Электропроводность в полупроводниках и металлах

Обновлено: 07.01.2025

Носителями электричества в металлах являются свободные элект­роны. Согласно классической теории электропроводности металлов свободные электроны ведут себя подобно молекулам идеального газа, совершают беспорядочное тепловое движение. При включении внешне­го электрического поля на хаотическое тепловое движение электро­нов накладывается их упорядоченное движение в направлении, про­тивоположном направлению поля. Между двумя последовательными со­ударениями с ионами кристаллической решётки электроны движутся под действием поля с ускорением и приобретают определённую энергию. Эта энергия передаётся полностью или частично положительным ионам при неупругих соударениях и превращается в тепло. Поэтому при прохождении тока металлы нагреваются. Таким образом, элек­трическое сопротивление металлов обусловлено неупругими соударениями свободных электронов с положительными ионами узлов кристаллической решётки металла.

С увеличением температуры проводника тепловое движение ионов становится более интенсивным, возрастает амплитуда колебаний их относительно положения равновесия, поэтому сопротивление провод­ника увеличивается. Температурная зависимость сопротивления ха­рактеризуется температурным коэффициентом сопротивления, который численно равен относительному изменению сопротивления проводника при изменении температуры на один градус:

В общем случае α является функцией температуры и зависит от материала проводника. Для многих металлов при температуре от 0 до 100°С зависимость сопротивления от температуры в первом при­ближении может быть представлена в виде

где R0 - сопротивление при 0° С, t - температура проводника в градусах Цельсия. Тогда температурный коэффициент сопротивления

В классической теории металлов считалось само собой разумеющимся, что электроны проводимости могут обладать любыми значениями энергии. Согласно квантовой теории энергия электронов в любом кристаллическом теле (в частности, в металле) так же, как и энергия электронов в атоме, квантуется. Это означает, что она может принимать лишь дискретные значения, называемые уровнями энергии. Дозволенные уровни энергии в кристалле группируются в зоны.

Чтобы понять происхождение зон, рассмотрим воображаемый процесс объединения атомов в кристалл.

Пусть первоначально имеется N изолированных атомов какого- либо вещества. Каждый электрон любого атома обладает одним из разрешенных значений энергий, то есть занимает один из дозволенных энергетических уровней. В основном, невозбужденном состоянии атома суммарная энергия электронов имеет минимально возможное значение. Поэтому, казалось бы, все электроны должны находиться на самом низком уровне. Однако электроны подчиняются принципу запрета Паули, который гласит, что в любой квантовой системе на каждом энергетическом уровне может находиться не более двух электронов, причем собственные моменты(спины) электронов, занимающих одновременно один и тот же уровень, должны иметь противоположные направления. Следовательно, на самом низком уровне может разместиться только два электрона, остальные заполняют попарно более высокие уровни.

Пока атомы изолированы друг от друга, они имеют полностью совпадающие схемы энергетических уровней. Заполнение уровней электронами осуществляется в каждом атоме независимо от заполнения аналогичных уровней в других атомах. По мере сближения атомов, между ними возникает все усиливающееся взаимодействие, которое приводит к изменению положения уровней. Вместо одного одинакового для всех N атомов уровня возникают N очень близких, но не совпадающих уровней. Таким образом, каждый уровень изолированного атома расщепляется в кристалле на N густо расположенных уровней, образующих полосу или зону.

Величина расщепления для разных уровней не одинакова. Уровни, заполненные в атоме более близкими к ядру (внутренними) электронами, возмущаются меньше, чем уровни, заполненные внешними электронами. Заметно расщепляются лишь уровни, занимаемые валентными электронами. Такому же расщеплению подвергаются и более высокие уровни, не занятые электронами в основном состоянии атома.

При достаточно малых расстояниях между атомами может произойти перекрывание зон, соответствующих двум соседним уровням атома. Число уровней в такой сливающейся зоне равно сумме количеств уровней, на которые расщепляются оба уровня атома.

Взаимодействующие атомы представляют собой единую квантовую систему, в пределах которой действует принцип запрета Паули. Следовательно, 2N электронов, которые заполняли какой-то уровень в изолированных атомах, разместятся в кристалле попарно (с противоположными спинами) на N уровнях соответствующей полосы.

Нижние, образованные слабо расщепленными уровнями зоны заполняются электронами, каждый из которых не утрачивает в кристалле прочной связи со своим атомом.

Дозволенные значения энергии валентных электронов в кристалле объединяются в зоны, разделенные промежутками, в которых разрешенных значений энергий нет. Эти промежутки называются запрещенными зонами. Ширина разрешенных и запрещенных зон не зависит от размеров кристалла. Таким образом, чем больше атомов содержит кристалл, тем теснее располагаются уровни в зоне. Ширина разрешенных зон имеет величину порядка нескольких электрон-вольт. Следовательно, если кристалл содержит 10 23 атомов, то расстояние между уровнями в зоне составляет ~ 10 -23 эВ.

При абсолютном нуле энергия кристалла должна быть минимальной. Поэтому валентные электроны заполняют попарно нижние уровни разрешенной зоны, возникшей из того уровня, на котором находятся валентные электроны в основном состоянии атома (валентная зона). Более высокие разрешенные зоны будут от электронов свободны. В зависимости от степени заполнения валентной зоны электронами и ширины запретной зоны возможны три случая, изображенные на рисунке 1. В случае а) электроны заполняют валентную зону не полностью, поэтому достаточно сообщить электронам, находящимся на верхних уровнях, совсем небольшую энергию (~ 10 -23 ÷10 -22 эВ) для того, чтобы перевести их на более высокие уровни. Энергия теплового движения составляет при 1К величину порядка 10 -4 эВ.



Следовательно, при температурах отличных от 0 К часть электронов переводится на более высокие уровни. Дополнительная энергия, вызванная действием на электрон электрического поля, также оказывается достаточной для перевода на более высокие уровни. Поэтому электроны могут ускоряться электрическим полем и приобретать дополнительную скорость в направлении, противоположном направлению поля. Таким образом, кристалл с подобной схемой энергетических уровней будет представлять собой металл. Частичное заполнение валентной зоны (в случае металла ее также называют зоной проводимости) может произойти, если на последнем занятом уровне в атоме находится только один электрон; или имеет место перекрывание зон. В первом случае N электронов проводимости заполняют попарно только половину уровней валентной зоны. Во втором случае число уровней в зоне проводимости будет больше N, так, что даже если количество электронов проводимости равно 2N, они не смогут занять все уровни зоны.

В случаях б) и в) уровни валентной зоны полностью заняты электронами – зона заполнена. Для того чтобы увеличить энергию электрона, необходимо сообщить ему количество энергии, не меньшее, чем ширина запретной зоны ΔW. Электрическое поле сообщить электрону такую энергию не в состоянии. При этих условиях электрические свойства кристалла определяются шириной запретной зоны ΔW. Если ΔW невелико (порядка нескольких десятых эВ) энергия теплового движения оказывается достаточной для того, чтобы перевести часть электронов в верхнюю свободную зону. Эти электроны будут находиться в условиях, аналогичных тем, в которых находятся валентные электроны в металле. Свободная зона окажется зоной проводимости. Одновременно станет возможным переход электронов валентной зоны на ее освободившиеся верхние уровни. Такое вещество называется электронным полупроводником.

Если ширина запрещенной зоны ΔW велика (порядка нескольких эВ), тепловое движение не сможет забросить в свободную зону заметное число электронов. В этом случае кристалл оказывается изолятором.

Таким образом, квантовая теория объясняет с единой точки зрения существование хороших проводников (металлов), полупроводников и изоляторов.

Итак, полупроводниками являются кристаллические вещества, у которых валентная зона полностью заполнена электронами, а ширина запрещённой зоны невелика (не более 1 эВ). Полупроводники обязаны своим названием тому обстоятельству, что по величине электропроводности они занимают промежуточное положение между металлами и диэлектриками. Однако, характерным для них является не величина проводимости, а то, что их проводимость растёт с повышением температуры (у металлов она уменьшается).

Электрическое поле не может перебросить электроны из валентной зоны в зону проводимости. Поэтому полупроводники ведут себя при абсолютном нуле как диэлектрики. При температурах, отличных от 0 К, часть электронов из валентной зоны переходит в зону проводимости, в результате чего в полупроводнике возникают свободные носители зарядов. С повышением температуры число таких носителей растёт и, следовательно, увеличивается электропроводность полупроводника, а значит, уменьшается сопротивление. Зависимость сопротивления полупроводников от абсолютной температуры в опреде­лённых температурных интервалах описывается формулой

где А - константа, k - постоянная Больцмана, ΔЕ - энергия активации. Под энергией активации понимается энергия, которую нужно затратить, чтобы перевести электрон из валентной зоны в зону проводимости. Логарифмирование уравнения (4) даёт

График зависимости ln(R)=f(1/T) представляет собой прямую, уг­ловой коэффициент которой равен ΔЕ/К. Построив график зависимости (5), этот угловой коэффициент можно определить по формуле

для любых двух точек, лежащих на прямой, а затем найти энергию активации ΔЕ.

Механизмы электропроводности

Существует классификация веществ в зависимости от их проводимости. Так, к проводникам относят вещества, удельная проводимость которых лежит в диапазоне $^6-^8\frac$, к диэлектрикам вещества с удельной проводимостью меньше $^\frac$ . Полупроводники лежат внутри этого диапазона, их проводимость может быть от $^\ до$ $^4\frac$. Такая классификация весьма условна и неточна. Так, у полупроводника с ростом температуры проводимость растет и при комнатной температуре может быть такой же, как и у проводника. При температурах около абсолютного нуля полупроводники являются диэлектриками. К проводникам относят, прежде всего, металлы.

Механизм электропроводности в металлах

Задолго до открытия электронов было экспериментально показано, что прохождение тока в металлах не связано с переносом вещества, атомы и молекулы металлов не принимают участия в переносе тока.

Атомы металла, находящегося в твёрдом (или жидком) состоянии, расщепляются на несколько электронов и положительный ион. Ионы находятся в узлах кристаллической решетки и совершают колебания около положения равновесия. Они составляют «твердый скелет» металлического тела. Электроны же пребывают в свободном беспорядочном движении в промежутках между ионами и составляют так называемый «электронный газ». При отсутствии внешнего электрического поля электроны совершают хаотичное, тепловое движение. Внешнее поле ведет к упорядочению движения электронов, то есть возникновению электрического тока. Электроны в процессе движения сталкиваются с ионами кристаллической решетки, передают ионам избыток кинетической энергии, которую они получили при взаимодействии с полем. Это приводит к интенсификации колебаний ионов, то есть нагреванию металла.

Все металлы не только хорошие проводники электрического тока, но и имеют высокую теплопроводность. С точки зрения представления о механизме тока в металлах, это совпадение объясняется не просто случайностью, а является следствием одной общей причины -- наличием в металлах свободных электронов. В металлах теплопередача происходит не только посредством столкновения атомов, но и свободными, легко подвижными электронами, которые переносят дополнительную энергию в веществе.

Готовые работы на аналогичную тему

Прямое доказательство того, что носителями тока в металлах являются электроны дали опыты Р.Ч. Толмена. Он измерил силу электрического тока, который появляется в металле, когда металлическому телу сообщают ускорение. Возникновение тока вызывается отставанием электронов от движения кристаллической решетки вещества.

То, что в проводниках существуют свободные электроны, объясняют тем, что при образовании кристаллической решетки от атомов металла отделяются валентные (самые слабо связанные) электроны, которые становятся общей собственностью всего вещества.

Механизм электропроводности полупроводников

Особый интерес представляют электронные полупроводники. В таких полупроводниках носителями тока являются, как и в металлах, электроны. Различие в проводимости металлов и полупроводников связано с очень большой разницей в концентрации носителей тока. В полупроводниках концентрация электронов в свободном состоянии в тысячи раз меньше, чем в металлах. В полупроводнике постоянно идут два противоположных процесса: процесс освобождения электронов, при этом используется внутренняя или световая энергия; процесс воссоединения с ионом, который потерял свой электрон. Равновесие между свободными и связанными электронами динамическое. Для того чтобы в полупроводнике перевести электрон из связанного состояния в свободное, необходимо сообщить ему дополнительную энергию. В металлах даже при низких температурах количество свободных электронов велико. Силы межмолекулярного взаимодействия в металлах достаточно для освобождения части электронов.

Сравнительно немногочисленные свободные электроны полупроводника, оторвались от атомов, при этом атомы стали ионами. Каждый ион окружен большим количеством атомов, которые не заряжены. Нейтральные атомы могут отдать свой электрон иону, превращаясь в ион, а ион становится нейтральным. Так, обмен электронами ведет к изменению местоположения положительных ионов в полупроводнике, то есть положительный заряд перемещается. До тех пор пока на полупроводник внешнего поля нет в среднем каждому электрону, который смещается в одном направлении, соответствует перемещение электрона в противоположном направлении. Аналогичный процесс идет с положительным зарядом. При наложении внешнего поля процессы получают преимущественное направление: свободные электроны движутся в направлении противоположном полю, положительные места -- по полю. Возникает ток одного направления (по полю), проводимость вызывается этими двумя процессами. Место, где вместо нейтрального атома имеется положительный ион, называют дыркой. Надо отметить, что фактически всегда имеет место только движение электронов, но движение связанных электронов от атомов к ионам ведет к результату, при котором будто бы движутся дырки, которые имеют положительный заряд.

Механизм электропроводности полупроводников описывает зонная теория. Она базируется на анализе энергетического спектра электронов. Электронный спектр разбивается на зоны, разделенные запрещенными промежутками. В том случае, если в верхней зоне имеющей электроны, ими заполнены не все квантовые состояния, то есть в пределах зоны имеется возможность перераспределения энергии и импульсов электронов, то данное вещество является проводником электрического тока. Движение электронов в зоне проводимости подчиняются квантовым законам.

Классическая электронная теория металлов

Интерпретация разных свойств вещества с точки зрения движения и существования электронов является содержанием электронной теории. В классической теории металлов считают, что движение электрона описывают законы Ньютоновой механики. В этой теории считают, что взаимодействие электронов между собой несущественно, а взаимодействие ионов и электронов осуществляется только как соударения. Это значит, что электроны проводимости рассматривают как электронный газ, который подобен идеальному одноатомному газу. Такой газ хорошо изучен и его свойства описаны. В частности он подчиняется закону равномерного распределения энергии по степеням свободы. В соответствии с этим законом средняя кинетическая энергия теплового движения, которая приходится на каждую степень свободы, равна $\frackT$, где $k=1,38\cdot ^\frac$, $T$ -- термодинамическая температура. Средняя энергия теплового движения одного электрона равна:

где $\left\langle v^2_T\right\rangle $- среднее значение квадрата скорости теплового движения.

Классическая электронная теория качественно объясняет многие законы электрического тока.

Задание: Чему равна концентрация свободных электронов, если от каждого атома отщепился один электрон.

Если от каждого атома отщепился один электрон, концентрация свободных электронов равна числу атомов в единице объема ($n$):

где $\rho $ -- плотность металла, $\mu $ -- молярная масса вещества, $N_=6\cdot ^моль^$ - число Авогадро. Для металлов значения $\frac<\mu >$ для металлов равны: калий$:\ \frac<_1><<\mu >_1>$=$2\cdot ^4\frac$, бериллий:$\ \frac<_2><<\mu >_2>$=$2\cdot ^5\frac$.

Тогда концентрация свободных электронов проводимости будут иметь значения порядка:

Задание: Чему равна подвижность электронов в калии? Удельная проводимость металлов равна $\sigma =^6\frac.$

Подвижностью электронов ($b$) является отношение скорости дрейфа ($v_d$) к напряженности электрического поля (E):

можно записать в виде:

где $n$ -- концентрация электронов проводимости, $q_e=1,6\cdot ^Кл$ -- заряд электрона, $\sigma $ -- удельная проводимость. Используя (2.1) и (2.3) выразим подвижность:

Используем результат первого примера, концентрация свободных электронов в калии равна $n=^м^$. Проведем вычисления:

Нужны еще материалы по теме статьи?

Воспользуйся новым поиском!

Найди больше статей и в один клик создай свой список литературы по ГОСТу

Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.

Электропроводность

1. Заполнение энергетических зон электронами в диэлектрике

Валентная зона заполнена полностью и отделена от следующей за ней

свободной зоны широкой ( E g > 2 3 эВ) запрещенной зоной – энергетической щелью . Внешнее электрическое поле не создает электрического тока, так как электроны заполненной зоны не могут перейти в свободную. Такие вещества являются диэлектриками .

1 эВ = 1,60217733 10 –19 Дж.

2. Заполнение энергетических зон

электронами в полупроводнике

Если валентная зона полностью заполнена и ширина запрещенной зоны E g < < 2 3 эВ, то

такие вещества называются полупроводниками . В полупроводниках за счет тепловой энергии k B T

заметное число электронов оказывается переброшенным в свободную зону ( зону проводимости ). При наложении внешнего электрического поля возникает электрический ток, который много слабее, чем в металлах, из-за низкой концентрации носителей заряда. При очень низких температурах любой полупроводник становится диэлектриком.

Между металлами и диэлектриками существует качественное различие, а между диэлектриками и полупроводниками – лишь количественное.

3. Температурная зависимость

При T = 0 K в беспримесном и бездефектном полупроводнике, а соответственно и в диэлектрике, электропроводность равна нулю, так как отсутствуют свободные носители электрического заряда. Переход электронов из валентной зоны в зону проводимости может происходить под действием тепловой или световой энергии, электрического поля или какого-либо корпускулярного излучения. Для такого перехода энергия воздействия должна быть равна ширине запрещенной зоны

( h E g ) или превосходить ее. Вероятность перехода электрона в зону проводимости под воздействием тепла подчиняется выражению p v c = exp( –E g / k B T ) . Поэтому в общем случае температурная зависимость электропроводности полупроводников и диэлектриков описывается уравнением = 0 exp(– E a / k B T ), E a / k B T >> 1 , где 0 – константа; E a – энергия активации переноса заряда ; т. е. возрастает по экспоненциальному закону с ростом температуры.

4. Поляронная проводимость

Если носители заряда достаточно сильно связаны с кристаллической решеткой, то возникает, так называемая

Образование полярона связано с искажением (поляризацией) близ лежащей области кристаллической решетки носителем заряда. Носитель локализуется в этой области и движется вместе с ней, что значительно уменьшает его подвижность.

При слабом взаимодействии носителя с решеткой образуется полярон большого радиуса, характеризующийся слабым искажением решетки, и следовательно, слабым влиянием на подвижность носителя.

При сильном взаимодействии электрона или дырки с кристаллической решеткой может образоваться полярон малого радиуса (~ постоянной решетки). В этом случае искажения решетки очень сильны. Такой полярон очень стабилен и движется даже за счет тепловых флуктуаций в кристалле прыжками. При наложении внешнего электрического поля в этом случае возникает так называемая прыжковая проводимость .

5. Ионная проводимость

В ряде диэлектриков доминирует ионная проводимость , связанная как с направленным перемещением ионов примеси , так и ионов самого диэлектрика . В этом случае осуществляется не только перенос электрического заряда , но и перенос вещества .

Под действием внешнего электрического поля анионы движутся к аноду , а катионы к катоду . Постепенно концентрация носителей заряда уменьшается, поэтому величина ионного тока со временем спадает .

При низких температурах обычно превалирует примесная ионная проводимость, а при высоких – перенос ионов основного вещества. В результате общая температурная зависимость электропроводности описывается следующей формулой:

= 1 e – B 1 / T + 2 e – B 2 / T . Одно из слагаемых преобладает при низких температурах, а другое – при высоких.

У диэлектриков с ионным характером электропроводности соблюдаются законы Фарадея : количество выделившегося при электролизе вещества пропорционально количеству прошедшего через материал электричества.

5.1. Ионная проводимость в стеклах

Ионная электропроводность неорганических стекол обусловлена электролизом различных окислов, входящих в состав самих стекол. Электропроводность стекол сильно повышается при содержании в них

оксидов щелочных металлов (Li 2 O, Na 2 O, K 2 O) из-за высокой подвижности катионов Li+, Na+, K+.

Введение окислов щелочноземельных металлов (MgO, CaO, BaO) приводит к снижению проводимости в стеклах.

5.2. Суперионная проводимость

У ряда диэлектриков выше некоторой критической температуры происходит фазовое превращение, которое связано с разупорядочением одной из ионных подрешеток. В этом случае происходит резкий скачок ионной проводимости, которая становится сравнимой с электропроводностью расплавов или концентрированных электролитов

~1 (Ом см) 1 . Таким образом, кристалл переходит в особое состояние – суперионное . Такие кристаллы называются суперионными проводниками .

6. Влияние поверхности

Проводимость твердых диэлектриков подразделяют на объемную (количественно определяющую возможность прохождения тока через толщу изоляции) и поверхностную .

Это связано с тем, что электрические свойства поверхности в

результате взаимодействия с газовой или жидкой средой

( загрязнение , увлажнение и т.п.) могут сильно отличаться от свойств объемной фазы.

Если поверхность шероховата , то в связи с удержанием ею пыли, осевшей из воздуха, или других случайно попавших частиц, поверхностное сопротивление будет значительно снижено. Поэтому поверхность обычно шлифуется, полируется, покрывается глазурью и т.д.

7. Влияние влаги

Присутствие даже малого количества воды способно значительно уменьшить электросопротивление изолятора.

Растворимые в воде примеси диссоциируют на ионы. Увлажнение также может способствовать диссоциации основного вещества диэлектрика.

Особенно сильно влага оказывает воздействие на волокнистые материалы, когда могут образовываться сплошные водяные пленки вдоль волокон, пронизывающие изоляцию. Поэтому гигроскопичные материалы подвергают сушке и пропитывают или покрывают лаками или компаундами.

Классификация твердых тел по электропроводности

По своим электрическим свойствам твердые тела разделяются на проводники (металлы), полупроводники, и диэлектрики (изоляторы).

К проводникам относится класс веществ, которые имеют в своем составе электрические заряды, расположенные на микроносителях (электроны, ионы), и которые могут перемещаться даже под действием слабых электрических полей. С точки зрения зонной теории к проводникам (металлам) относятся вещества, имеющие или не полностью заполненную энергетическую зону, или частично перекрывающиеся полностью заполненную и свободную зоны, что в конечном счете приводит к не полностью заполненной зоне (рис. 6.1, а). В таком случае при наложении внешнего электрического поля электроны могут переходить на более высокие энергетические уровни в зоне, вследствие чего они приобретают скорость направленного движения, участвуя в электрическом токе.

К диэлектрикам (изоляторам) относятся вещества, которые не проводят электрический ток. С точки зрения зонной теории это вещества, у которых заполнены все состояния энергетических зон вплоть до валентной зоны, а первая свободная зона находится на расстоянии не менее 2…3 эВ (рис.6.1, с).

К полупроводникам относятся вещества, которые по свойствам проводимости занимают промежуточное положение между проводниками и диэлектриками. Кроме того, их электропроводность увеличивается с увеличением температуры, освещенности, под воздействием электрических полей и механических напряжений; особенно резко их электропроводность зависит от примесей.

С точки зрения зонной теории полупроводниками являются вещества, имеющие полностью заполненные зоны, в том числе и валентную зону, а ближайшая незаполненная зона – зона проводимости - отстоит на расстоянии не более 2…3 эВ (рис.1.7, б). В этом случае при 0 К все энергетические уровни заняты, а переходы между уровнями запрещены принципом Паули, такие взаимные переходы, если они осуществляются, не сопровождаются изменением макросостояния кристалла и не могут участвовать в обмене энергией с внешним электрическим полем. Для того чтобы полупроводник мог принимать энергию внешнего электрического поля и проводить тем самым электрический ток, необходимо часть электронов перевести через запрещенную зону в зону проводимости. Тем самым в валентной зоне появятся свободные места на разрешенных энергетических уровнях («дырки») и электроны - в зоне проводимости, которые там имеют возможность принимать энергию внешнего электрического поля. Место «дырок» также может заниматься электронами более глубоких энергетических уровней и, таким образом, под действием внешнего электрического поля может осуществляться направленное движение электронов и в зоне проводимости и в зоне валентной – идет электрический ток. Для переброса электронов в зону проводимости и потребуется энергия тех воздействий, о которых было сказано выше.

Деление веществ на полупроводники и изоляторы условно. Хорошим изолятором является алмаз с шириной запрещенной зоны 5,6 эВ, а хороший полупроводник германий имеет ширину запрещенной зоны менее 1 эВ.

6.3 Электрические свойства полупроводников

Важнейшим свойством полупроводников (см. п. 1.4) является зависимость их электрических свойств от таких внешних факторов, как температура, освещенность, давление, электрические и магнитные поля. Формальным, но не решающим признаком принадлежности вещества к полупроводникам является величина электропроводности, которая для них может принимать значения в пределах s = 10 6 …10 ‑8 Ом ‑1 ×м ‑1 ; для металлов - s » 10 8 …10 5 Ом ‑1 ×м ‑1 ; для изоляторов - s < 10 ‑12 Ом ‑1 ×м ‑1 .

Характерной является температурная зависимость электрических свойств полупроводников. В отличие от металлов с увеличением температуры сопротивление полупроводников падает. Опыт дает зависимость сопротивления полупроводников от температуры в виде

где Еа – энергия активации, величина, характерная для полупроводников различного типа.

В некоторой области температур сопротивление полупроводников может возрастать с ростом температуры. Такие полупроводники называются вырожденными.

Резкая зависимость сопротивления полупроводников от температуры и освещенности дает возможность использовать их для преобразования соответствующих сигналов в электрические. Приборы при этом называются терморезисторы, фоторезисторы и прочее.

Собственные и примесные полупроводники. Полупроводники, проводимость которых обусловлена переходами электронов из заполненной валентной зоны в зону проводимости, называются собственными. Полупроводники, проводимость которых обусловлена ионизацией примеси, называются примесными. Примесные полупроводники, в свою очередь, делятся на электронные и дырочные полупроводники. В электронных полупроводниках основными носителями тока являются электроны, возникающие при ионизации атомов примеси. Такие примеси называются донорными, или донорами. В дырочном полупроводнике основными носителями тока являются дырки (см. п. 1.3). Дырки возникают в валентной зоне при переходе электронов этой зоны на примесные уровни. Такие примеси называются акцепторными, или акцепторами (принимающими).

6.4 Механизм проводимости полупроводников

Механизм проводимости собственных полупроводников рассмотрим на примере элемента четвертой группы, типичного полупроводника Ge. Атомы четырехвалентного германия образуют кубическую решетку, в которой каждый атом связан парноэлектронной связью с четырьмя ближайшими атомами. Двумерная модель кристалла с такой связью при Т=0 К приведена на рис. 6.2, а. Валентные электроны принадлежат своим атомам и, кроме того, благодаря перекрытию электронных облаков они могут переходить от атома к атому при встречном движении других электронов – атомы обмениваются электронами и электроны могут перемещаться по всему кристаллу. Однако такое движение является чисто хаотическим и не может участвовать в направленном движении под действием внешнего электрического поля – ток в полупроводнике отсутствует. Для создания электрического тока валентные электроны необходимо оторвать от атомов, сделать их свободными.

С точки зрения зонной теории ток в полупроводнике при низких температурах отсутствует, так как все энергетические уровни валентной зоны заняты, и некуда принять энергию такого взаимодействия. Зонная структура полупроводникового кристалла при Т = 0 К представлена на рис. 1.8, б. Для перевода электронов в зону проводимости энергии электрического поля недостаточно. Чтобы электрон перешел в зону проводимости и стал свободным, требуется энергия, соизмеримая с внутриатомной и с шириной запрещенной зоны. Такой энергией может быть энергия теплового движения с учетом распределения электронов по энергиям, энергия фотонов или других энергичных частиц. Такие электроны составляют обычный электронный механизм проводимости. Однако в собственном полупроводнике имеется и другой механизм создания электрического тока. Действительно, в валентной зоне после ухода электрона появилось свободное состояние ‑ дырка, которое позволяет электронам более глубоких уровней перемещаться по полю, принимая, например, энергию внешнего электрического поля. Перемещение дырки – это перемещение одного положительного некомпенсированного заряда атомов. Поэтому движение дырки, обусловленное движением совокупности электронов в противоположном направлении, осуществляет перенос положительного заряда. Движение свободного состояния в глубь валентной зоны может рассматриваться как движение некоторой частицы, имеющей положительный заряд и некоторую эффективную массу. В собственном полупроводнике, следовательно, осуществляется электронный (отрицательный) и дырочный (положительный) механизмы проводимости. Число электронов в зоне проводимости всегда равно числу дырок в валентной зоне в собственном полупроводнике.

Механизм проводимости электронных полупроводников рассмотрим на примере элемента четвертой группы, типичного полупроводника Ge с донорной примесью пятивалентного элемента. Атомы четырехвалентного германия образуют кубическую решетку, в которой каждый атом связан парноэлектронной связью с четырьмя ближайшими атомами. Если пятивалентный атом примеси, например фосфора, мышьякаили сурьмы, замещает в решетке нормальный атом, то после образования четырех ковалентных связей с ближайшими соседями останется один валентный электрон, который будет локализован вблизи атома примеси (рис. 6.3, а). При этом в энергетическом спектре кристалла у дна зоны проводимости появляется дополнительный энергетический уровень Ед примесного атома, на котором находится "лишний" электрон (рис. 6.3, б)


Избыточный электрон движется в кулоновском поле примесного атома. Если атом примеси получает энергию Е (например, за счет тепловых колебаний решетки), превышающую Eс - Eд - энергию ионизации примеси (Eс – энергия электрона у дна зоны проводимости), то избыточный электрон покидает атом примеси и становится носителем тока. На энергетической диаграмме это соответствует переходу электрона с донорного уровня в зону проводимости (см. рис. 1.10, б). Избыточный электрон имеет теперь возможность обмениваться энергией с внешним электрическим полем, перемещаясь на более высокие свободные уровни в зоне проводимости, ‑ стать электроном проводимости. В целом же кристалл остается электрически нейтральным, поскольку электрон остается в кристалле.


Механизм проводимости примесных дырочных полупроводников рассмотрим на примере трехвалентной примеси бора. Введение в Ge или Si примеси атомов трехвалентного элемента В приводит к появлению дырок ‑ незаполненных химических связей (рис. 6.4, а). При этом вблизи потолка валентной зоны появляются свободные энергетические уровни примесного атома (рис. 6.4, б).

Если одиниз электронов в валентной зоне получает энергию, достаточную для перехода на акцепторный уровень Eа, то происходит ионизация примеси - атом примеси становится отрицательным ионом, а дырка становится подвижной. В электрическом поле дырка ведет себя подобно положительному заряду, двигаясь в направлении вектора напряженности электрического поля. Примеси, захватывающие электроныиз валентной зоны, называются акцепторами. Помимо примесных атомов появление разрешенных уровней в запрещенной зоне связано также с нарушением идеальной периодичности решетки: вакансии, атомы в междуузлиях, дислокации и тому подобное.

Концентрация электронов и дырок определяет удельную электропроводность полупроводника, поскольку энергия ионизации примесей соизмерима с энергией тепловых колебаний решетки (kT = 0,026 эВ при комнатной температуре), то в первую очередь активизируется примесный механизм проводимости. И, если, например, концентрация электронов в зоне проводимости преобладает над концентрацией дырок, то проводимость полупроводника будет электронной, а полупроводник - электронным или n - типа. Если преобладает концентрация дырок над концентрацией электронов, то проводимость будет дырочной, а полупроводник – дырочным или р- типа.

С повышением температуры концентрация примесных носителей тока быстро достигает насыщения – примесь истощается, а собственная проводимость (смешанного типа) растет и при высоких температурах становится определяющей электропроводность полупроводника. Зависимость логарифма концентрации носителей тока, а значит и электропроводности полупроводника от обратной температуры приведена на рис. 6.5. При низких температурах (1/Т велико) существенную роль играет примесная проводимость (участок 1); участок 2 соответствует температурам истощения примесей; участок 3 ‑ проводимость практически собственная.

Тип проводимости полупроводника можно установить экспериментально, используя результаты исследования эффекта Холла в полупроводниках.

Металлы, диэлектрики и полупроводники по зонной теории

Зонная теория позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заселением электронами разрешенных зон, и во-вторых, шириной запрещенных зон.

Рассматривая заполнение электронами разрешенных зон необходимо использовать два правила: 1) Электроны стремятся занять самые низкие энергетические уровни. 2) Принцип Паули: на одном энергетическом уровне не может быть более двух электронов. Эти электроны должны иметь разные спины.

Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующего атомного уровня. Если уровень атома полностью заполнен, то и зона полностью заполнена. Из незанятых уровней образуются свободные зоны, из частично заполненных – частично заполненные зоны. В общем случае можно говорить о валентной зоне, которая полностью заполнена и образовалась из энергетических уровней внутренних электронов свободных атомов и о зоне проводимости (свободной зоне), которая либо частично заполнена, либо свободна и образована из энергетических уровней внешних коллективизированных электронов изолированных атомов (рис.2).


Самая верхняя зона целиком занятая электронами (при Т=0 К) называется валентной. Зона, заполненная электронами частично (при Т = 0 К), называется зоной проводимости. Определим изменение энергии электрона, находящегося на некотором уровне в разрешенной зоне, под действием внешнего поля с напряженностью . Энергия приобретаемая электроном на длине свободного пробега , где - средняя длина свободного пробега электрона в кристалле равная примерно 10 -8 м в электрическом поле с напряженностью В/м, которая соответствует обычным источникам тока, эВ.
Рис.2.

Это означает, что возможны только внутризонные переходы, так как междузонные переходы имеют много большую энергию. Необходимым условием электрической проводимости является наличие в разрешенной зоне свободных энергетических уровней на которые электрическое поле сторонних сил могло бы перевести электроны. В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны три случая, изображенных на рис.3.




(а) (б) (в)
Рис.3

3а). Зона проводимости заполнена лишь частично., то есть в ней имеются вакантные уровни. В этом случае электроны, получив сколь угодно малую энергетическую добавку (от поля или теплового движения) переходят на более высокий энергетический уровень той же зоны, то есть они участвуют в проводимости. Такой переход возможен, так как 1 К = 10 -4 эВ, что много больше расстояния между уровнями равному 10 -22 эВ. Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам.

3б). Возможно также такое перераспределение электронов между зонами, возникающими из уровней различных атомов, которое привело к тому, что вместо двух частично заполненных зон кристалла окажется одна целиком заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состояний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны. Если ширина запрещенной зоны кристалла порядка нескольких электрон –вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону проводимости и кристалл является диэлектриком, оставаясь им при всех реальных температурах.

3в). Если запрещенная зона достаточно узка ( эВ), то переход электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко путем теплового возбуждения, либо за счет внешнего источника, способного передать электронам энергию , и кристалл является полупроводником.

Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например для NaCl =6 эВ), а для полупроводников достаточно узка (для германия =0,72 эВ). При температурах близких к 0 К полупроводники ведут себя как диэлектрики, то есть переброс электронов в зону проводимости не происходит.

Сущность зонной теории проводимости заключается в следующем:

1). При объединении атомов в кристалл твердого тела возникают энергетические зоны.

2). Ширина запрещенных зон и характер заполнения электронами разрешенных зон обуславливают электрические свойства твердого тела – оно может быть или металлом, или полупроводником, или диэлектриком.

Читайте также: