротехнические,
2) конструкционные, 3) специального назначения. Электротехническими называют материалы характеризуемые определенными свойствами по отношению к электромагнитному полю и применяемые в технике с учетом этих свойств. По поведению в магнитном поле электротехнические материалы подразделяют на сильномагнитные и слабомагнитные. Большинство этих материалов можно отнести к слабомагнитным. По поведению в электрическом поле материалы подразделяют на
1.Проводниковые– материалы основными свойствами которых является сильно выраженная электропроводность. 2.Полупроводниковые – материалы по удельной проводимости, являющиеся промежуточными между проводниковыми и диэлектрическими материалами отличительными свойствами которых является сильная зависимость удельной проводимости от концентрации примесей и дефектов, и их вида, а также от внешних энергетических воздействий. 3. Диэлектрические– материалы основными электрическими свойствами которых является низкая удельная электропроводность, а также способность к поляризации и в которых может существовать электростатическое поле.
Виды химической связи.
1.Ковалентная связь – химическая связь, образующаяся за счет обобществления электронов соседних атомов в общую электронную пару. При обобществлении электронов, происходит втягивание электронных облаков пространства между ядрами, появление состояния с повышенной плотностью электронного заряда в межъядерном пространстве и приводит к возникновению силы притяжения. Молекулы с ковалентной связью бывают полярными и неполярными. Молекулы, в которых центры полож. и отриц. совпадают называются неполярными, в которых не совпадают, называются полярными.
2.Ионная связь – это химическая связь, возникающая вследствие перехода электрона от металлического атома к металлоидному, и электростатического притяжения, разноименно заряженных ионов друг к другу. Этот вид связи реализуется в ионных кристаллах к которым относятся соли, оксиды, основания.
3.Металлическая связь – это химическая связь характерная для металлов, которая основывается на взаимопритяжении, положительно заряженного остова, образуемого кристаллической решеткой и электронного газа, имеющего отрицательный заряд и образуемого из свободных электронов. Притяжение между положительно заряженным остовом и электронным газом обуславливает целостность металлов. Специфика металлической связи заключается в том, что в обобществлении электронов, участвуют все атомы в кристаллах и обобществленные электроны, не локализуются около своих атомов, а свободно перемещаются вдоль всей решетки, образуя электронный газ.
4. Молекулярная связь или Ван дер Вальса –эта химическая связь образуется за счет межмолекулярного притяжения, при сопоставлении движения валентных электронов в соседних молекулах, при этом в любой момент времени, электроны должны быть максимально удалены друг от друга и максимально приближенны к положительным ядрам, тогда сила притяжения валентных электронов ядром соседней молекулы оказывается сильнее, силы взаимного отталкивания электронных оболочек этих молекул.
Особенности строения твердых тел.
Большинство материалов электронной техники представляют собой твердые тела, основная масса которых имеет кристаллическую решетку, обуславливающую периодическое электростатическое поле. Периодичность структуры является характерным свойством кристаллов. В периодической решетке всегда можно выделить элементарную ячейку, транслируя которую в пространстве легко получить представление о структуре всего кристалла. Кристаллические тела могут быть в виде отдельных кристаллов, монокристаллов или состоять из совокупности большого числа меньших кристалликов, зёрен. В случае поликристалла в пределах каждого зерна, атомы расположены периодически, но при переходе от одного зерна к другому, на границах раздела, регулярное расположение частиц нарушается. Кристаллов с идеальным строением не существует, происходят отклонения из-за дефектов. Их условно подразделяют на динамические или временные, и статические или постоянные. Динамические дефекты возникают при механических, тепловых или электромагнитных воздействиях на кристалл при прохождении через него потока частиц высокой энергии. Среди статических дефектов различают атомные или точечные, протяженные дефекты. Атомные могут проявляться в виде незанятых узлов решеток, называемых вакансиями в виде смещения атома из узла в междоузлие, в виде внедрения в решетку чужеродных атомов иди ионов. К протяженным дефектам относятся дислокации, то есть смещение, поры, трещины, границы зёрен и др. Некоторые твердые вещества обладают способностью образовывать не одну, а две или более кристаллические структуры, устойчивые при различных температурах, называют полиморфизмом.
Зонная теория твердого тела.
Зонная теория ТТ – это теория валентных электронов, движущихся в потенциальном периодическом поле в кристаллической решетке. Отдельные атомы могут иметь отдельный энергетический спектр, то есть электроны могут занимать лишь определенные энергетические уровни. Часть этих уровней, заполнена при нормальном невозбужденном состоянии атома, на других уровнях атомы могут находится лишь тогда, когда атом подвергается внешнему энергетическому воздействию, то есть когда он возбужден. Энергетическая диаграмма атома –эта диаграмма показывает энергетическое состояние валентных электронов в атоме и самого атома. (E – энергия валентных электронов, E0 – основной уровень энергии атома характеризующий минимально возможное значение атома, Ei – энергия ионизации) Возбужденное состояние атома – это такое состояние когда атом обладает энергией, большей по сравнению с минимально возможной. При сближении атомов, происходит перекрытие электронных оболочек, а это в свою очередь существенно изменяет характер движения электронов. Благодаря перекрытию оболочек, электроны могут без изменения энергии, посредством обмена, переходить от одного атома к другому. То есть перемещаться по кристаллу и становиться обобществленным, вследствие этого, дискретные энергетические уровни изолированного атома, расщепляются в энергетические зоны. Разрешенные энергетические зоны разделены запрещенными интервалами энергии, каждая из запрещенных энергетических зон, состоит из множества энергетических уровней, их количество определяется числом атомов, составляющих твердое тело, нижнюю заполненную валентными электронами зону, называют валентной, она соответствует энергетическим уровням валентных электронов. Валентную зону называют зоной проводимости, дно этой зоны соответствует энергии ионизации атомов, составляющих твердое тело. В запрещенной зоне, уровни энергии отсутствуют, характер энергетического спектра у проводников, полупроводников, диэлектриков существенно различаются. В проводниках валентная зона перекрывается зоной проводимости, в полупроводниках и диэлектриках, зоны проводимости и валентная зона разделены некоторым энергетическим зазором называемым запрещенной зоной. К полупроводникам относят вещества, у которых запрещенная зона меньше 3-ех ЭВ. С более широкой, относят к диэлектрикам. У реальных диэлектриков ширина ЗЗ может достигать 10 ЭВ.
В полупроводниках и диэлектриках при низких температурах, все электроны находятся в валентной зоне, а зона проводимости абсолютно свободна. Для проявления электропроводности, электроны необходимо перевести из валентной зоны в зону проводимости. Энергии электрического поля недостаточно, для осуществления такого перехода, требуется более сильное энергетическое воздействие. При переходе электронов из валентной зоны в зону проводимости в валентной зоне появляются энергетические вакансии, называемые дырками.
Общие свойства проводников.
К твердым проводникам относят металлы, сплавы и модификации углерода. К жидким проводникам относят расплавы металлов и электролиты. Все проводники делятся на два рода. Механизм протекания токов по металлам обусловлен движением электронов (электронная проводимость, проводники I рода). К проводникам II рода относят растворы кислот, щелочей, солей и ионные растворы (перенос заряда через ионы). Газы в обычных состояниях проводниками не являются, однако в результате ионизации в них может проявляться проводимость. Предельным случаем является плазма – сильно ионизированный газ с квазиравновесием положительных и отрицательных зарядов. Плазма очень хороший проводник – равновесная проводящая среда. В металлах проводимость электронная, электроны имеют маленькую массу (9,1 10 -31 кг)и хорошую подвижность, поэтому они не только переносят энергию, но и выравнивают скорости движения атомов и молекул по объему, сравнивая температуру по образцу. Следовательно, все металлы имеют хорошую теплопроводность. ПриФизическая природа электропроводности металлов.
В основу классической электронной теории металлов положено представление об электронном газе, состоящем из свободных коллективизированных электронах. Приложение внешнего напряжения, приводит к увеличению количества электронов в направлении действующих сил поля, то есть, электроны получают некоторую добавочную скорость направленных движений, благодаря чему и возникает электрический ток. Плотность тока в проводнике равна ,l – средняя длина свободного пробега электронов, m0 масса электрона, U – средняя плотность теплового движения. Электроны в металле переносят не только электрический заряд, но и выравнивают в нем температуру. Обеспечивая высокую теплопроводность. Молекулярная теплоемкость, кристаллической решетки любого ТТ составляет 3R, где R- универсальная газовая постоянная. Квантовая статистика базируется на принципе Паули – согласно которому в каждом энергетическом состоянии в атоме может находится только один электрон. В квантовой теории вероятность заполнения энергетических состояний электронами определяется функцией Фирни
F – энергия Фирни, k- постоянная Больцмана, T- температура. Энергия Фирни определяет максимальное значение энергии, которую может иметь электрон в металле при температуре абсолютного нуля, эту энергию называют так же уровнем Фирни. Соответствующий ей потенциал называется электрохимическим потенциалом1.1 Физическая природа электропроводности металлов
Металлические проводники – основной тип проводниковых материалов, применяемых в микроэлектронике. В классической электронной теории металлов – проводников I рода – электронный газ представлен свободными электронами.
При учете лишь однократной ионизации выражение для концентрации свободных электронов n равно концентрации атомов:
(1)
где – плотность металла; ma – атомная масса, NA=6,022045(31)10 23 моль -1 – число Авогардо, то есть число структурных элементов в единице количества вещества (в одном моле).
К электронному газу применимы понятия и законы статистики обычных газов.
Рассматривая хаотическое и направленное под действием силы электрического поля движение электронов, получено выражение закона Ома, закон Джоуля – Ленца.
Плотность тока j в проводнике при средней скорости теплового движения электрона
Vт , средней длине свободного пробега lср пропорциональна напряженности поля Е:
, (2)
где m0 – масса электрона.
Формула 2 – аналитическое выражение закона Ома при условии, что учтено движение одного электрона, а выводы распространены на все свободные электроны.
Целесообразно учесть действие поля на всю совокупность электронов, когда суммарный импульс изменяется как при действии поля, и под действием соударений с узлами кристаллической решетки. Тогда средняя дрейфовая скорость электронов возрастает вдвое. С учетом этого выражение для удельной проводимости примет вид:
(3)
В качестве экспериментального факта установлено, что теплопроводность металлов пропорциональна их электропроводности. Представления о свободных электронах приводит к закону Видемана – Франца (1853г.), так как электрон в металле переносит не только электрический заряд, но и выравнивает в нем температуру за счет электронной теплопроводности. Отношение удельной теплопроводности λт к удельной проводимости при комнатной и более высоких температурах T является постоянной величиной:
,
где 0= (π 2 /3)·(R/e) 2 = 2,45·10 -8 Вт·Ом/K 2 – число Лоренца. Отклонения экспериментальных значений L0 от теоретических объясняется неупругими столкновениями электронов проводимости с колебаниями решетки.
Гипотеза об электронном газе в металлах подтверждается рядом опытов:
- при длительном протекании тока через цепь, состоящую из одних металлических проводников, нет проникновения атомов одного металла в другой.
- при нагревании металлов до высоких температур скорость теплового движения свободных электронов растет, они даже покидают металл, преодолев силы поверхностного потенциального барьера.
- в момент остановки быстро двигавшегося проводника происходит смещение электронного газа по закону инерции в направлении движения. Появляется разность потенциалов на концах заторможенного проводника.
- вследствие искривления траектории электронов в металлической пластине, помещенной в поперечное магнитное поле, появляется поперечная ЭДС и изменяется сопротивление проводника.
Но есть и противоречащие факторы:
– расхождения кривых в зависимости (T) на опыте и теоретической;
– наблюдаемая теплоемкость металлов ниже.
Эти трудности удалось преодолеть с помощью квантовой волновой механики. Электронный газ в металлах при обычных температурах является "вырожденным". При этом средняя энергия электронного газа почти не меняется при изменении температуры.
Основные недостатки классической теории исходят не столько из представлений о существовании в металлах свободных электронов, сколько от применения к ним законов статистики Максвелла – Больцмана, согласно которой распределение электронов по энергетическим состояниям описывается экспоненциальной функцией вида, когда в каждом энергетическом состоянии может находиться любое число электронов
(4)
Квантовая статистика базируется на принципе Паули, согласно которому в каждом энергетическом состоянии может находиться только один электрон. Отсюда сразу вытекает различие классического и квантового распределений электронов по энергиям. С классической точки зрения энергия всех электронов при температуре абсолютного нуля должна равняться нулю. А по принципу Паули даже при абсолютном нуле число электронов на каждом уровне не может превышать двух. И если общее число свободных электронов в кристалле равно n, то при ОК они займут n/2 наиболее низких энергетических уровней.
В квантовой теории вероятность заполнения энергетических состояний электронами
определяется функцией Ферми:
, (5)
где W – энергия уровня, вероятность заполнения которого определяется; WF – энергия характеристического уровня, относительно которого кривая вероятности симметрична. При T = ОК функция Ферми обладает следующими свойствами: F(W) = 1, если W ≤ WF и F(W) = 0, если W WF.
Таким образом, величина WF определяет максимальное значение энергии, которую может иметь электрон в металле при температуре абсолютного нуля. Эту характеристическую энергию называют энергией Ферми или уровнем Ферми. Соответствующий ей потенциал φF = WF/e называют электрохимическим потенциалом. Следует отметить, что энергия WF не зависит от объема кристалла, а определяется только концентрацией свободных электронов, что непосредственно вытекает из принципа Паули. Поскольку концентрация свободных электронов в металле велика, энергия Ферми также оказывается высокой и в типичных случаях составляет 3 – 15 эВ.
При нагревании кристалла ему сообщается тепловая энергия порядка kT. За счет этого возбуждения некоторые электроны, находящиеся вблизи уровня Ферми, начинают заполнять состояния с более высокой энергией: график функции распределения становится несколько пологим (рисунок 1). Однако избыток энергии, получаемой электронами за счет теплового движения, очень незначителен по сравнению с WF и составляет всего несколько сотых долей электрон-вольта. Поэтому характер распределения электронов по энергиям также изменяется очень незначительно: средняя энергия электронов практически остается без изменения. Незначительное изменение средней энергии от температуры означает малую теплоемкость электронного газа, значение которой по статистике Ферми – Дирака при обычных температурах получается в 50 – 70 раз меньше, чем по классической теории. В этом заключено разрешение противоречия между малой теплоемкостью и высокой проводимостью электронного газа в металлах.
Из формулы (5) легко видеть, что при любой температуре для уровня с энергией W = WF вероятность заполнения электронами равна 0,5. Все уровни, расположенные ниже уровня Ферми, с вероятностью больше 0,5 заполнены электронами. Наоборот, все уровни, лежащие выше уровня Ферми, с вероятностью более 0,5 свободны от электронов.
Распределение электронов по энергиям определяется не только вероятностью заполнения уровней, но и плотностью квантовых состояний в зоне:
где dn – число электронов, приходящихся на энергетический интервал от W до W+ dW; N(W) – плотность разрешенных состояний в зоне, т.е. число состояний, приходящихся на единичный интервал энергии в единице объема.
Рисунок 1 – Распределение электронов в частично заполненной зоне (а) и функция вероятности заполнения электронами уровней (б): I – уровни, заполненные; II – интервал размывания; III – уровни, полностью свободные
Распределение электронов по энергиям в металле можно представить параболической зависимостью, изображенной на рисунке 2. Электроны, расположенные в глубине от уровня Ферми, не могут обмениваться энергией с кристаллической решеткой, ибо для них все ближайшие энергетические состояния заняты.
Общую концентрацию электронов в металле можно найти путем интегрирования по всем заполненным состояниям. При ОК это приводит к следующему результату:
(6)
Системы микрочастиц, поведение которых описывается статистикой Ферми – Дирака, называют вырожденными. В состоянии вырождения средняя энергия электронного газа практически не зависит от температуры. Электронный газ в металле остается вырожденным до тех пор, пока любой из электронов не сможет обмениваться энергией с кристаллической решеткой, а это возможно тогда, когда средняя энергия тепловых колебаний станет близкой к энергии Ферми. Для металлов температура снятия вырождения TF по порядку величины составляет 10 4 К, т.е. превышает не только температуру плавления, но и температуру испарения металлов.
Вследствие вырождения в процессе электропроводности могут принимать участие не все свободные электроны, а только небольшая часть их, имеющая энергию, близкую к энергии Ферми. Только эти электроны способны изменять свои состояния под действием поля. Электрический ток, возникающий в металле под влиянием разности потенциалов, отражает изменения в распределении электронов по скоростям. В соответствии с квантовой статистикой это распределение является производным от распределения по энергиям (рисунок 2) и симметрично в отсутствие внешнего поля. Под действием электрического поля происходит рассеяние электронов под большими углами в процессе их упругих столкновений с узлами решетки. В результате этого возникает избыток быстрых электронов, движущихся против поля, и дефицит быстрых электронов с противоположным направлением скорости.
Рисунок 2– Распределение электронов по энергиям в металле: 1 – T=0 К; 2 – T0 К
Ускоряясь полем на длине свободного пробега, эти электроны приобретают добавочную скорость направленного движения:
, (7)
где τF – время свободного пробега; VF – тепловая скорость быстрых электронов, обладающих энергией, близкой к энергии WF.
Основная масса электронов не изменяет своего энергетического состояния при наложении поля. Однако в целом вся картина распределения скоростей смещается против поля (так как электроны имеют отрицательный заряд) на значение скорости дрейфа VF. Отдельные электроны неотличимы друг от друга. Поэтому, констатируя лишь конечный результат, можно считать, что под действием поля вся совокупность свободных электронов в металле (и быстрых и медленных) с концентрацией n приобретает добавочную скорость направленного движения, равную VF. С учетом этого обстоятельства, выражение для проводимости принимает вид:
(8)
При изменении температуры энергия Ферми WF изменяется незначительно, что является спецификой вырожденного состояния электронного газа. Например, при нагревании серебра от 0 до 1000 К энергия Ферми у него уменьшается лишь на 0,2%. Столь малые изменения в таком широком температурном диапазоне можно не учитывать. Это дает основание утверждать, что формула 8 справедлива при любой температуре.
Концентрации свободных электронов в чистых металлах различаются незначительно. Температурное изменение n также очень мало. Поэтому проводимость определяется в основном средней длиной свободного пробега электронов, которая, в свою очередь, зависит от строения проводника, т.е. химической природы атомов и типа кристаллической решетки.
Электропроводность металлов
Электропроводность металлов и сплавов – физическое свойство, которое учитывается при производстве разных видов изделий. Например, для изготовления электрических кабелей, микросхем используют металлы с высокими показателями электропроводности.
Данный параметр зависит от факторов окружающей среды: температуры, давления, агрегатного состояния, наличия магнитных полей и т. д. Если говорить о чистых металлах и влиянии температуры на их электропроводность, то с ростом она падает. Подробнее о том, что собой представляет электропроводность металлов, вы узнаете из нашего материала.
Природа электропроводности металлов
Электропроводностью называют способность тела, вещества проводить ток. Кроме того, этим термином обозначается физическая величина, которая численно характеризует данную способность. Электропроводность металла определяется числом свободных ионов в проводнике – их движение и является электрическим током. Данный показатель исчисляется в сименсах, а в международной системе единиц для его обозначения используется буква «S».
В зависимости от того, какой электропроводностью обладают металлы и иные вещества, среди них выделяют проводники, диэлектрики и полупроводники. Правда, между данными группами практически не существует четкого разграничения.
Чем обусловлена высокая электропроводность металлов-проводников? Они имеют большое количество свободных ионов. Среди веществ этой группы выделяют два рода, исходя из физической природы протекания тока. К первому относятся металлы с электронной проводимостью, по которым ток проходит благодаря движению свободных электронов.
Ко второму причисляют растворы кислот, щелочей, солей или электролиты, имеющие ионную проводимость. Иными словами, здесь интересующий нас процесс связан с движением положительных и отрицательных ионов. Уровень электропроводности проводников превышает 106(Ом·м)-1.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Диэлектрики обладают малым числом свободных ионов, поэтому отличаются низкой электропроводностью, практически не проводят ток. Такими материалами являются дерево, смолы, пластмассы, стекло, пр. Для них данный показатель составляет менее 106(Ом·м)-1.
По своим проводящим свойствам полупроводники занимают промежуточное положение между материалами описанных выше групп. К ним относятся германий, кремний, селен, прочие соединения, получаемые искусственно.
Существует зависимость электропроводности металлов и иных веществ от температуры, но она является индивидуальной для каждого материала. Повышение степени нагрева металлов приводит к сокращению времени свободного пробега электронов. Увеличение температуры влечет за собой возрастание тепловых колебаний кристаллической решетки, на которой рассеиваются электроны, что вызывает уменьшение электропроводности.
Полупроводникам свойственна другая зависимость электропроводности металлов от температуры: ее повышение провоцирует рост электропроводности, поскольку увеличивается число электронов проводимости и положительных носителей заряда. У диэлектриков электропроводность тоже может возрастать, однако для этого требуется очень высокое электрическое напряжение.
Металлы способны проводить ток, поскольку воздействие электромагнитного поля вызывает потерю связи между электроном и атомом из-за высокой степени ускорения.
Электрическое сопротивление металлов
Электрическое сопротивление является частью закона Ома и исчисляется в омах (Ом). Нужно понимать, что электрическое и удельное сопротивление являются разными явлениями. Если первое представляет собой свойство объекта, то второе характеризует материал.
Так, электрическое сопротивление резистора зависит от формы и удельного сопротивления материала, использованного для изготовления данного элемента электрической цепи.
Допустим, проволочный резистор состоит из длинной тонкой проволоки и обладает более высоким сопротивлением, чем аналогичный элемент, но выполненный из короткой и толстой проволоки. При этом оба они сделаны из одного металла.
Если сравнить два резистора из проволоки одинаковой длины и диаметра, то большим электрическим сопротивлением будет обладать тот, который состоит из материала с высоким удельным сопротивлением. А его аналогу из материала с низким удельным сопротивлением будет свойственно меньшее электрическое сопротивление.
В этом случае работает тот же принцип, что и в гидравлической системе, прокачивающей воду по трубам:
- Чем больше длина трубы и меньше ее толщина, тем с более высоким сопротивлением сталкивается жидкость.
- Вода будет испытывать на себе меньшее сопротивление в пустой трубе, чем в заполненной песком.
Под удельным сопротивлением понимают способность материала препятствовать прохождению электрического тока. В физике существует и обратная величина, известная как проводимость. Она выглядит таким образом:
Σ = 1/ρ, где ρ – удельное сопротивление вещества.
Электропроводность металлов и других веществ зависит от свойств носителей зарядов. В металлах присутствуют свободные электроны – на внешней оболочке их число доходит до трех. Во время химических реакций с элементами из правой части таблицы Менделеева атом металла отдает их. С электропроводностью чистых металлов все несколько иначе. В их кристаллической структуре эти наружные электроны общие и переносят заряд под действием электрического поля.
В случае с растворами в качестве носителей заряда выступают ионы.
Степень электропроводности разных металлов и сплавов
Развитием электронной теории электропроводности металлов занимался немецкий физик Пауль Друде. Именно благодаря его исследованиям стало известно о сопротивлении, наблюдаемом при прохождении электрического тока через проводник. В результате удалось разделить вещества на группы, исходя из степени их проводимости.
Данная информация необходима, например, чтобы выбрать наиболее подходящий металл для производства кабеля, обладающего определенным набором свойств. Ошибка в этом случае чревата перегревом под действием тока избыточного напряжения и последующим возгоранием.
Серебро – это металл, обладающий самой высокой электропроводностью. При +20 °C этот показатель равен 63,3×104 см-1. Тем не менее, производство серебряной проводки является нерентабельным, поскольку речь идет о достаточно редком металле. В большинстве случаев он идет на изготовление ювелирных изделий, украшений, монет.
Среди неблагородных цветных металлов самая высокая электропроводность характеризует медь – она составляет 57×104 см-1 при +20 °C. Помимо этого, медь хорошо справляется с постоянными электрическими нагрузками, долговечна, надежна, имеет высокую температуру плавления, поэтому может долго работать в нагретом состоянии. Все названные свойства позволяют активно применять данный металл для бытовых целей и на производстве.
Не реже меди используется алюминий, ведь по электропроводности он уступает только серебру, меди и золоту. Его температура плавления практически в два раза ниже, чем у меди, из-за чего алюминий не может выдерживать предельные нагрузки. По этой причине его применяют в сетях с невысоким напряжением. Узнать электропроводность остальных металлов можно в соответствующей таблице.
По проводимости любой сплав значительно уступает чистому металлу, что объясняется слиянием структурной сетки, вызывающим нарушение нормального функционирования электронов. Так, медные провода изготавливают только из металла с максимальной долей примесей 0,1 % или даже 0,05 %, если речь идет об отдельных разновидностях кабеля.
Приведенные показатели – это удельная электропроводность металлов, которая представляет собой отношение плотности тока к величине электрического поля в проводнике.
Опасность металлов с высокой электропроводностью
Щелочные металлы имеют крайне высокую электропроводность, объясняют этот факт тем, что в них электроны практические не привязаны к ядру и могут быть без труда выстроены в требуемой последовательности. Еще одна особенность этих металлов состоит в низкой температуре плавления в сочетании со значительной химической активностью, что обычно не позволяет использовать их в качестве материалов для кабелей.
Находясь в незащищенном виде, металлы с высокой электропроводностью несут в себе большую опасность. Прикосновение к оголенным проводам вызывает электрический ожог, разряд воздействует на внутренние органы, что нередко становится причиной мгновенной смерти человека.
Поэтому металл закрывают специальными изоляционными материалами, которые могут быть жидкими, твердыми, газообразными – конкретный тип подбирается в соответствии со сферой использования изделия. Вне зависимости от агрегатного состояния защиты она призвана изолировать электрический ток в цепи, чтобы не допустить его воздействия на окружающую среду.
Зависимость электропроводности металлов от факторов внешней среды
Проводимость не является постоянной величиной. В таблицах приведены сведения, характерные для нормальных условий или при температуре +20 °С. В реальной жизни сложно обеспечить идеальные условия для работы цепи. Удельное сопротивление, а значит, и проводимость, определяется такими характеристиками:
- температурой;
- давлением;
- наличием магнитных полей;
- светом;
- агрегатным состоянием вещества.
Изменения интересующего нас параметра зависят от условий среды и свойств конкретного материала. Электропроводность ферромагнетиков, в число которых входят железо и никель, увеличивается при совпадении направления тока с направлением силовых линий магнитного поля. Зависимость электропроводности от теплопроводности металлов и окружающей температуры практически линейная, даже есть понятие температурного коэффициента сопротивления – данную величину можно уточнить в таблицах.
Правда, направление зависимости определяется конкретным веществом: у металлов оно при увеличении температуры повышается, у редкоземельных элементов и растворов электролитов увеличивается в пределах одного агрегатного состояния.
Полупроводники характеризуются гиперболической и обратной зависимостью электропроводности от температуры: рост степени нагрева приводит к повышению электропроводности металлов. Данная особенность качественно отличает проводники от полупроводников. Зависимость ρ проводников от температуры выглядит следующим образом:
На графике отображено удельное сопротивление меди, платины, железа. Некоторые металлы характеризуются иначе: ртуть при понижении температуры до 4°K становится сверхпроводимой, почти полностью теряя удельное сопротивление.
У полупроводников зависимость будет представлена так:
Когда металл переходит в жидкое агрегатное состояние, его ρ повышается, а дальнейшее изменение свойств может быть разным. Так, висмут в расплавленном виде имеет более низкое удельное сопротивление, чем при комнатной температуре, а у жидкой меди оно повышается в десять раз. Никелю свойственно выходить из линейного графика уже при достижении температуры +400 °C, но далее ρ падает.
Температурная зависимость вольфрама так высока, что приводит к перегоранию ламп накаливания: ток нагревает спираль, из-за чего ее сопротивление многократно возрастает.
Удельное сопротивление сплавов зависит от задействованной при производстве технологии. Данное свойство простой механической смеси определяется как средний показатель ее компонентов. Тогда как для сплава замещения оно окажется иным и обычно отличается в большую сторону.
Рекомендуем статьи
Стоит пояснить, что под сплавом замещения понимают такой, в котором несколько элементов формируют одну кристаллическую решетку. Данная особенность прослеживается у нихрома, используемого для изготовления спиралей электроплит. Удельное сопротивление, а значит, и электропроводность этого металла совпадает с показателем проводников, а при подключении к сети он нагревается до красноты.
Выше были представлены только основные теории, касающиеся физических свойств металлов, а именно электропроводности, сопротивления. Например, не была затронута квантовая теория проводимости Зоммерфельда. Этого краткого знакомства вполне достаточно, чтобы понять, что сопротивление является сложным и комплексным понятием, которое невозможно полностью разобрать на основе простейшего закона Ома.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
VIII Международная студенческая научная конференция Студенческий научный форум - 2016
Электропроводность – это свойство тела или вещества проводить ток, а также физическая величина, численно характеризующая эту способность. Электропроводность зависит от количества свободных ионов, содержащихся в проводнике, движение которых является электрическим током. В системе СИ электропроводность обозначается как S и измеряется в сименсах.
В зависимости от величины электропроводности вещества можно условно разделить на три группы: проводники, диэлектрики и полупроводники. Однако, провести четкие границы между группами невозможно.
Проводники имеют большое количество свободных ионов, а следственно и большую электропроводность. Они делятся на два рода, которые отличаются друг от друга физической природой протекания электрического тока. К первому роду относятся металлы с электронной проводимостью, то есть прохождение тока по ним обусловлено движением свободных электронов. К проводникам второго рода относятся растворы кислот, щелочей и солей, которые называют электролитами. Прохождение тока по электролитам обусловлено движением положительных и отрицательных ионов. Такие проводники имеют ионную проводимость. Электропроводность проводников больше 10 6 (ом·м) -1 . [3]
Диэлектрики имеют наоборот маленькое количество свободных ионов, что означает малую электропроводность и практически неспособность проводить электрический ток. К ним можно отнести дерево, смолы, пластмассы, стекло и т.п. Электропроводность диэлектриков меньше 10 6 (ом·м) -1 . [3]
Полупроводники имеют проводящие свойства средние между проводниками и диэлектриками. К полупроводникам относятся, например, германий, кремний, селен и другие искусственные соединения. [3]
На электропроводность вещества или тела влияет температура вещества. Однако, зависимость от температуры различная у разных веществ. У металлов данная зависимость определяется уменьшением времени свободного пробега электронов с ростом температуры. При увеличении температуры происходит возрастание тепловых колебаний кристаллической решетки, на которой рассеиваются электроны и соответственно электропроводность уменьшается. Для полупроводников зависимость иная. При повышении температуры электропроводность увеличивается, так как увеличивается число электронов проводимости и положительных носителей заряда. Диэлектрики также имеют увеличенную электропроводность, но при очень высоком электрическом напряжении. [2]
Металлы имеют свойство проводить ток. Это обусловлено тем, что электромагнитное поле воздействует на проводниковый металл, в следствие чего электрон ускоряется настолько, что теряет связь с атомом.
Электронная теория проводимости металлов создана П. Друде в 1900 г., которая далее получила развитие в работах Г. Лоренца. С точки зрения данной теории высокая электропроводность металлов обусловлена наличием очень большого числа носителей заряда – электронов проводимости, перемещающихся по всему объему проводника. При своем движении электроны проводимости сталкиваются с ионами кристаллической решетки металла. Следуя из этого средняя длина свободного пробега электронов равна 10 -8 см. [1]
Плотность тока, проходящая через проводник будет равна общему заряду всех электронов, проходящих за одну секунду через единицу площади поперечного сечения проводника.
Читайте также: