Этиленгликоль воздействие на металлы

Обновлено: 22.01.2025

06.03.2016 22:02 - дата обновления страницы

г. С аратов

поддержка проекта:
разместите на своей странице нашу кнопку! И мы разместим на нашей странице Вашу кнопку или ссылку. Заявку прислать на e-mail

Коррозионная агрессивность топлива, смазочных материалов и специальных жидкостей

Охлаждающие жидкости

В системах охлаждения автомобильных двигателей в качестве охлаждающей жидкости применяется вода или водный раствор этиленгликоля, замерзающий при низкой температуре. Чтобы предупредить коррозию в системе охлаждения рекомендуется применять дистиллированную воду и добавлять к ней ингибиторы коррозии. Наличие в жидкости! минеральных компонентов в виде хлоридов и сульфатов во много раз увеличивает скорость протекания коррозии.

Вода в качестве охлаждающей жидкости. Как охлаждающая жидкость, вода удобна тем, что дешева, отличается xoрошей теплопроводностью, неогнеопасна и безвредна для здоровья человека. В то же время она имеет и много недостатков: низкая температура .кипения, высокая температура замерзания и способность вызывать коррозию металлов. Эти свойства ограничивают ее применение, особенно в зимний период эксплуатации автомобиля.

Хорошими ингибиторами коррозии для воды являются окисляющие вещества, такие как хроматы, бихроматы, нитриты (натрия, калия), вызывающие пассивацию металлов! В последнее время большой интерес вызывают польские силикатные ингибиторы, так называемые Силенали. Для систем охлаждения автомобильных двигателей рекомендуется применение Силеналя-S в количестве 4-6 г/дм3 воды. Использование в охлаждающих системах недистиллированной воды, кроме коррозии, вызывает накипь, которая затрудняет тепло-5 обмен и циркуляцию воды.

Низкозамерзающие охлаждающие жидкости. Концентрация .этиленгликоля в таких жидкостях колеблется в пределах 30-65% в зависимости от заданной температуры замерзания жидкости. Применение этих растворов вызывает электрохимическую коррозию металлов. Кроме того, во время работы двигателя этиленгликоль окисляется в низкомолекулярные органические кислоты, усиливающие общую коррозионную агрессивность жидкости. Чтобы этого избежать, в водные растворы этиленгликоля добавляются ингибиторы коррозии. Чаще всего это композиция нескольких ингибиторов, которые, дополняя друг друга, обеспечивают, комплексную защиту всех деталей системы охлаждения.

Применение ингибиторов коррозии в охлаждающих жидкостях необходимо для обеспечения долговечности двигателя путем сохранения чистоты поверхности стенок, что облегчает тепловой обмен, а также уменьшает коррозию внутренней поверхности элементов двигателя, особенно тонкостенных, а также стыков разных металлов, подвергающихся язвенной коррозии, являющейся часто причиной неплотности между системой охлаждения и цилиндрами двигателя. Применение ингибиторов необходимо также для защиты двигателя во время хранения.

В ПНР применяется охлаждающая жидкость двух видов: специальная жидкость с температурой замерзания ниже -40° С. Она содержит композицию ингибиторов коррозии, состоящую из двузамещенного фосфата натрия в количестве 2,5-3,5 г/дм3 и декстрина в количестве 1 г/дм3;

жидкость Борыго (красного цвета) с температурой замерзания -35°С, которая содержит буру в качестве ингибитора коррозии, а также ингибиторы окисления.

Обе жидкости имеют слабую щелочную реакцию, а примененные в их составе ингибиторы коррозии характеризуются большими возможностями нейтрализации продуктов окисления этиленгликоля. Не следует применять в водных растворах этиленгликоля ингибиторы типа хроматов и бихроматов, так как они окисляют этиленгликоль.

Ухудшение свойств охлаждающей жидкости при работе двигателя происходит вследствие:

накопления в жидкости кислых продуктов окисления этиленгликоля;

уменьшения концентрации ингибиторов; увеличения концентрации хлоридов и сульфатов, попадающих из случайных источников при восполнении испарившейся части воды. Содержание хлоридов свыше 0,0007% считается недопустимым;

образования во время работы двигателя осадка из карбонатов (в жесткой воде), а также из продуктов коррозии, образующихся в присутствии хлоридов и сульфатов.

Жесткая вода приводит к осаждению из жидкости, содержащей двузамещенный фосфат натрия, дополнительных осадков в виде фосфатов кальция и магния, вследствие чего происходит дальнейшее снижение концентрации ингибитора.

Коррозионная агрессивность охлаждающей жидкости испытывается путем определения концентрации ингибитора коррозии или же непосредственным испытанием на комплекте металлических пластин, подверженных действию исследуемой жидкости в определенных условиях. Например, для жидкости Борыго такое испытание проводится на пластинах из оловяно-свинцового сплава, чугуна, алюминия, латуни и меди, погруженных в жидкость при температуре 70°С. Испытание продолжается 336 ч. Коррозионная агрессивность жидкости оценивается по изменению массы пластин.

Улучшение эксплуатационных свойств охлаждающей жидкости, уже проработавшей некоторое время в двигателе, сводится к удалению шлама и загрязнений, а также к пополнению жидкости таким количеством свежего этиленгликоля, чтобы плотность жидкости при температуре 20°С составляла около 1,07. Содержание ингибиторов до уровня, требуемого нормативами, можно довести только в лабораторных условиях. Хранить жидкость следует только в стеклянных или стальных банках, а также в луженых или полиэтиленовых упаковках. Не следует употреблять для этих целей оцинкованные сосуды, так как жидкость вступает в реакцию с цинком.


форсунок в ультразвуковых ваннах и на стендах

для железнодорожного транспорта, сертифицированные ВНИИЖТ- "Фаворит К" и "Фаворит Щ", внутренняя и наружная замывка вагонов.

Применение антифризов в системах отопления, вентиляции, кондиционирования воздуха

В статье рассматриваются проблемы, которые возникают при использовании антифриза в качестве теплоносителя в автономных системах отопления и в качестве хладоносителя в системах вентиляции и кондиционирования воздуха.

Суровость российских зим диктует необходимость использовать в автономных системах отопления и в системах кондиционирования воздуха незамерзающие теплоносители – антифризы. Применение антифриза может привести к существенному снижению энергетических затрат и принести заметную экономическую выгоду при эксплуатации инженерного оборудования зданий. Так, системы охлаждения воздуха можно отключать в зимнее время без необходимости слива теплоносителя из вторичного контура чиллера. В загородных домах антифризы дают возможность применять прерывистый режим отопления и производить обогрев помещений только на время их использования.

Разновидности антифризов

Из существующих в природе жидкостей наилучшими физическими свойствами с точки зрения теплопередачи обладает, безусловно, вода. У нее наиболее высокая теплоемкость и теплопроводность, а также относительно низкая вязкость. Однако высокая температура кристаллизации 0 °C и уникальное свойство расширяться при замерзании делают воду непригодной для холодильных установок и систем, имеющих риск замерзания в зимних условиях. В связи с этим во многих случаях приходится использовать незамерзающие (низкозамерзающие) теплоносители – антифризы, которые могут функционировать при отрицательных рабочих температурах, а также практически не расширяются при замерзании.

Антифризами, которые принято использовать в качестве теплоносителей и хладоносителей, являются водные растворы этиленгликоля, пропиленгликоля, других гликолей, а также растворы некоторых неорганических и органических солей. По существу теплоносители и хладоносители выполняют одинаковую функцию, так как переносят тепло от «нагревателя» к «холодильнику», и их терминологическое различие носит условный характер. В дальнейшем будем использовать лишь один термин – теплоноситель.

Области применения низкозамерзающих теплоносителей различны и многообразны: системы отопления; системы кондиционирования воздуха, чиллеры; вторичные контуры холодильных установок, охлаждение ледовых полей; солнечные батареи; тепловые насосы; системы рекуперации тепла; охлаждение двигателей внутреннего сгорания; подогрев нефти и газа и многое другое.

В современной инженерной практике различные виды теплоносителей применяются в зависимости от назначения и диапазона рабочих температур, при которых они используются. Главное различие теплоносителей заключается в их основе (гликоле или соли), которая понижает температуру замерзания и определяет вязкость.

Солевые растворы применяются во вторичных контурах холодильных установок при отрицательных рабочих температурах, преимущественно при температурах ниже –20 °C. Это обусловлено их относительно малой вязкостью по сравнению с аналогичными теплоносителями на основе гликолей (рис. 1). Главным недостатком таких антифризов является высокая коррозионная активность, которая, однако, в значительной мере снижается при низких температурах.

Зависимость вязкости от температуры для различных типов теплоносителей. Концентрация всех низкозамерзающих теплоносителей соответствует одинаковой температуре замерзания –40 °C. Данные компании Arteco [1]

Растворы этиленгликоля и пропиленгликоля применяют при рабочих температурах от –20 °C до +130 °C. Хотя такие теплоносители при определенных концентрациях могут оставаться в жидкой фазе вплоть до температур порядка –70 °C, их применение в этой низкотемпературной области становится невозможным из-за непомерно высокой вязкости. По своим физическим характеристикам, таким как температура замерзания, теплоемкость, теплопроводность, вязкость, объемное расширение, теплоносители на основе этиленгликоля и пропиленгликоля достаточно близки [1]. При этом этиленгликоль во многих случаях оказывается предпочтительнее пропиленгликоля как с технической, так и с финансовой точки зрения. Объемы производства этиленгликоля в мире на порядок больше, чем пропиленгликоля, соответственно, его цена вдвое ниже. Однако у пропиленгликоля имеется одно неоспоримое преимущество – низкая токсичность. Поэтому его применяют на объектах, требующих повышенного уровня безопасности, например на пищевых производствах.

При высоких рабочих температурах, вплоть до +180 °C, применяются растворы триэтиленгликоля [3], благодаря его относительно высокой термостабильности. Такие продукты не являются предметом массового производства, их выпускают под заказ и они являются, образно говоря, экзотикой в ряду теплоносителей.

Поскольку формат данной статьи не позволяет осуществить полный обзор всех перечисленных выше теплоносителей, ограничим свое рассмотрение лишь теплоносителями на основе этиленгликоля в применении к системам отопления, вентиляции, кондиционирования. Именно этиленгликолевые теплоносители получили на сегодняшний день наиболее широкое распространение в инженерных системах зданий и сооружений.

Состав и свойства антифризов

Чтобы грамотно подойти к выбору теплоносителя, необходимо иметь элементарные знания о теплофизических характеристиках растворов этиленгликоля и других свойствах, которыми должны обладать эти продукты. Неправильный выбор антифриза и несоблюдение правил эксплуатации могут стать причиной множества проблем в процессе эксплуатации, вплоть до полного выхода системы из строя.

В состав антифризов входят базовые компоненты – вода и этиленгликоль, которые составляют 93–97% объема жидкости, остальное – присадки. Количественное соотношение «этиленгликоль – вода» определяет физические свойства теплоносителя: температуру кристаллизации и кипения, теплоемкость, теплопроводность, вязкость, объемное расширение и др. [2]. Однако «лицо» антифриза определяют присадки, как принято говорить, пакет присадок. От них зависят антикоррозионные и антикавитационные свойства антифриза, срок эксплуатации, стоимость. Именно по пакетам присадок отличаются друг от друга антифризы разных компаний-производителей: BASF, Arteco, DOW Chemical, Clariant и т.д.

Присадки выполняют принципиальную функцию при эксплуатации антифриза – защиту металлов от коррозии. Как показывают экспериментальные данные (табл.), скорость коррозии при отсутствии присадок на два порядка выше, чем при наличии присадок.

Коррозионный слой (ржавчина) на стенках каналов теплообменника становится изолятором тепла, т.к. имеет теплопроводность примерно в 50 раз меньшую, чем металл. Этот слой в разы снижает скорость теплопередачи, а следовательно, и эффективность теплообменной системы. Проблема усугубляется тем, что коррозионный слой сужает каналы теплообменников и увеличивает их гидравлическое сопротивление (гладкая прежде поверхность становится шершавой). Это ведет к уменьшению скорости движения теплоносителя и дополнительному снижению теплопередачи. В системах отопления коррозия приведет к тому, что значительная часть тепла будет «вылетать в трубу». В холодильных установках коррозия снижает холодопроизводительность и, соответственно, увеличивает энергетические затраты.

Из-за продуктов коррозии (частиц ржавчины), находящихся в теплоносителе, могут протечь (разгерметизироваться) подшипник циркуляционного насоса, засориться каналы теплообменников, отопительного котла. Запущенная коррозия может привести к протечкам теплообменников и даже к полному разрушению отдельных элементов системы.

Современные пакеты присадок способны эффективно защищать металлы теплообменных систем от коррозии и сохранять эти свойства в течение 10 и более лет.

Принципиальной ошибкой, которая, к сожалению, часто имеет место при заправке теплообменных систем, является использование водных растворов этиленгликоля (пропиленгликоля) без добавления в них пакета присадок. Иногда этому способствуют нечетко составленные инструкции по эксплуатации оборудования, в которых даются рекомендации только по концентрации гликоля и не упоминается о присадках. Подчеркнем, что теплоноситель должен содержать пакет присадок, причем максимально высокого качества. Мнимая экономия на присадках при эксплуатации приводит к несоизмеримо большим потерям, связанным с остановкой, демонтажом и заменой оборудования (рис. 2, 3).

Засорение фильтров продуктами коррозии в системе кондиционирования воздуха. В качестве теплоносителя использовался 30 %-ный водный раствор этиленгликоля без антикоррозионных присадок

Коррозия теплообменника. После двух лет эксплуатации в системе охлаждения произошла полная деградация теплоносителя и коррозионное разрушение теплообменников

Рекомендации по использованию антифризов

Антифризы реализуются либо в виде концентратов, либо в виде готовых к применению жидкостей. Концентрат антифриза содержит только один базовый компонент – этиленгликоль. Предполагается, что воду потребитель добавит самостоятельно, а оптимальное соотношение концентрата и воды составляет для наших широт 1: 2 по объему (рис. 4). Готовые к применению жидкости уже содержат нужное количество деминерализованной воды и, как правило, являются 44%-ными растворами концентрата с температурой замерзания –30 °C. Чтобы не снижать эффективности антикоррозионных присадок, рекомендуется использовать для разбавления антифризов дистиллированную или деминерализованную (фильтрованную) воду.

Зависимость температуры кристаллизации от концентрации этиленгликоля (антифриз Glythermin NF) в водном растворе. Данные компании BASF [3]

Антифриз предназначен исключительно для технического использования, поэтому нельзя допускать его попадания в пищевые продукты и в питьевую воду во избежание отравления. Опасной для жизни человека дозой при попадании в желудок считается 100 мл этиленгликоля. При случайном попадании антифриза на руки или на одежду он легко смывается водой, не оставляя раздражения или ожогов. Срок биологического разложения этиленгликоля в почве составляет порядка 1 мес. [1]. Этиленгликоль, растворенный в воде в концентрациях менее 1 г/л, не причиняет вреда рыбам и водным живым организмам [3].

Следует отметить, что антифриз имеет меньший, чем у воды, коэффициент поверхностного натяжения, поэтому легче проникает в мелкие поры, трещины. Кроме того, набухание резины в антифризе меньше, чем в воде. Поэтому в системах, длительное время работавших на воде, замена воды на антифриз может привести к появлению протечек, связанных с тем, что резиновые прокладки принимают первоначальный объем. Рекомендуется первые дни после заливки антифриза следить за состоянием соединительных узлов системы и при необходимости подтягивать их или менять уплотнения. Лучшей защитой от протечек являются хорошие прокладки и качественная сборка системы.

Срок службы антифриза зависит от режима его эксплуатации. Не рекомендуется доводить теплоноситель до состояния кипения (температура кипения при атмосферном давлении составляет +106…+116 °C в зависимости от степени разбавления водой). При локальном перегреве теплоносителя до температур, превышающих +170 °C, будет происходить термическое разложение этиленгликоля, образование нагара на нагревательных элементах, выделение газообразных продуктов разложения и разрушение антикоррозионных присадок. Поэтому в нагревательных котлах должна быть обеспечена надлежащая циркуляция теплоносителя, и нагревательные элементы в процессе работы должны быть полностью погружены в теплоноситель, чтобы не допускать их перегрева и «пригорания» антифриза. По существу, в теплообменных системах следует проводить предварительные тепловые расчеты на предмет установления возможности для данного теплоносителя обеспечивать необходимые тепловые потоки. При этом можно использовать табличные данные для параметров, входящих в уравнения подобия, таких как число Прандтля, число Рейнольдса [3, 4].

Еще одним важным аспектом применения антифризов является герметичность теплообменной системы. Известно, что этиленгликоль окисляется при контакте с атмосферным воздухом и процесс окисления ускоряется при повышении температуры – примерно вдвое на каждые 10 °C. Продукты окисления этиленгликоля – гликолаты – разрушают антикоррозионные присадки и приводят к усилению коррозии (рис. 3). Поэтому необходимо по возможности исключить контакт теплоносителя с воздухом, в частности, применять герметичные расширительные емкости.

Температура замерзания антифриза

В практике применения антифризов часто возникает вопрос о выборе температуры замерзания теплоносителя, который сводится к выбору концентрации антифриза в растворе (рис. 4). Повышенная концентрация, кроме удорожания, создает повышенную вязкость теплоносителя и снижает эффективность теплопередачи. Кроме того, не всякий насос способен перекачивать жидкость с вязкостью, в 2–3 раза превышающей вязкость воды. Выбор оптимальной концентрации теплоносителя важен как с технической, так и с финансовой точки зрения. Часто также возникает вопрос, что будет с теплообменной системой, если теплоноситель в ней замерзнет в результате штатной или нештатной ситуации.

В отличие от воды, водно-этиленгликолевый раствор и, соответственно, теплоноситель замерзает в несколько этапов. Вода замерзает «мгновенно» (разумеется, не по времени, а по температуре), то есть при 0 °C это еще жидкость, а при –1 °C – уже лед. Теплоноситель замерзает постепенно: в процессе охлаждения при некоторой отрицательной температуре в жидкости начинают образовываться кристаллы. Затем, при дальнейшем охлаждении жидкости, кристаллов в ней становится все больше и больше (это состояние называется «шуга», по-английски slush ice – что-то наподобие манной каши), и наконец, при некоторой более низкой конечной температуре эта шуга затвердевает.

Начальная температура образования кристаллов называется «температурой кристаллизации», по-английски freezing point (измеряется по ASTM D 1177). Конечная температура перехода из жидкого в твердое состояние называется «температурой потери текучести» или «температурой застывания», по-английски setting point (по DIN 51583) или pour point (по ASTM D 97).

Для антифризов с температурой кристаллизации –30 °C, которыми мы обычно пользуемся, разница между freezing point и setting point составляет около 8 °C. То есть антифриз, который начинает кристаллизоваться при –30 °C, затвердеет лишь при –38 °C (см. рис. 4). В промежутке между –30 и –38 °C он будет находиться в состоянии «манной каши» – более или менее густой.

В России при описании и тестировании антифризов обычно пользуются терминами «температура начала кристаллизации» (по ГОСТ 28084–89) или «температура кристаллизации» (по ГОСТ 18995.5, совпадает с ASTM D 1177). В Европе, однако, чаще используют понятие «температура защиты от замерзания», по-английски frost protection. Она определяется как среднее арифметическое между «температурой кристаллизации» и «температурой застывания». На наш взгляд, именно frost protection наиболее адекватно характеризует температуру замерзания антифриза, т.к. это середина фазового перехода из жидкости в твердое тело.

Здесь необходимо отметить еще один принципиальный момент. В отличие от воды, которая при замерзании расширяется в объеме на 9% и рвет трубы, антифриз при замерзании не размораживает теплообменную систему. Водно-этиленгликолевый раствор при переходе из жидкости в твердую фазу расширяется весьма незначительно. Как видно из графика на рис. 5, теплоноситель (HTF) с концентрацией этиленгликоля 40% при замерзании (температура замерзания около –30 °C) расширяется в объеме лишь на 1,5%. Соответственно, его линейное расширение составит всего 0,5%, а это безопасно практически для любых конструкционных материалов.

Изменение объема антифриза при замерзании. Данные компании DOW Chemical [2]

Таким образом, при сильных холодах не следует опасаться серьезных последствий (трещин или протечек) от антифриза, замерзшего в системе. Антифриз превратится в застывшую «манную кашу», а при ослаблении холодов снова станет жидким.

Производители антифризов

Мировыми лидерами в разработке и производстве теплоносителей на сегодняшний день являются компании DOW Chemical (США) [2], Arteco (Бельгия) [1], BASF (Германия) [3], Clariant (Швейцария) [4]. Эти компании разработали лучшие современные пакеты присадок и производят на их основе теплоносители под брендами Dowtherm, Ucartherm (DOW); Zitrec (Arteco); Glythermin (BASF); Antifrogen (Clariant). Наиболее продвинутыми в этой области являются так называемые карбоксилатные технологии [5], обладающие высокотемпературной стабильностью и максимальной долговечностью.

В России, к сожалению, отсутствуют собственные разработки пакетов присадок, отвечающие мировому уровню. По-видимому, это связано с отсутствием адекватной научной базы, специалистов и вообще социального заказа на такие разработки. Отечественные теплоносители, которые присутствуют на российском рынке, являются, по сути, морально устаревшим тосолом или его модификациями. Как правило, такие продукты изготавливаются по так называемой традиционной технологии [5], соответствующей ГОСТ 28084–89 для автомобильных охлаждающих жидкостей, производившихся в СССР.

Некоторые российские предприятия кооперируются с ведущими зарубежными компаниями и производят продукцию, разработанную этими компаниями и широко применяемую в мире. При этом используются российские базовые сырьевые компоненты и производственные мощности, а из-за рубежа поступают пакеты присадок и технология производства.

В заключение следует сказать, что применение антифризов в системах отопления, вентиляции, кондиционирования имеет широкие перспективы, и российский рынок низкозамерзающих теплоносителей постоянно расширяется и совершенствуется.

Автор готов ответить на вопросы читателей, связанные с тематикой настоящей статьи.

Преимущества водно-гликолевых растворов с карбоксилатными ингибиторами коррозии

Водно-гликолевая смесь является универсальным теплоносителем, который отлично зарекомендовал себя в инженерных и климатических системах жилых, общественных и производственных объектов. Высокая теплопроводность, низкая вязкость, длительный срок эксплуатации (до 10 лет при выполнении рекомендаций производителя) – основные преимущества готовых смесей. Ключевым недостатком водно-гликолевых растворов считается коррозионная активность: высокая у раствора этиленгликоля и более низкая у раствора пропиленгликоля.

Для подавления коррозионной активности производители теплоносителей вводят в состав специальные присадки. Наиболее распространены ингибиторы коррозии на основе неорганических соединений: аминов, силикатов, фосфатов, нитритов и т.д.

Виды водно-гликолевых растворов

В качестве промышленного теплоносителя чаще всего используется водный раствор этиленгликоля. Смесь обладает высокими теплофизическими характеристиками и низкой вязкостью, чтобы не создавать дополнительную нагрузку на насосное оборудование. Температура замерзания раствора зависит от концентрации спирта и носит нелинейный характер. Именно по этой причине для изготовления готовых теплоносителей не используют высококонцентрированные растворы: условия эксплуатации позволяют обойтись концентрацией от 36% до 65%. Температура замерзания при этом достигает – 60 градусов.


Пропиленгликоль обладает большей вязкостью и стоит дороже, зато экологически безопасен и может применяться даже в климатических системах с открытым контуром. Для изготовления промышленных теплоносителей применяются растворы с объемной концентрацией 35-55%. Температура замерзания – 45 градусов.

Зависимость температуры замерзания от концентрации гликоля

Основное вещество в растворе теплоносителя Концентрация, в % Температура замерзания, °С
Этиленгликоль 65 -60
60 -50
54 -42
50 -35
40 -25
36 -20
Пропиленгликоль 55 -45
45 -30
40 -25
35 -20

Специфика процесса коррозии

По химической природе гликоли – спирты, химически активные вещества, способные выступать в качестве растворителей, что проявляется в их агрессивности по отношению к эластомерам (резинотехническим изделиям и пластикам), и так же в способности вступать реакции с металлами, чем обусловлена их агрессивность по отношению к материалам трубопроводов, радиаторов и др. узлов систем циркуляции.

Это приводит к окислению и порче металла. Материал труб истончается, под воздействием высокого давления прорывается, что ведет к полной разгерметизации системы. Кроме того, продукты коррозии постепенно засоряют трубы изнутри, уменьшая проводимость и ухудшая теплофизические свойства теплоносителя.

Ситуация усугубляется тем, что чистый раствор гликоля циркулирует в условиях высокой температуры, что только ускоряет коррозионные процессы. Повышение температуры на 10 градусов увеличивает скорость химических реакций вдвое, т.е. коррозия развивается в геометрической прогрессии с постепенным увеличением температуры рабочего раствора.


Недостатки растворов с неорганическими ингибиторами коррозии

Добавляемые в раствор теплоносителя неорганические присадки (комплекс боратов и нитратов или фосфатов) обладают высокими антикоррозионными свойствами, но в условиях высокой температуры и интенсивного теплового потока быстро приобретают гелеобразную консистенцию, которая со временем способна закупорить трубы.

Еще один серьезный недостаток – химическая природа неорганических ингибиторов коррозии. Они образовывают на внутренней поверхности труб защитный слой толщиной до 1000 Ангстрем. Это заметно снижает способность рабочей среды проводить тепло. Чтобы добиться нужной температуры, приходится все время эксплуатировать котел и насосное оборудование в экстремальном режиме. Это ведет к быстрому износу, поломкам, простою и внушительным расходам на ремонт. Срок действия таких присадок незначительный – до полутора лет.

Свойства и преимущества карбоксилатов

Как показали исследования, проблему защиты отопительного и охладительного оборудования инженерных систем решают антифризы на основе раствора гликолей с добавкой пакета карбоксилатных ингибиторов коррозии. В состав присадок входят соли моно- и дикарбоновых кислот, отсутствуют традиционные компоненты: фосфаты, нитраты, бораты и т.д.

Ингибиторы коррозии нового поколения действуют по-иному: при взаимодействии теплоносителя с поверхностью оборудования и трубопроводом образуется тончайшая защитная пленка (50 Ангстрем, что в 20 раз меньше силикатных аналогов). Расходование активного вещества происходит лишь в том случае, когда в системе возникает очаг коррозии, что позволяет существенно продлить срок эксплуатации теплоносителя.

Принцип действия карбоксилатных ингибиторов коррозии

В сравнении с другими видами теплоносителей водно-гликолевая смесь с пакетом карбоксилатных антикоррозионных присадок обладает следующими эксплуатационными преимуществами:

  • Высокая теплопроводность;
  • Надежная защита от коррозии цветных и черных металлов;
  • Длительный срок эксплуатации (рекомендуемый производителем период использования 5-10 лет);
  • Широкие диапазоны рабочих температур.

*ВНИМАНИЕ! В связи с колебанием рыночных цен на сырье, указанные на сайте цены на текущий момент могут быть не актуальны. Уточняйте цены у менеджеров по запросу.
Цена не является публичной офертой. Указанная средняя стоимость носит информационный характер.

Особенности заказа теплоносителя в компании «ТЕХНОФОРМ»

Для максимального удовлетворения потребительского спроса на качественные и эффективные антифризы опытные специалисты работают над усовершенствованием физических свойств и состава растворов гликоля. В качестве антикоррозионных присадок используются проверенные временем ингибиторы карбоксилатного типа от бельгийского концерна Arteco – одного из признанных лидеров на европейском рынке. В результате нам удалось получить совершенный продукт, который отлично подходит для регулярного использования в отопительных и климатических системах. Рекомендуемый срок эксплуатации достигает 10 лет, что позволяет существенно сэкономить на приобретении и использовании теплоносителя.

Для того чтобы водно-гликолевая смесь с пакетом присадок сохраняла свои рабочие характеристики на протяжении всего срока эксплуатации, необходимо уделять должное внимание контролю над состоянием антифриза. Оптимальный вариант – заказ услуги мониторинга у производителя. От клиента требуется своевременно отбирать пробы рабочей жидкости из инженерной системы, а специалисты компании «ТЕХНОФОРМ» лабораторным путем определят реальные физические характеристики водно-гликолевого раствора и сравнят их с рекомендуемыми.

Вам могут быть интересны следующие товары

НаименованиеЦена за кг, руб. с НДСПокупка
Раствор этиленгликоля от 37,65 руб./кг Заказать
Раствор пропиленгликоля от 37,65 руб./кг Заказать
Котловая вода от 33,25 руб./кг Заказать

Вам могут быть интересны услуги

НаименованиеЗаказ
Комплексное обслуживание Заказать
Замена теплоносителя Заказать

ПРИ ПРОИЗВОДСТВЕ НАШЕЙ ПРОДУКЦИИ ИСПОЛЬЗУЮТСЯ ТОЛЬКО КОМПОНЕНТЫ ВЫСОКОГО КАЧЕСТВА, А ТАКЖЕ ОБОРУДОВАНИЕ ОТ ВЕДУЩИХ ПРОИЗВОДИТЕЛЕЙ.

Влияние концентрации на температуру кристаллизации и прочие рабочие свойства теплоносителя


Обычная вода обладает такими теплофизическими свойствами, которые позволяют отнести ее к идеальным теплоносителям. Это высокая теплопроводность и теплоемкость, оптимальная вязкость, невысокая цена. Все вышеперечисленные преимущества перекрываются следующими недостатками: высокой температурой кристаллизации, высоким коэффициентом объемного расширения, коррозионной активностью. Именно по этим причинам в системах промышленного кондиционирования и на объектах с автономными системами отопления важно применять рабочие жидкости с температурой замерзания заметно ниже нуля. Такими свойствами обладают только низкотемпературные теплоносители – антифризы.

1.1.Что может выступать в качестве антифриза?

За последние годы рынок промышленных теплоносителей с низкими температурами кристаллизации заметно расширился. С него практически исчезли неэффективные и небезопасные составы (наиболее яркий пример – глицерин, который обладает большей вязкостью (в сравнении с МЭГ) и выделяет предельно токсичное соединение - акролеин). Эти продукты вытеснили высокотехнологичные гликолевые антифризы с пакетом антикоррозионных присадок.

Каждый из составов, выпускаемых отечественными или зарубежными производителями, имеет ряд особенностей и отличительный свойств, но все они базируются на одной основе – водном растворе этилен- или пропиленгликоля. Они обладают следующими теплофизическими свойствами:

  • Теплопроводность и теплоемкость раствора гликоля ниже, чем у воды, причем показатель уменьшается со снижением рабочей температуры в отрицательной зоне на 20 %.
  • Динамическая и кинематическая вязкость в сравнении с водой выше в 4-5 раз в зоне положительных рабочих температур и в 10-15 раз выше при понижении температуры до порога кристаллизации. В отличие от воды, раствор гликоля не образует прочную кристаллическую решетку, а переходит в вязкое, кашеообразное состояние.

Вышеперечисленные факторы могут привести к возникновению непредвиденных и исключительных ситуаций при эксплуатации инженерных систем в условиях резкой смены климатического режима. По этой причине важно учитывать все нюансы как при проектировании систем промышленного кондиционирования и охлаждения, так и при выборе концентрации антифриза.

1.2.Концентрация раствора этиленгликоля и рабочие параметры его водной смеси

DensityFromTempEthylenglycol.jpg

Ключевой теплофизический параметр рабочей смеси на основе водно-гликолевой смеси – это зависимость температуры кристаллизации раствора от его концентрации. Данная зависимость не носит линейный характер. Так, предельно низкая температура замерзания раствора (65 градусов ниже нуля) наблюдается при объемной концентрации раствора в 65 %. По мере повышения концентрации до 98 % увеличивается и температура замерзания. У практически чистого этиленгликоля (98 %) она составляет 13 градусов ниже нуля. С экономической точки зрения нецелесообразно производить и тем более применять водные растворы этиленгликоля с объемной концентрацией свыше 65 %.

Незначительное уменьшение концентрации гликоля с одной стороны, влечет за собой повышение температуры замерзания, а с другой – улучшает эксплуатационные характеристики раствора – теплопроводность и теплоемкость. Менее концентрированный раствор обладает уменьшенной вязкостью, что улучшает прокачиваемость жидкости и снижает нагрузки на конструкционные узлы системы.

1.jpg

1.3.Зависимость температуры замерзания раствора пропиленгликоля от его концентрации в растворе

При анализе свойств раствора пропиленгликоля наблюдается аналогичная картина: нелинейный характер зависимости, которая выражается в изменении температуры замерзания с повышением концентрации в растворе. Практический минимум в 58 градусов ниже нуля наблюдается при концентрации в 70 %. С ее увеличением температура кристаллизации раствора резко не увеличивается, а остается практически неизменной. В связи с этим использовать раствор пропиленгликоля более высокой концентрации, чем 70 %, экономически невыгодно, что отражается и на объемах производства в России и других странах мира.

2.jpg

Водный раствор пропиленгликоля с концентрацией 45 % имеет температуру кристаллизации 30 градусов ниже нуля, что достаточно для использования в регионах с умеренным климатом. Теплофизические характеристики смеси приведены в таблице

1.4.Выбираем оптимальную концентрацию

При выборе антифриза необходимо учитывать описанный ранее нелинейный характер зависимости между объемной концентрацией основного вещества в растворе и температурой его замерзания. Оптимальный вариант – это обеспечение максимальной отрицательной рабочей температуры с запасом примерно в 3 градуса. Если не брать в качестве примера единичные промышленные объекты с особыми условиями эксплуатации, то максимально допустимая концентрация основного вещества в гликолевых тепло- и хладоносителях для реальных климатических систем имеет строгие пределы. Они устанавливаются с учетом влияния температуры кристаллизации на эксплуатационные характеристики инженерного оборудования:

  • Для этиленгликолевых антифризов – 65 %-ый раствор с температурой начала кристаллизации 65 градусов ниже нуля;
  • Для пропиленгликолевых антифризов – 55 %-ый раствор с температурой замерзания 40 градусов ниже нуля.

Статистика показывает, что в условиях ЦФО РФ с его умеренным климатом около 25 % промышленных объектов ориентируются на температуру кристаллизации в – 25 градусов, а 75 % объектов и инженерных систем – на – 30 градусов.

Если выбирать между антифризами на основе растворов этилен- и пропиленгликоля, то этиленгликолевые составы более теплопроводны и теплоемки, что позволяет использовать радиаторы и теплообменники меньшего размера. Этиленгликоль имеет меньшую вязкость, которая снижает гидродинамические потери оборудования, но в силу токсичности обладает ограниченной сферой применения. Пропиленгликоль примерно в полтора раза дороже, имеет большую вязкость, зато полностью безопасен, что делает возможным применение антифризов на его основе в медицинских учреждениях и на пищевых производствах.

Этиленгликоль (моноэтиленгликоль)

Этиленгликоль (альтернативные названия – диоксиэтан, этандиол, моноэтиленгликоль) – представитель двухатомных спиртов. Химическая формула вещества – С2H6О2. Внешне это бесцветная прозрачная жидкость без запаха. По общепринятой международной классификации отнесен к третьему классу опасности. Употребление внутрь 100 мл этиленгликоля смертельно для человека. Пары диоксиэтана токсичны, попадание в чистом виде или в водном растворе опасно для здоровья и жизни.

Физические свойства этиленгликоля

этиленгликоль

  • Молярная масса – 62 грамма/моль;
  • Температура воспламенения зависит от концентрации: 112-124 градуса;
  • Коэффициент оптического преломления – 1,4318;
  • Температура самовоспламенения – 380 градусов;
  • Температура замерзания чистого гликоля – минус 22 градуса;
  • Температура кипения – 197,3 градуса;
  • Плотность – 1,111 грамма на кубический сантиметр.

Физические и теплофизические свойства вещества зависят от концентрации в растворе. Высококонцентрированный гликоль выдерживает нагрев до высокой температуры, поэтому он подходит для теплоносителей инженерных систем. Низкая температура кристаллизации (достигает нижних пределов в 65 градусов ниже нуля примерно при 40 % в растворе) позволяет использовать диоксиэтан в качестве сырья для антифризов систем охлаждения.

История и современное производство

Этиленгликоль впервые синтезировал французский химик Вюрц в середине XIX века. Сырьем для получения гликоля стал сначала диацетат, а затем – этиленоксид. Первоначально синтезированное вещество не получило практического применения. Спустя 50 лет этиленгликоль активно использовали при производстве взрывчатых веществ. Низкая себестоимость производства, высокая плотность, подходящие физические характеристики позволили вытеснить глицерин, служивший для изготовления взрывчатки.

В промышленных масштабах двухатомный спирт начали производить в 20-ых годах прошлого столетия в США. Американские специалисты спроектировали и построили завод в Западной Вирджинии и наладили массовое изготовления гликоля. На протяжении долгих лет его закупали практически все крупные компании, специализирующиеся на изготовлении динамита.

Сегодня этиленгликоль в промышленных масштабах синтезируется в ходе гидратации этилена двумя способами:

  • С применением низкоконцентрированной серной или ортофосфорной кислот при давлении в 1 атмосферу и температуре 50-100 градусов;
  • Под давлением в 10 атмосфер и температуре в 200 градусов.

На выходе получается смесь, содержащая до 90 процентов чистого высококонцентрированного этиленгликоля. Побочные продукты реакции – полимергомологи и триэтиленгликоль, нашли широкое применение в промышленности. Системы охлаждения воздуха, производство пластификаторов и препаратов для дезинфекции – наиболее популярные сферы использования.

Применение этиленгликоля в промышленности

  • Реакции органического синтеза. Гликоль обладает высокой химической активностью, поэтому используется в качестве растворителя, средства защиты изофорона и карбонильных групп. Спирт не кипит при высоких температурах, за чет чего подходит для специальной авиационной жидкости. Полученный продукт снижает обводнение горючих смесей и повышает эффективность топлива для самолетов и вертолетов.
  • Растворитель для красящих соединений.
  • Производство взрывчатого вещества – нитрогликоля (более дешевый и доступный аналог нитроглицерина).
  • Газодобывающая отрасль. Этиленгликоль исключает образование гидрата метана на трубах и поглощает излишнюю влагу.
  • Криопротекция. Вещество активно используется при производстве жидкостей для охлаждения компьютерной и цифровой техники, изготовлении конденсаторов и получении 1,4-диоксина.

Охлаждающие жидкости на основе этиленгликоля

Двухатомный спирт используется при изготовлении антифризов для охлаждающих систем двигателя, теплоносителей инженерных систем отопления и кондиционирования воздуха. Раствор с деминерализованной водой и пакетом антикоррозионных присадок обладает антикавитационными и антипенными свойствами.

Преимущество этиленгликоля – низкая температура кристаллизации в сравнении с водой. Даже при достижении точки замерзания гликоль имеет более низкий коэффициент температурного расширения в сравнении с водой (на 1,5-3 % меньше). Высокая температура кипения позволяет использовать водно-гликолевую смесь в экстремальных производственных условиях, при подогревании нефти и газа и других технологических процессах.

Читайте также: