Элементарная классическая теория электропроводности металлов

Обновлено: 20.01.2025

§ 102. Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристалличе­ской решетки металла. Это представление о природе носителей тока в металлах осно­вывается на электронной теории проводи­мости металлов, созданной немецким фи­зиком П. Друде (1863—1906) и разрабо­танной впоследствии нидерландским фи­зиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов — опыт Рикке (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндров (Сu, Аl, Сu) одинакового ради­уса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (3,5•10 6 Кл), ни­каких, даже микроскопических, следов пе­реноса вещества не обнаружилось. Это явилось экспериментальным доказательст­вом того, что ионы в металлах не участву­ют в переносе электричества, а перенос заряда в металлах осуществляется части­цами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856—1940) электроны. Для доказательства этого предполо­жения необходимо было определить знак и величину удельного заряда но­сителей (отношение заряда носителя к его массе). Идея подобных опытов за­ключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы дол­жны по инерции смещаться вперед, как

смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно опреде­лить знак носителей тока, а зная размеры и сопротивление проводника, можно вы­числить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат советским физи­кам С. Л. Мандельштаму (1879—1944) и Н. Д. Папалекси (1880—1947). Эти опыты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881 —1948) и ранее шотландским физиком Б. Стюартом (1828—1887). Ими экспериментально доказано, что носители тока в металлах заряжены отрицательно, а их удельный заряд приблизительно оди­наков для всех исследованных металлов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удель­ного заряда и массы носителей тока и электронов, движущихся в вакууме, со­впадали. Таким образом, было оконча­тельно доказано, что носителями электри­ческого тока в металлах являются свобод­ные электроны.

Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристалличе­ской решетки металла (в результате сбли­жения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от ато­мов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решет­ки, в результате чего устанавливается тер-

модинамическое равновесие между элек­тронным газом и решеткой. По теории Друде — Лоренца, электроны обладают такой же энергией теплового движения, как и мо­лекулы одноатомного газа. Поэтому, при­меняя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

которая для T=300 К равна 1,1•10 5 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возник­новению тока.

При наложении внешнего электриче­ского поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Сред­нюю скорость упорядоченного движе­ния электронов можно оценить согласно формуле (96.1) для плотности тока: j=ne. Выбрав допустимую плотность тока, например для медных проводов 10 7 А/м 2 , получим, что при концентрации носителей тока n=8•10 28 м -3 средняя скорость (v) упорядоченного движения электронов равна 7,8•10 -4 м/с. Следова­тельно, , т. е. даже при очень больших плотностях тока средняя ско­рость упорядоченного движения электро­нов, обусловливающего электрический ток, значительно меньше их скорости теплово­го движения. Поэтому при вычислениях результирующую скорость ( +) можно заменять скоростью теплового дви­жения .

Казалось бы, полученный результат противоречит факту практически мгновен­ной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью с (с=3•10 8 м/с). Через время t=l/c (l длина цепи) вдоль цепи установится стационарное электри­ческое поле и в ней начнется упорядо­ченное движение электронов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыка­нием.

Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т.е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости металлов, созданной немецким физиком П. Друде и разработанной впоследствии нидерландским физиком Х. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов - опыт Рикке (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндров (Cu, Al, Cu) одинакового радиуса. Несмотря на то, что общий заряд, прошедший через эти цилиндры, достигал огромного значения ( Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытие в 1897 г. английским физиком Д. Томсоном электроны.

Для доказательства этого предположения необходимо было определить знак и величину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Эти опыты в 1916 г. были проведены американским физиком Р. Толменом и шотландским физиком Б. Стюартом. Ими экспериментально доказано, что носители тока в металлах заряжены отрицательно, а их удельный заряд приблизительно одинаков для всех исследованных металлов. По значению удельного заряда носителей электрического тока и по определенному ранее элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока в металлах и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны.

Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от атомов металла, становятся "свободными" и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде-Лоренца, электроны обладают такой же энергией теплового движения, как и молекулы одноатомного газа.

Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т.е. возникает электрический ток.

Даже при очень больших плотностях тока средняя скорость упорядоченного движения электронов, обуславливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость можно заменять скоростью теплового движения .

1. Закон Ома.Пусть в металлическом проводнике существует электрическое поле напряженностью Е=const. Со стороны поля заряд e испытывает действие силы F=eE и приобретает ускорение . Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость

где - среднее время между двумя последовательными соударениями электрона с ионами решетки.

Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с ионами решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона

Классическая теория металлов не учитывает распределения электронов по скоростям, поэтому среднее время свободного пробега определяется средней длиной свободного пробега < >и средней скоростью движения электронов относительно кристаллической решетки проводника, равной + ( - средняя скорость теплового движения электронов). Так как << ,

Подставив значение в формулу (9.5.1.), получим

Плотность тока в металлическом проводнике

откуда видно, что плотность тока пропорциональна напряженности поля, т.е. получили закон Ома в дифференциальной форме. Коэффициент пропорциональности между j и Е есть не что иное, как удельная проводимость материала

которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.

Закон Джоуля - Ленца.

К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию

При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т.е. на его нагревание.

За единицу времени электрон испытывает с узлами решетки в среднем столкновений:

Если n - концентрация электронов, то в единицу времени происходит n столкновений и решетке передается энергия

которая идет на нагревание проводника. Подставив (9.5.3.) и (9.5.4.) в (9.5.5.), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,

Величина w называется удельной тепловой мощностью тока. Коэффициент пропорциональности между w и по (9.5.2.) есть удельная проводимость ; следовательно, выражение (9.5.6.) - закон Джоуля - Ленца в дифференциальной форме.

Классическая теория электропроводности металлов объяснила законы Ома и Джоуля - Ленца, а также дала качественное объяснение закона Видемана - Франца. Однако она помимо рассмотренных противоречий в законе Видемана - Франца столкнулась еще с рядом трудностей при объяснении различных опытных данных. Рассмотрим некоторые из них.

Температурная зависимость сопротивления.Из формулы удельной проводимости (9.5.2.) следует, что сопротивление металлов, т.е. величина, обратно пропорциональная , должна возрастать пропорционально (в (9.5.2.) n и < >от температуры не зависят, а ~ ). Этот вывод электронной теории противоречит опытным данным, согласно которым R~T.

Оценка средней длины свободного пробега электронов в металлах.Чтобы по формуле (9.5.2.) получить , совпадающие с опытными значениями, надо принимать < >значительно больше истинных, иными словами, предполагать, что электрон проходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде-Лоренца.

Теплоемкость металлов.Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т.е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Согласно закону Дюлонга и Пти, теплоемкость одноатомного кристалла равна 3R. Учтем, что теплоемкость одноатомного электронного газа равна . Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т.е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электронной теорией.

Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла - Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной теории электропроводности металлов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой теорией простой и наглядной.

Классическая теория электропроводности металлов

5.1. Классическая теория электропроводности металлов.

5.2. Вывод закона Ома и закона Джоуля - Ленца.

5.3. Недостатки классической теории электропроводности металлов.

Классическая теория электропроводности металлов

Любая теория считается законченной, только если в ней прослежен путь от элементарного механизма явления до найденных в ней макросоотношений, использующихся в технической практике. В данном случае неодолимо было связать особенности упорядоченного движения свободных зарядов в проводнике (электропроводимость) с основными законами электрического тока. Прежде всего необходимо было выяснить природу носителей тока в металлах. Основополагающими в этом смысле явились опыты Рикке 1 , в которых в течение длительного времени ( год) ток пропускался через три последовательно соединенных металлических цилиндра (Сu, А1, Сu) одинакового сечения с тщательно отшлифованными притертыми торцами. Через эту цепь протек огромный заряд (≈ 3,5·10 6 Кл). Несмотря на это, не было обнаружено никаких (даже микроскопических) следов переноса вещества из цилиндра в цилиндр (что подтверждалось тщательным взвешиванием). Отсюда был сделан вывод, что в металлах в процессе переноса электрического заряда участвуют какие-то частицы, общие (одинаковые) для всех металлов.

Природу таких частиц можно было определить по знаку и величине удельного заряда (отношения заряда носителя к его массе) - параметру индивидуальному для любой из известных сегодня микрочастиц. Идея такого эксперимента заключается в следующем: при резком торможении металлического проводника слабо связанные с решеткой носители тока должны по инерции смещаться вперед. Результатом такого смещения является импульс тока, а по направлению тока можно определить знак носителей и, зная размеры и сопротивление проводника, можно вычислить и удельный заряд носителей. Такие эксперименты дали значения отношения , что совпало с удельным зарядом электронов. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны. При образовании кристаллической решетки металла (при сближении изолированных атомов) слабо связанные с ядрами валентные электроны отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны.

Основоположники классической теории электропроводности металлов Друде 2 и Лоренц 3 впервые показали, что любое множество невзаимодействующих микрочас-

[1] Рикке Карл Виктор Эдуард (1845 – 1915), немецкий физик

2 Друде Пауль Карл Людвиг (1863 – 1906), немецкий физик

3 Лоренц Хендрик Антон (1853 – 1928), нидерландский физик-теоретик

тиц (в том числе свободные электроны в металле) можно рассматривать как идеальный газ, то есть к свободным электронам в металле применимы все выводы молекулярно-кинетической теории.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между идеальным газом свободных электронов и решеткой. Среднюю скорость свободных электронов можно найти в соответствии с выражением для средней арифметической скорости хаотического теплового движения молекул идеального газа (см. формулу (8.26) в лекции 8, часть I):

которая при комнатных температурах (Т ≈ 300 К) дает u> = 1,1·10 5 м/с.

При наложении внешнего электрического поля на проводник кроме теплового движения электронов возникает и их упорядоченное движение, то есть электрический ток. Среднюю скорость упорядоченного движения электронов - v> можно определить согласно (4.4). При максимально допустимой плотности тока в реальных проводниках (≈ 10 7 А/м 2 ) количественная оценка дает v> ≈ 10 3 -10 4 м/с. Таким образом, даже в предельных случаях средняя скорость упорядоченного движения электронов (обуславливающего электрический ток) значительно меньше их скорости хаотического теплового движения (v> << u>). Поэтому при вычислениях результирующей скорости можно считать, что (v> + u>) ≈ u>. Выше уже отмечалось, что конечной целью классической теории электропроводности металлов является вывод основных закономерностей электрического тока, исходя из рассмотренного элементарного механизма движения носителей тока. В качестве примера, рассмотрим, как это было сделано, при выводе закона Ома в дифференциальной форме.

Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы.

Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою.

Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение.

Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе.



Классическая теория электропроводности

Классическая теория электропроводности объясняет различные свойства вещества существованием и движением в нем электронов, а сами электроны проводимости рассматриваются как электронный газ, подобный идеальному одноатомному газу. При этом предполагается, что движение электронов подчиняется законам классической механики Ньютона.

Взаимодействием электронов между собой пренебрегают и считают, что они взаимодействуют только с положительными ионами решетки. По этой теории электронный газ должен подчиняться законам идеального газа. Согласно закону равномерного распределения энергии по степеням свободы, на один электрон приходится средняя кинетическая энергия теплового движения

гдеk– постоянная Больцмана, Т – температура.

При тепловом движении электроны испытывают соударения. Путь, проходимый электронами между двумя последовательными соударениями, называют длиной свободного пробега .

Предполагается, что при каждом соударении электрон полностью передает свою энергию ионам решетки и начальная скорость последующего движения электрона равна нулю.

Если по проводнику течет постоянный ток, то внутри проводника существует электрическое поле напряженностью Е. На каждый электрон со стороны электрического поля действует сила F= еЕ, где е – заряд электрона. Под действием этой силы электрон приобретает ускорение а, которое можно определить из равенства mea = еЕ, откуда

а = E

(me масса электрона)

Если - [U2] среднее время между двумя последовательными соударениями, то к концу свободного пробега электрон приобретает скорость = E . Средняя скорость упорядоченного движения электронов

(начальная скорость полагается равной нулю, поэтому движение считается равноускоренным).

Среднее время между двумя последовательными соударениями можно определить, если знать длину свободного пробега и среднюю скорость теплового движения :

Вообще, t , но соотношение (4.3) справедливо, так как

Подставив из формулы (4.3) в формулу (4.2) получим

Известно, что плотность j тока в проводнике пропорциональна концентрации n свободных электронов в нем и скорости их движения

Подставив (4.4) в (4.5), получим

–[U3] удельная проводимость материала проводника (величина, обратная его удельному сопротивлению).

Из выражения (4.6), представляющего закон Ома, следует: плотность тока пропорциональна напряженности электрического поля, что совпадает с законом Ома в дифференциальной форме.

Из формулы (4.6) легко получить закон Ома в виде I = U / R, для этого ее правую и левую части надо умножить на S – площадь поперечного сечения проводника. Учитывая, что E = U / I (поле внутри проводника считаем однородным); следовательно,

На основании электронной теории электропроводимости металлов можно объяснить зависимость сопротивления проводников от температуры. С повышением температуры его удельное сопротивление увеличивается, а электропроводимость уменьшается. Анализируя выражение (4.7), видим, что электропроводимость пропорциональна концентрации n электронов проводимости и средней длине свободного пробега , т.е. чем больше длина свободного пробега , тем меньшую помеху для упорядоченного движения электронов представляют соударения. Электропроводимость обратно пропорциональна средней тепловой скорости движения. Тепловая скорость при повышении температуры возрастает пропорционально что приводит к уменьшению электропроводимости и увеличению удельного сопротивления проводников. Анализируя формулу (4.7) можно, кроме того, объяснить зависимость и от рода проводника.

На основании классической электронной теории проводимости металлов можно объяснить закон Джоуля – Ленца.

Упорядоченное движение электронов происходит под действием сил поля. Как было сказано выше, будем считать, что в момент соударения с положительными ионами кристаллической решетки электроны полностью передают ей свою кинетическую энергию. К концу свободного пробега скорость электрона , а кинетическая энергия

Мощность, выделяемая единицей объема металла (плотность мощности), равна произведению энергии одного электрона на число соударений в секунду l и на концентрацию n электронов:

Учитывая (4.7) имеем

– закон Джоуля – Ленца в дифференциальной форме.

Классическая электронная теория оказалась бессильной объяснить ряд экспериментальных фактов.

Из опыта известно, что удельное сопротивление металлов в широком температурном интервале пропорционально абсолютной температуре (ρ ~ Т), в то время как электронная теория предсказывает иную зависимость ρ отТ, а именно ρ ~ .

По классической электронной теории атомная теплоемкость диэлектриков должна быть в 1,5 раз меньше, чем атомная теплоемкость металлов. Однако опытный закон Дюлонга и Пти показывает, что атомная теплоемкость всех одноатомных кристаллов (и диэлектриков, и металлов) составляет приблизительно 3R, где R –универсальная газовая постоянная.

По классической электронной теории атомная теплоемкость металлов будет складываться из теплоемкости решетки (3R) и теплоемкости электронного газа ( ):

( = 3R + = .

Следовательно, опытные данные показывают, что при нагревании металлов энергия теплового движения свободных электронов практически не изменяется, т.е. электроны не участвуют в накоплении сообщаемой проводнику энергии. Всю сообщаемую проводнику энергию аккумулирует кристаллическая решетка

Для объяснения электропроводности металлов в классической электронной теории было сделано предположение, что электроны свободно пробегают лишь расстояния между соседними узлами решетки. Для согласования теоретических и экспериментальных значений электропроводности металлов, приходится предположить, что свободные электроны пробегают без столкновений с ионами решетки расстояния, превосходящие расстояние между ионами в десятки и даже в сотни раз (чем ниже температура, тем больше эти расстояния).

Дальнейшее развитие классической электронной теории не привели к разрешению возникших противоречий с экспериментом. Только с созданием квантовой электронной теории металлов эти противоречия были разрешены.

В основе квантовой теории металлов лежат принципиально новые (по сравнению с классической теорией) идеи.

В квантовой электронной теории металлов предполагается, что электрон имеет двойственную, корпускулярно-волновую природу. Если по классическим представлениям электрон является частицей с резко очерченными границами, которая движется по вполне определенной траектории, причем положение его в пространстве и скорость движения могут быть одновременно и однозначно определены, то по квантовым представлениям электрон обладает кроме корпускулярных свойств еще и волновыми. В результате движение электрона в пространстве следует представлять как процесс распространения своеобразной электронной волны, способной к интерференции, дифракции. Понятие траектории к электронам и другим микрочастицам неприменимо. Невозможно также одновременное и точное определение положения электрона и скорости.

Квантовая теория предполагает, что энергия свободных электронов в металле может принимать не любые, а только некоторые дискретные значения, изменения ее могут происходить не непрерывно, а лишь скачком, сразу на вполне определенную величину, в то время как классическая электронная теория металлов постулирует, что энергия свободных электронов в металле может изменяться непрерывно и на любую величину, может принимать какие угодно значения.

Классическая электронная теория проводимости Друде-Лоренца

Теория Друде была разработана в 1900 году, через три года после открытия электрона. Затем теория была доработана Лоренцом, и сейчас она является классической и актуальной теорией проводимости металлов.

Электронная теория Друде-Лоренца

Согласно теории, носителями тока в металлах являются свободные электроны.

Друде предположил, что электроны в металле подчиняются и могут быть описаны уравнениями молекулярно-кинетической теории. Другими словами, свободные электроны в металле подчиняются законам МКТ и образуют "электронный газ".

Двигаясь в металле, электроны соударяются между собой и с кристаллической решеткой (это и есть проявление электрического сопротивления проводника). Между соударениями электроны, по аналогии с длиной свободного пробега молекул идеального газа, успевают преодолеть средний путь λ .

Без действия электрического поля, ускоряющего электроны, кристаллическая решетка и электронный газ стремятся к состоянию теплового равновесия.

Приведем основные положения теории Друде:

  1. Взаимодействие электрона с другими электронами и ионами не учитывается между столкновениями.
  2. Столкновения являются мгновенными событиями, внезапно меняющими скорость электрона.
  3. Вероятность для электрона испытать столкновение за единицу времени равна 1 τ .
  4. Состояние термодинамического равновесия достигается благодаря столкновениям.

Несмотря на множество допущений, теория Друде-Лорецна хорошо объясняет эффект Холла, явление удельной проводимости и теплопроводность металлов. Именно поэтому она актуальна по сей день, хотя ответы на многие вопросы (например, почему в металле существуют свободные ионы и электроны) смогла дать только квантовая теория твердого тела.

В рамках теории Друде объясняется сопротивление металлов. Оно обусловлено соударениями электронов с узлами кристаллической решетки.

Выделение тепла, согласно закону Джоуля-Ленца, также происходит по причине соударения электронов с ионами решетки.

Теплопередача в металлах также осуществляется электронами, а не кристаллической решеткой.

Терия Друде не объясняет многих явлений, как например сверхпроводимость, и не применима в сильных магнитных полях, в слабых магнитных полях может терять применимость из-за квантовых явлений.

Среднюю скорость электронов можно вычислить по формуле для идеального газа:

Здесь k - постоянная Больцмана, T - температура металла, m - масса электрона.

При включении внешнего электрического поля, на хаотичное движение частиц "электронного газа" накладывается упорядоченное движение электронов под действием сил поля, когда электроны начинают упорядоченно двигаться со средней скоростью u . Величину этой скорости можно оценить из соотношения:

где j - плотность тока, n - концентрация свободных электронов, q - заряд электрона.

При больших плотностях тока рассчеты дают следующий результат: средняя скорость хаотичного движения электронов во много раз ( ≈ 10 8 ) больше скорости упорядоченного движения под действием поля. При вычислении суммарной скорости полагают, что

Формула Друде

Формула Друде выводится из кинетического уравнения Больцмана и имеет вид:

Здесь m * - эффективная масса электрона, τ - время релаксации, то есть время, за которое электрон "забывает" о том, в какую сторону двигался после соударения.

Друде вывел закон Ома для токов в металле:

Опыт Толмена и Стюарта

В 1916 году опыт Толмена и Стюарта дал прямое доказательство тому, что носителями тока в металлах являются электроны.

Суть опыта была в следующем.

Опыт Толмена и Стюарта

Проводящая катушка с проводом длиной L вращалась вокруг своей оси с большой скоростью, а ее концы были замкнуты на гальванометр. Когда катушку резко тормозили, свободные электроны в металле продолжали двигаться по инерции, и гальванометр регистрировал импульс тока.

Считая, что свободные электроны подчиняются законам механики Ньютона, можно записать, что при остановке проводника электрон приобретает ускорение v ' (в катушке направлено вдоль проводов). При этом на электрон действует сила, направленная противоположно ускорению.

Под воздействием этой силы электрон ведет себя так, как если бы на него действовало поле E = - m v ' q . Эдс, возникающую в катушке при торможении можно записать, как:

ε = ∫ L E d l = - m v ' q ∫ L d l = - m v ' q L

Считая, что ускорение одинаково в каждом витке, можно записать закон Ома для катушки, а затем вычислить заряд, проходящий в ней за время d t :

d q = I d t = - m L d v q R d t d t = - m L d v q R

Заряд, прошедший от момента начала торможения до остановки:

q = - m L q R ∫ v 0 0 d v = - m L v 0 q R

Опыт Толмена и Стюарта получил хорошее согласование с теорией, полученное экспериментально отношение q m соответствовало отношению заряда электрона к его массе.

При T = 300 К вычислите среднюю скорость теплового движения свободных электронов.

Читайте также: