Электропроводность цветных металлов таблица
Электрические свойства металлов и их сплавов
Проводниками электрического тока могут быть твердые тела, жидкости и даже газы. Твердыми проводниками являются металлы, металлические сплавы и некоторые модификации углерода. К жидким проводникам относят расплавленные металлы и электролиты. Как правило, температура плавления металлов высока, за исключением ртути, у которой она составляет −39 °С. Температуру плавления, близкую к комнатной температуре (29,8 °С), имеет галлий. Другие металлы являются жидкими проводниками лишь при повышенных или высоких температурах. Механизм прохождения тока по металлам в твердом и жидком состояниях обусловлен движением свободных электронов, вследствие чего их называют проводниками с электронной электропроводностью.
К основным характеристикам проводников относят их удельное электрическое сопротивление и температурный коэффициент сопротивления.
Удельное электрическое сопротивление проводника — сопротивление провода длиной 1 м при площади поперечного сечения 1 мм2 и температуре 20 °С.
Температурный коэффициент сопротивления — коэффициент, равный относительному изменению сопротивления при изменении температуры на 1 градус.
2.2. Черные металлы
При изготовлении и ремонте электрического оборудования широко используют черные и цветные металлы и различные сплавы. Черные металлы (чугун, сталь) применяют как конструкционные материалы для станин электрических машин, баков, кожухов трансформаторов, оснований, цоколей, электрических аппаратов и других узлов и деталей.
Специальные электротехнические стали необходимы для изготовления магнитопроводов, трансформаторов и сердечников электрических машин и аппаратов. Промышленность выпускает ряд марок листовой электротехнической стали, различающихся магнитными и электрическими свойствами. Свойства стали можно менять за счет изменения содержания основного легирующего элемента — кремния, а также применением специальных технологических приемов.
Обычно сталь с низким содержанием кремния имеет меньшую магнитную проницаемость и большие удельные потери. Но она отличается большей величиной магнитного насыщения.
Стали с низким содержанием кремния выгодно применять для работы на постоянном токе и переменном токе низкой частоты при высоких значениях индукции.
Стали с высоким содержанием кремния применяются в тех случаях, когда важно иметь малые потери гистерезиса и вихревых токов или высокую магнитную проницаемость в слабых и средних полях.
Параметры тонкой электротехнической стали приведены в табл. 2.1.
Таблица 2.1 Свойства тонкой электротехнической стали
Магнитная индукция, кГс, при напряженности магнитного поля, а/см, не менее
полные удельные потери, вт/кг, не более
Сердечники полюсов и статорных пакетов для электрических машин малой мощности
Якоря электродвигателей постоянного тока
Турбо-гидрогенераторы малой мощности, крупные многополюсные и быстроходные электродвигатели
Примечание. Полные удельные потери приведены для максимальных значений индукции 10 и 15 кГс и частоте 50 Гц.
Широкое распространение в технике получили холоднокатаные текстурованные стали, обладающие в направлении проката более высокой проницаемостью в слабых полях и более низкими потерями по сравнению с обычными горячекатаными сталями.
Листовые электротехнические стали очень чувствительны к деформации. Резка, штамповка и другие технологические операции значительно ухудшают магнитные свойства стали вблизи мест наклепа. Поэтому изделия с небольшой шириной пластин (меньше 30–40 мм) должны после штамповки или резки отжигаться в неокисляющей среде (или, по крайней мере, без доступа воздуха) по режиму: отжиг 2 часа при 750–800 °С с последующим медленным охлаждением (50–60 °С/ч) до 400 °С.
2.3. Сплавы, используемые в магнитопроводах
Сплавы высокой магнитной проницаемости, или пермаллои, обладают магнитной проницаемостью в 10–100 раз более высокой, чем листовая электротехническая сталь. Эти сплавы намагничиваются до насыщения в малых магнитных полях.
В результате деформации магнитные свойства этих сплавов могут ухудшаться в десятки раз. Поэтому пермаллои обычно поставляются заказчику в виде лент непосредственно после холодной прокатки. После изготовления деталей они должны быть подвергнуты отжигу, в результате которого могут быть получены требуемые магнитные свойства.
Материалы магнитопроводов рассмотрены в табл. 2.2.
Таблица 2.2 Материалы магнитопроводов, из свойства и области использования
Основные свойства
Сплавы с повышенной магнитной проницаемостью, обладающие высоким значением индукции насыщения
Сердечники силовых трансформаторов, дросселей, реле и деталей магнитных цепей, работающих при повышенных значениях индукции без подмагничивания или с небольшим подмагничиванием
Сплавы с повышенной магнитной проницаемостью, обладающие прямоугольной петлей гистерезиса
Сердечники магнитных усилителей, коммутирующих дросселей, выпрямительных установок, элементов вычислительных и счетно-решающих машин и т. д.
Сплав с повышенной магнитной проницаемостью и высоким удельным электрическим сопротивлением
Сердечники импульсных трансформаторов и аппаратуры связи звуковых и высоких частот, работающие без подмагничивания или с небольшим подмагничиванием
Сплавы с высокой магнитной проницаемостью в слабых полях
Сердечники малогабаритных трансформаторов, дросселей, реле, магнитные экраны толщиной 0,02 мм, сердечники импульсных трансформаторов, магнитных усилителей и бесконтактных реле
2.4. Металлопрокат
Параметры стали угловой равнополочной приведены в табл. 2.3.
Таблица 2.3 Сталь угловая равнополочная
номер профиля
Ширина полки, мм
Масса 1 м длины профиля, кг, при толщине полки, мм
Параметры стали швеллерной приведены в табл. 2.4.
Таблица 2.4 Сталь швеллерная
номер швеллера
Масса 1 м, кг
высота швеллера
Ширина полки
толщина стенки
толщина полки
Параметры стали листовой тонкой приведены в табл. 2.5.
Таблица 2.5 Сталь листовая тонкая
стандартные размеры
толщина листа, мм
Ширина листа, мм
Строительная длина, м
Параметры стальной полосы приведены в табл. 2.6.
Таблица 2.6 Полоса стальная
Параметры стальной ленты приведены в табл. 2.7.
Таблица 2.7 Лента стальная
холоднокатаная
Горячекатаная
Параметры стальной проволоки приведены в табл. 2.8.
Таблица 2.8 Проволока стальная
диаметр проволоки, мм
Площадь сечения, мм2
Параметры стали листовой горячекатаной приведены в табл. 2.9.
Таблица 2.9 Сталь листовая горячекатаная
длина листа при ширине, мм
Параметры стальных труб приведены в табл. 2.10.
Таблица 2.10 Трубы стальные
условный проход, мм
резьба, дюйм
водогазопроводные
Электросварные прямошовные
наружный диаметр, мм
обыкновенные
под накатку резьбы
толщина стенки, мм
Масса 1м, кг
2.5. Проводниковые материалы
Классификация
К проводниковым материалам в электротехнике относятся металлы, их сплавы, контактные металлокерамические композиции и электротехнический уголь.
Металлические вещества являются проводниками первого рода и характеризуются электронной проводимостью; основной параметр для них — удельное электрическое сопротивление в функции температуры.
Диапазон удельных сопротивлений металлических проводников составляет от 0,016 мкОм·м для серебра до 1,6 мкОм·м для жаростойких железохромоалюминиевых сплавов.
По роду применения проводниковые материалы подразделяются на группы:
- проводники с высокой проводимостью — металлы для проводов линий электропередач и для изготовления кабелей, обмоточных и монтажных проводов для обмоток трансформаторов, электрических машин, аппаратуры, катушек индуктивности и пр.;
- конструкционные материалы — бронзы, латуни, алюминиевые сплавы и т. д., применяемые для изготовления различных токоведущих частей;
- сплавы высокого сопротивления — предназначаемые для изготовления дополнительных сопротивлений к измерительным приборам, образцовых сопротивлений и магазинов сопротивлений, реостатов и элементов нагревательных приборов, а также сплавы для термопар, компенсационных проводов и т. п.;
- контактные материалы — применяемые для пар неразъемных, разрывных и скользящих контактов;
- материалы для пайки всех видов проводниковых материалов. Кроме чисто электротехнических свойств, для проведения необходимой технологической обработки и обеспечения заданных сроков службы в эксплуатации проводниковые материалы должны обладать достаточной нагревостойкостью, механической прочностью и пластичностью.
Чистая медь по электрической проводимости занимает второе место после серебра, обладающего из всех известных проводников наивысшей проводимостью. Высокая проводимость и стойкость к атмосферной коррозии в сочетании с высокой пластичностью делают медь основным материалом для проводов.
На воздухе медные провода окисляются медленно, покрываясь тонким слоем СuO, препятствующим дальнейшему окислению меди. Коррозию меди вызывают SО2, Н2S, NН3, NO, пары HNO3 и другие реактивы.
Проводниковую медь получают из слитков путем гальванической очистки в электролитических ваннах. Примеси даже в ничтожных количествах резко cнижают электропроводность меди, поэтому в качестве электротехнической меди применяют лишь две ее марки: М0 и М1.
Почти все изделия из проводниковой меди изготавливают путем проката, прессования и волочения. Так, волочением могут быть изготовлены провода диаметром до 0,005 мм, ленты толщиной до 0,1 мм и медная фольга толщиной до 0,008 мм.
Проводниковая медь применяется как в отожженном после холодной обработки виде (мягкая медь марки ММ), так и без отжига (твердая медь марки МТ).
При температурах термообработки выше 900 °С вследствие интенсивного роста зерна механические свойства меди резко ухудшаются.
В целях повышения предела ползучести и термической устойчивости медь легируют серебром в пределах 0,07–0,15 %, а также магнием, кадмием, цирконием, другими элементами.
Медь с присадкой серебра применяется для обмоток быстроходных и нагревостойких машин большой мощности, а медь, легированная различными элементами, используется в коллекторах и контактных кольцах сильно нагруженных машин.
Сплавы меди с цинком (от 5 до 45 %), называемые латунями, широко используются в электротехнике. Латуни, содержащие до 39 % цинка, имеют однофазную структуру твердого раствора, обладают наибольшей пластичностью. Из них изготавливают детали горячей или холодной прокаткой и волочением: листы, ленты, проволоку. Без нагрева из листовой латуни методом глубокой вытяжки и штамповкой можно изготовить детали сложной конфигурации.
Латуни с содержанием цинка свыше 39 % называют α+β-латунями или
двухфазными и применяют, главным образом, для фасонных отливок.
Двухфазные латуни являются более твердыми и хрупкими и обрабатываются давлением только в горячем состоянии.
Присадка к латуням олова, никеля и марганца повышает механические свойства и антикоррозионную устойчивость, а добавки алюминия в композиции с железом, никелем и марганцем сообщают латуням, кроме улучшения механических свойств и коррозионной стойкости, высокую твердость. Однако присутствие в латунях алюминия затрудняет пайку, а проведение пайки мягкими припоями становится практически невозможным.
- латуни марок Л68 и Л63 вследствие высокой пластичности хорошо штампуются и допускают гибку, легко паяются всеми видами припоев. В электромашиностроении широко используются для различных токоведущих частей;
- латунь ЛА67-2,5 пригодна для литых токоведущих деталей повышенной механической прочности и твердости, не требующих пайки мягкими припоями;
- латуни ЛК80-ЗЛ и ЛС59-1Л широко используется для литых токоведущих деталей электрической аппаратуры, для щеткодержателей и для заливки роторов асинхронных двигателей. Хорошо воспринимают пайку различными припоями.
Бронзы относятся к двойным или многокомпонентным сплавам на основе меди, где основным легирующим компонентом является Sn, Be, Mn, Al и т. п. Необходимость легирования вызвана недостаточной механической прочностью и термической устойчивостью чистой меди.
Общая номенклатура бронз весьма обширна, но высокой электропроводностью обладают лишь немногие марки бронз:
- кадмиевая бронза относится к наиболее распространенным проводниковым бронзам. Из всех марок кадмиевая бронза обладает наивысшей электрической проводимостью. Вследствие повышенного сопротивления истиранию и более высокой нагревостойкости эта бронза широко применяется для изготовления троллейных проводов и коллекторных пластин;
- бериллиевая бронза относится к сплавам, приобретающим прочность в результате старения. Она обладает высокими упругими свойствами, устойчивыми при нагревании до 250 °С, и электрической проводимостью в 2–2,5 раза большей, чем проводимость других марок бронз общего назначения. Эта бронза нашла широкое применение для изготовления различных пружинных деталей, выполняющих одновременно и роль проводника тока, например токоведущих пружин, отдельных видов щеткодержателей, скользящих контактов в различных приборах, штепсельных разъемов;
- фосфористая бронза обладает высокой прочностью и хорошими пружинными свойствами, из-за малой электропроводности применяется для изготовления пружинных деталей с низкими плотностями тока.
Литые токоведущие детали изготовляются из различных марок машиностроительных литьевых бронз с проводимостью в пределах 8–15 % проводимости чистой меди. Характерной особенностью бронз является малая усадка по сравнению с чугуном и сталью и высокие литейные свойства, поэтому они применяются для отливки различных токоведущих деталей сложной конфигурации, предназначенных для электрических машин и аппаратов.
Все марки литьевых бронз можно подразделить на оловянные и безоловянные.
Характерными свойствами чистого алюминия являются:
- малый удельный вес;
- низкая температура плавления;
- высокая тепловая и электрическая проводимость;
- очень большая скрытая теплота плавления;
- прочная, хотя и очень тонкая пленка оксида, покрывающая поверхность металла и защищающая его от проникновения кислорода внутрь.
Малая плотность делает алюминий основой легких конструкционных материалов; большая пластичность позволяет применять к алюминию все виды обработки давлением и получать из него листы, прутки, проволоку, трубы, тончайшую фольгу, штампованные детали с глубокой вытяжкой и др.
Хорошая электрическая проводимость обеспечивает широкое применение алюминия в электротехнике. Так как плотность алюминия в 3,3 раза ниже, а удельное сопротивление лишь в 1,7 раза выше, чем у меди, то алюминий на единицу массы имеет вдвое более высокую проводимость, чем медь.
Прочная пленка оксида быстро покрывает свежий срез металла уже при комнатной температуре, обеспечивая алюминию высокую устойчивость против коррозии в атмосферных условиях.
Сернистый газ, сероводород, аммиак и другие газы, находящиеся в воздухе промышленных районов, не оказывают заметного влияния на скорость коррозии алюминия. Действие водяного пара на алюминий также незначительно. В контакте с большинством металлов и сплавов, стоящими выше в ряду электрохимических потенциалов, алюминий служит анодом и, следовательно, коррозия его в электролитах будет прогрессировать.
Чтобы избежать образования гальванопар во влажной атмосфере, место соединения алюминия с другими металлами герметизируется лакировкой или другим способом.
Длительные испытания проводов из алюминия показали, что они в отношении устойчивости против коррозии не уступают медным.
Основные характеристики проводниковых материалов приведены в
табл. 2.11.
Таблица 2.11 Основные характеристики проводниковых материалов
Удельная проводимость металлов таблица
Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.
Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.
Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.
В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.
В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.
- Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
- Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка
Проводимость и сопротивление
У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:
σ=1/ρ, где ρ – это и есть удельное сопротивление вещества.
Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.
В растворах носителями заряда являются ионы.
Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:
Читать также: Фото лесоруба с бензопилой
Проводники и диэлектрики
Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.
Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).
Условной границей понятия «проводник» является ρ
Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.
Сопротивление провода
Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:
где: R — сопротивление провода (Ом) ρ — удельное сопротивление металла (Ом.m) L — длина провода (м) А — площадь поперечного сечения провода (м2)
В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:
R=1,1*10-6*(1,5/0,000000196) = 8,4 Ом
Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.
Какое сопротивление меди и алюминия
Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.
Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.
В электротехнике значение имеют 2 термина:
- Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
- Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.
Вам это будет интересно Особенности мощности постоянного тока
Алюминиевые кабели востребованы не меньше медных
Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.
Свойства резистивных материалов
Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.
Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект. Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.
Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко поддается пайке и имеет более низкий температурный коэффициент.
Удельное сопротивление металлов, электролитов и веществ (Таблица)
Удельное сопротивление металлов и изоляторов
В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18—20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.
Таблица удельное сопротивление металлов
Чистые металлы | 104 ρ (ом·см) | Чистые металлы | 104 ρ (ом·см) |
Серебро | 0,016 | Хром | 0,131 |
Медь | 0,017 | Тантал | 0,146 |
Золото | 0,023 | Бронза 1) | 0,18 |
Алюминий | 0,029 | Торий | 0,18 |
Дюралюминий | 0,0335 | Свинец | 0,208 |
Магний | 0,044 | Платинит 2) | 0,45 |
Кальций | 0,046 | Сурьма | 0,405 |
Натрий | 0,047 | Аргентан | 0,42 |
Марганец | 0,05 | Никелин | 0,33 |
Иридий | 0,063 | Манганин | 0,43 |
Вольфрам | 0,053 | Константан | 0,49 |
Молибден | 0,054 | Сплав Вуда 3) | 0,52 (0°) |
Родий | 0,047 | Осмий | 0,602 |
Цинк | 0,061 | Сплав Розе 4) | 0,64 (0°) |
Калий | 0,066 | Хромель | 0,70-1,10 |
Никель | 0,070 | ||
Кадмий | 0,076 | Инвар | 0,81 |
Латунь | 0,08 | Ртуть | 0,958 |
Кобальт | 0,097 | Нихром 5) | 1,10 |
Железо | 0,10 | Висмут | 1,19 |
Палладий | 0,107 | Фехраль 6) | 1,20 |
Платина | 0,110 | Графит | 8,0 |
Олово | 0,113 |
Таблица удельное сопротивление изоляторов
Изоляторы | ρ (ом·см) | Изоляторы | ρ (ом·см) |
Асбест | 108 | Слюда | 1015 |
Шифер | 108 | Миканит | 1015 |
Дерево сухое | 1010 | Фарфор | 2·1015 |
Мрамор | 1010 | Сургуч | 5·1015 |
Целлулоид | 2·1010 | Шеллак | 1016 |
Бакелит | 1011 | Канифоль | 1016 |
Гетинакс | 5·1011 | Кварц _|_ оси | 3·1016 |
Алмаз | 1012 | Сера | 1017 |
Стекло натр | 1012 | Полистирол | 1017 |
Стекло пирекс | 2·1014 | Эбонит | 1018 |
Кварц || оси | 1014 | Парафин | 3·1018 |
Кварц плавленый | 2·1014 | Янтарь | 1019 |
Удельное сопротивление чистых металлов при низких температурах
В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).
Чистые металлы | t (°С) | Удельное сопротивление, 104 ρ (ом·см) |
Висмут | -200 | 0,348 |
Золото | -262,8 | 0,00018 |
Железо | -252,7 | 0,00011 |
Медь | -258,6 | 0,00014 1 |
Платина | -265 | 0,0010 |
Ртуть | -183,5 | 0,0697 |
Свинец | -252,9 | 0,0059 |
Серебро | -258,6 | 0,00009 |
Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.
В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.
Чистые металлы | Т (°К) | RT/R0 |
Алюминий | 77,7 | 1,008 |
20,4 | 0,0075 | |
Висмут | 77,8 | 0,3255 |
20,4 | 0,0810 | |
Вольфрам | 78,2 | 0,1478 |
20,4 | 0,0317 | |
Железо | 78,2 | 0,0741 |
20,4 | 0,0076 | |
Золото | 78,8 | 0,2189 |
20,4 | 0,0060 | |
Медь | 81,6 | 0,1440 |
20,4 | 0,0008 | |
Молибден | 77,8 | 0,1370 |
20,4 | 0,0448 | |
Никель | 78,8 | 0,0919 |
20,4 | 0,0066 | |
Олово | 79,0 | 0,2098 |
20,4 | 0,0116 | |
Платина | 91,4 | 0,2500 |
20,4 | 0,0061 | |
Ртуть | 90,1 | 0,2851 |
20,4 | 0,4900 | |
Свинец | 73,1 | 0,2321 |
20,5 | 0,0301 | |
Серебро | 78,8 | 0,1974 |
20,4 | 0,0100 | |
Сурьма | 77,7 | 0,2041 |
20,4 | 0,0319 | |
Хром | 80,0 | 0,1340 |
20,6 | 0,0533 | |
Цинк | 83,7 | 0,2351 |
20,4 | 0,0087 |
Удельное сопротивление электролитов
В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.
c (%) | NH4Cl | NaCl | ZnSO4 | CuSO4 | КОН | NaOH | H2SO4 |
5 | 10,9 | 14,9 | 52,4 | 52,9 | 5,8 | 5,1 | 4,8 |
10 | 5,6 | 8,3 | 31,2 | 31,3 | 3,2 | 3,2 | 2,6 |
15 | 3,9 | 6,1 | 24,1 | 23,8 | 2,4 | 2,9 | 1,8 |
20 | 3,0 | 5,1 | 21,3 | — | 2,0 | 3,0 | 1,5 |
25 | 2,5 | 4,7 | 20,8 | — | 1,9 | 3,7 | 1,4 |
_______________
Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, — М.: 1960.
Состав и структура железа
Железо – типичный металл, причем химически активный. Вещество вступает в реакцию при нормальной температуре, а нагрев или повышение влажности значительно увеличивают его реакционноспособность. Железо корродирует на воздухе, горит в атмосфере чистого кислорода, а в виде мелкой пыли способно воспламениться и на воздухе.
Чистому железу присуща ковкость, однако в таком виде металл встречается очень редко. На деле под железом подразумевают сплав с небольшими долями примесей – до 0,8%, которому присущи мягкость и ковкость чистого вещества. Значение для народного хозяйства имеет сплавы с углеродом – сталь, чугун, нержавеющая сталь.
Железу присущ полиморфизм: выделяют целых 4 модификации, отличающиеся структурой и параметрами решетки:
При высоком давлении, а также при легировании металла некоторыми добавками образуется ε- фаза с гексагонической плотноупакованной решеткой.
Температура фазовых переходов заметно изменяется при легировании тем же углеродом. Собственно, сама способность железа образовать столько модификаций служит основой обработки стали в разных температурных режимах. Без таких переходов металл не получил бы столь широкого распространения.
Электропроводность: объяснение, формулы, единица измерения, таблица
Почему медь проводит электричество лучше, чем вода? Прочитав эту статью, вы больше не будете задавать себе больше этот вопрос. Далее мы обсудим электропроводность и рассмотрим формулы, которые описывают это понятие. Наконец, вы можете проверить свои знания на двух примерах.
Простое объяснение.
Электропроводность – это физическая величина, которая описывает насколько хорошо определенный материал проводит электричество.
Формулы
Существует три различных формульных обозначения удельной электропроводности σ (греч. сигма), k (каппа) и γ (гамма). В дальнейшем мы будем использовать σ. Формула электропроводности, также называемой удельной электропроводностью, описывается формулой:
σ = 1 / ρ .
Здесь ρ называется удельным сопротивлением. Вы можете рассчитать электрическое сопротивление R проводника с учетом его параметров следующим образом: R = ( ρ * l ) / S .
Таким образом, сопротивление R равно удельному сопротивлению ρ , умноженному на длину проводника l, деленному на площадь поперечного сечения S. Если теперь вы хотите выразить эту формулу через удельную электропроводность σ = 1 / ρ , полезно знать, что электрическая проводимость G проводника выражается следующим образом: G = 1 / R .
Если в верхнюю формулу подставить удельную электропроводность σ и электрическую проводимость G, то получится следующее: 1 / G = ( 1 / σ ) * ( l / S ) .
Путем дальнейшего преобразования можно получить выражение: G = σ * S / l .
С помощью электропроводности можно также описать важную зависимость между плотностью электрического тока и напряженностью электрического поля с помощью выражения: J = σ * E .
Единица измерения
Единицей удельной электропроводности σ в СИ является: [ σ ] = 1 См/м ( Сименс на метр ).
Эти единицы определяются по формуле G = σ * S / l . Если решить эту формулу в соответствии с σ, то получим σ = G * l / S .
Единица измерения электрической проводимости G задается как: [ G ] = 1 / σ = 1 См ( Сименс, международное обозначение: S ).
Если теперь ввести в формулу все единицы измерения, то получится:
[ σ ] = 1 См * 1 м / м 2 = 1 См / м .
Вы также будете чаще использовать единицы измерения См / см , м / Ом * мм 2 или См * м / мм 2 . Вы можете преобразовать отдельные измеряемые переменные так: См / см = См / 10 -2 м и так: м / Ом * мм 2 = См * м / мм 2 = См * м / 10 -3 м * 10 -3 м = 10 6 См / м .
Электропроводность металлов
В зависимости от количества свободно перемещающихся электронов один материал проводит лучше, чем другой. В принципе, любой материал является проводящим, но в изоляторах, например, протекающий электрический ток ничтожно мал, поэтому здесь мы говорим о непроводниках.
В металлических связях валентные электроны, т.е. крайние электроны в атоме, свободно подвижны. Они расположены в так называемой полосе проводимости. Находящиеся там электроны образуют так называемый электронный газ. Соответственно, металлы являются сравнительно хорошими проводниками. Если теперь подать электрическое напряжение на металл, валентные электроны медленно движутся к положительному полюсу, потому что он их притягивает.
Рис. 1. Движение электронов в металле
На рисунке 1 видно, что некоторые электроны не могут быть притянуты непосредственно к положительному полюсу, потому что на пути стоит, так сказать, твердое атомное ядро. Там они замедляются и в некоторой степени отклоняются. Именно поэтому электроны не могут ускоряться в металле бесконечно, и именно так возникает удельное сопротивление или электропроводность.
Теперь вы также можете измерить удельную электропроводность в металле с помощью следующей формулы: σ = ( n * e 2 * τ ) / m .
В этой формуле n означает число электронов, e – заряд электрона, m – массу электрона, а τ – среднее время полета электрона между двумя столкновениями.
Таблица удельной электропроводности
Для большинства веществ уже известны значения удельной электропроводности. Некоторые из них вы можете найти в следующей таблице ниже. Все значения в этой таблице действительны для комнатной температуры, т.е. 25°C.
Вещество | Удельная электропроводность в См / м |
Серебро | 62 · 10 6 |
Медь | 58 · 10 6 |
Золото | 45,2 · 10 6 |
Алюминий | 37,7 · 10 6 |
Вольфрам | 19 · 10 6 |
Латунь | 15,5 · 10 6 |
Железо | 9,93 · 10 6 |
Нержавеющая сталь (WNr. 1,4301) | 1,36 · 10 6 |
Германий (легирование | 2 |
Кремний (легирование | 0,5 · 10 -3 |
Морская вода | примерно 5 |
Водопроводная вода | примерно 0,05 |
Дистиллированная вода | 5 · 10 -6 |
Изолятор | обычно |
Удельная электропроводность сильно зависит от температуры, поэтому указанные значения применимы только при 25°C. При повышении температуры вибрация решетки в веществе становится выше. Это нарушает поток электронов, и поэтому электропроводность уменьшается с ростом температуры.
Из таблицы видно, что медь имеет вторую по величине электропроводность, поэтому медные кабели очень часто используются в электротехнике. Серебро обладает еще более высокой проводимостью, но стоит намного дороже меди.
Интересно также сравнение между морской и дистиллированной водой. Здесь электропроводность возникает благодаря растворенным в воде ионам. Морская вода имеет очень высокую долю соли, которая растворяется в воде. Эти ионы передают электрический ток. В дистиллированной воде нет растворенных ионов, поэтому в ней практически не может протекать электрический ток. Поэтому электропроводность морской воды намного выше, чем дистиллированной.
Примеры задач
Для более детального рассмотрения приведём два примера расчетов.
В первой задаче представьте, что у вас есть провод длиной 2 м с поперечным сечением 0,5 мм 2 . Электрическое сопротивление провода при комнатной температуре составляет 106 мОм. Из какого материала изготовлен провод?
Решение данной задачи можно найти с помощью формулы: R = ( 1 / σ ) * ( l / S ). Из этой формулы найдём σ = l / ( S * R ) .
Теперь вы можете вставить заданные значения, убедившись, что вы перевели сечение в м 2 .
σ = l / ( S * R ) = 2 м / ( ( 0,5 * 10 -6 м 2 ) * ( 1 / 106 * 10 -3 Ом ) ) = 37, 7 * 10 6 См / м .
Наконец, вы ищите в таблице, какой материал имеет удельную электропроводность σ = 37, 7 * 10 6 См / м и приходите к выводу, что провод сделан из алюминия.
В задаче 2 вам дано только удельное сопротивление образца с 735 * 10 -9 Ом * м. Из какого материла изготовлен образец?
Вы можете использовать формулу σ = 1 / ρ для расчёта удельной электропроводности. После подстановки значений в эту формулу вы получите: σ = 1 / ρ = 1 / 735 * 10 -9 Ом * м = 1,36 * 10 6 См / м .
Если вы снова заглянете в таблицу, то обнаружите, что образец должен быть изготовлен из нержавеющей стали.
Удельное сопротивление для распространенных материалов: таблица
Приведенная ниже таблица удельного электрического сопротивления содержит значения удельного сопротивления для многих веществ, широко используемых в электрике и электронике. В частности, она включает в себя удельное сопротивление меди, алюминия, нихрома, стали, никеля и так далее.
Удельное электрическое сопротивление особенно важно, поскольку оно определяет электрические характеристики и, следовательно, пригодность материала для использования во многих электрических компонентах. Например, можно увидеть, что удельное сопротивление меди, удельное сопротивление алюминия, а также нихрома, никеля, серебра, золота и т.д. определяет, где эти металлы используются.
Для того чтобы сравнить способность различных материалов проводить электрический ток, используются показатели удельного сопротивления.
Что означают показатели удельного сопротивления?
Для того чтобы иметь возможность сравнивать удельное сопротивление различных материалов, от таких изделий, как медь и алюминий, до других металлов и веществ, включая висмут, латунь и даже полупроводники, необходимо использовать стандартное измерение.
Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м.
Единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м 2 , изготовленный из этого вещества, имеет сопротивление, равное 1 Ом. Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м 2
[1]
Таблица удельного сопротивления для распространенных проводников
В таблице ниже приведены показатели удельного сопротивления для различных материалов, в частности металлов, используемых для электропроводности.
Показатели удельного сопротивления приведены для таких “популярных” материалов, как медь, алюминий, нихром, сталь, свинец, золото и других.
Материал | Удельное сопротивление, ρ, при 20 °C (Ом·м) | Источник |
---|---|---|
Латунь | ~0.6 – 0.9 x 10 -7 | |
Серебро | 1.59×10 −8 | [3][4] |
Медь | 1.68×10 −8 | [5][6] |
Обожжённая медь | 1.72×10 −8 | [7] |
Золото | 2.44×10 −8 | [3] |
Алюминий | 2.65×10 −8 | [3] |
Кальций | 3.36×10 −8 | |
Вольфрам | 5.60×10 −8 | [3] |
Цинк | 5.90×10 −8 | |
Кобальт | 6.24×10 −8 | |
Никель | 6.99×10 −8 | |
Рутений | 7.10×10 −8 | |
Литий | 9.28×10 −8 | |
Железо | 9.70×10 −8 | [3] |
Платина | 1.06×10 −7 | [3] |
Олово | 1.09×10 −7 | |
Тантал | 1.3×10 −7 | |
Галлий | 1.40×10 −7 | |
Ниобий | 1.40×10 −7 | [8] |
Углеродистая сталь (1010) | 1.43×10 −7 | [9] |
Свинец | 2.20×10 −7 | [2][3] |
Галинстан | 2.89×10 −7 | [10] |
Титан | 4.20×10 −7 | |
Электротехническая сталь | 4.60×10 −7 | [11] |
Манганин (сплав) | 4.82×10 −7 | [2] |
Константан (сплав) | 4.90×10 −7 | [2] |
Нержавеющая сталь | 6.90×10 −7 | |
Ртуть | 9.80×10 −7 | [2] |
Марганец | 1.44×10 −6 | |
Нихром (сплав) | 1.10×10 −6 | [2][3] |
Углерод (аморфный) | 5×10 −4 – 8×10 −4 | [3] |
Углерод (графит) параллельно-базальная плоскость | 2.5×10 −6 – 5.0×10 −6 | |
Углерод (графит) перпендикулярно-базальная плоскость | 3×10 −3 | |
Арсенид галлия | 10 −3 to 10 8 | |
Германий | 4.6×10 −1 | [3][4] |
Морская вода | 2.1×10 −1 | |
Вода в плавательном бассейне | 3.3×10 −1 – 4.0×10 −1 | |
Питьевая вода | 2×10 1 – 2×10 3 | |
Кремний | 2.3×10 3 | [2][3] |
Древесина (влажная) | 10 3 – 10 4 | |
Деионизированная вода | 1.8×10 5 | |
Стекло | 10 11 – 10 15 | [3][4] |
Углерод (алмаз) | 10 12 | |
Твердая резина | 10 13 | [3] |
Воздух | 10 9 – 10 15 | |
Древесина (сухая) | 10 14 – 10 16 | |
Сера | 10 15 | [3] |
Плавленый кварц | 7.5×10 17 | [3] |
ПЭТ | 10 21 | |
Тефлон | 10 23 – 10 25 |
Видно, что удельное сопротивление меди и удельное сопротивление латуни оба низкие, и с учетом их стоимости, относительно серебра и золота, они становятся экономически эффективными материалами для использования для многих проводов. Удельное сопротивление меди и простота ее использования привели к тому, что она также используется крайне часто в качестве материала для проводников на печатных платах.
Изредка алюминий и особенно медь используются из-за их низкого удельного сопротивления. Большинство проводов, используемых в наши дни для межсоединений, изготовлены из меди, поскольку она обеспечивает низкий уровень удельного сопротивления при приемлемой стоимости.
Удельное сопротивление золота также важно, поскольку золото используется в некоторых критических областях, несмотря на его стоимость. Часто золотое покрытие встречается на высококачественных слаботочных разъемах, где оно обеспечивает самое низкое сопротивление контактов. Золотое покрытие очень тонкое, но даже в этом случае оно способно обеспечить требуемые характеристики разъемов.
Серебро имеет очень низкий уровень удельного сопротивления, но оно не так широко используется из-за его стоимости и из-за того, что оно тускнеет, что может привести к более высокому сопротивлению контактов.
Однако оно используется в некоторых катушках для радиопередатчиков, где низкое удельное электрическое сопротивление серебра снижает потери. При использовании в таких целях серебро обычно наносилось только на существующий медный провод. Покрытие провода серебром позволило значительно снизить затраты по сравнению с цельным серебряным проводом без существенного снижения производительности.
Другие материалы в таблице удельного электрического сопротивления могут не иметь такого очевидного применения. Тантал фигурирует в таблице, поскольку используется в конденсаторах – никель и палладий используются в торцевых соединениях многих компонентов поверхностного монтажа, таких как конденсаторы.
Кварц находит свое основное применение в качестве пьезоэлектрического резонансного элемента. Кварцевые кристаллы используются в качестве частотоопределяющих элементов во многих осцилляторах, где высокое значение Q позволяет создавать очень стабильные по частоте схемы. Аналогичным образом они используются в высокоэффективных фильтрах. Кварц имеет очень высокий уровень удельного сопротивления и не является хорошим проводником электричества, то есть его относят к категории диэлектрикам.
Проводниковые материалы: медь, алюминий, бронза, латунь.
К проводниковым материалам в электротехнике относятся металлы, их сплавы, контактные металлокерамические композиции и электротехнический уголь. Металлические вещества являются проводниками первого рода и характеризуются электронной проводимостью; основной параметр для них — удельное электрическое сопротивление в функции температуры.
Диапазон удельных сопротивлений металлических проводников весьма узок и составляет от 0,016 мкОм×м для серебра до 1,6 мкОм×м для жаростойких железохромоалюминиевых сплавов.
Электрическое сопротивление графита с увеличением температуры проходит через минимум с последующим постепенным повышением.
· проводники с высокой проводимостью — металлы для проводов линий электропередачи и для изготовления кабелей, обмоточных и монтажных проводов для обмоток трансформаторов, электрических машин, аппаратуры, катушек индуктивности и пр.;
· конструкционные материалы — бронзы, латуни, алюминиевые сплавы и т.д., применяемые для изготовления различных токоведущих частей;
· сплавы высокого сопротивления — предназначаемые для изготовления дополнительных сопротивлений к измерительным приборам, образцовых сопротивлений и магазинов сопротивлений, реостатов и элементов нагревательных приборов, а также сплавы для термопар, компенсационных проводов и т.п.;
· контактные материалы — применяемые для пар неразъемных, разрывных и скользящих контактов;
· материалы для пайки всех видов проводниковых материалов.
Кроме чисто электротехнических свойств, для проведения необходимой технологической обработки и обеспечения заданных сроков службы в эксплуатации, проводниковые материалы должны обладать достаточной нагревостойкостью, механической прочностью и пластичностью.
2. Медь
Чистая медь по электрической проводимости занимает следующее место после серебра, обладающего из всех известных проводников наивысшей проводимостью. Высокая проводимость и стойкость к атмосферной коррозии в сочетании с высокой пластичностью делают медь основным материалом для проводов.
На воздухе медные провода окисляются медленно, покрываясь тонким слоем окиси CuO, препятствующим дальнейшему окислению меди. Коррозию меди вызывают сернистый газ SO2, сероводород H2S, аммиак NH3, окись азота NO, пары азотной кислоты и некоторые другие реактивы.
Проводниковую медь получают из слитков путем гальванической очистки ее в электролитических ваннах. Примеси даже в ничтожных количествах, резко снижают электропроводность меди, делая ее малопригодной для проводников тока, поэтому в качестве электротехнической меди применяют лишь две ее марки М0 и М1.
Почти все изделия из проводниковой меди изготавливаются путем проката, прессования и волочения. Так, волочением могут быть изготовлены провода диаметром до 0,005 мм, ленты толщиной до 0,1 мм и медная фольга толщиной до 0,008 мм.
При температурах термообработки выше 900 °C вследствие интенсивного роста зерна механические свойства меди резко ухудшаются.
В целях повышения предела ползучести и термической устойчивости медь легируют серебром в пределах 0,07—0,15%, а также магнием, кадмием, цирконием и другими элементами.
3. Латуни
Сплавы меди с цинком, называемые латунями, широко используются в электротехнике. Цинк растворяется в меди в пределах до 39%.
В различных марках латуни содержание цинка может доходить до 43%. Латуни, содержащие до 39% цинка, имеют однофазную структуру твердого раствора и называются a-латунями. Эти латуни обладают наибольшей пластичностью, поэтому из них изготавливают детали горячей или холодной прокаткой и волочением: листы, ленты, проволоку. Без нагрева из листовой латуни методом глубокой вытяжки и штамповкой можно изготовить детали сложной конфигурации.
Латуни с содержанием цинка свыше 39% называют a+b-латунями или двухфазными и применяют главным образом для фасонных отливок.
Присадка к латуням олова, никеля и марганца повышает механические свойства и антикоррозионную устойчивость, а добавки алюминия в композиции с железом, никелем и марганцем сообщают латуням кроме улучшения механических свойств и коррозионной стойкости высокую твердость. Однако присутствие в латунях алюминия затрудняет пайку, а проведение пайки мягкими припоями становится практически невозможным.
· латуни марок Л68 и Л63 вследствие высокой пластичности хорошо штампуются и допускают гибку, легко паяются всеми видами припоев. В электромашиностроении широко применяются для различных токоведущих частей;
· латунь ЛА67-2,5 применяется для литых токоведущих деталей повышенной механической прочности и твердости, не требующих пайки мягкими припоями;
· латуни ЛК80-3Л и ЛС59-1Л широко применяются для литых токоведущих деталей электрической аппаратуры, для щеткодержателей и для заливки роторов асинхронных двигателей. Хорошо воспринимают пайку различными припоями.
4. Проводниковые бронзы
Проводниковые бронзы относятся к медным сплавам, необходимость применения которых в основном вызвана недостаточной в ряде случаев механической прочностью и термической устойчивостью чистой меди.
Общая номенклатура бронз весьма обширна, но высокой электропроводностью обладают лишь немногие марки бронз.
· кадмиевая бронза относится к наиболее распространенным проводниковым бронзам. Из числа всех марок кадмиевая бронза обладает наивысшей электрической проводимостью. Вследствие повышенного сопротивления истиранию и более высокой нагревостойкости эта бронза широко применяется для изготовления троллейных проводов и коллекторных пластин;
· бериллиевая бронза относится к сплавам, приобретающим прочность в результате старения. Она обладает высокими упругими свойствами, устойчивыми при нагревании до 250 °C, и электрической проводимостью в 2—2,5 раза большей, чем проводимость других марок бронз общего назначения. Эта бронза нашла широкое применение для изготовления различных пружинных деталей, выполняющих одновременно и роль проводника тока, например: токоведущие пружины, отдельные виды щеткодержателей, скользящие контакты в различных приборах, штепсельные разъемы и т.п.;
· фосфористая бронза обладает высокой прочностью и хорошими пружинными свойствами, из-за малой электропроводности применяется для изготовления пружинных деталей с низкими плотностями тока.
Литые токоведущие детали изготовляются из различных марок машиностроительных литьевых бронз с проводимостью в пределах 8—15% проводимости чистой меди. Характерной особенностью бронз является малая усадка по сравнению с чугуном и сталью и высокие литейные свойства, поэтому они применяются для отливки различных токоведущих деталей сложной конфигурации, предназначенных для электрических машин и аппаратов.
Все марки литьевых бронз можно подразделить на оловянные и безоловянные, где основными легирующими элементами являются Al, Mn, Fe, Pb, Ni.
5. Алюминий
Характерными свойствами чистого алюминия является его малый удельный вес, низкая температура плавления, высокая тепловая и электрическая проводимость, высокая пластичность, очень большая скрытая теплота плавления и прочная, хотя и очень тонкая пленка окиси, покрывающая поверхность металла и защищающая его от проникновения кислорода внутрь.
Хорошая электрическая проводимость обеспечивает широкое применение алюминия в электротехнике. Так как плотность алюминия в 3,3 раза ниже, чем у меди, а удельное сопротивление лишь в 1,7 раза выше, чем у меди, то алюминий, на единицу массы имеет вдвое более высокую проводимость, чем медь.
Прочная пленка окиси быстро покрывает свежий срез металла уже при комнатной температуре, обеспечивая алюминию высокую устойчивость против коррозии в атмосферных условиях.
Сернистый газ, сероводород, аммиак и другие газы, находящиеся в воздухе промышленных районов, не оказывают заметного влияния на скорость коррозии алюминия. Действие водяного пара на алюминий также незначительно. В контакте с большинством металлов и сплавов, являющихся благородными по электрохимическому ряду потенциалов, алюминий служит анодом и, следовательно, коррозия его в электролитах будет прогрессировать.
Чтобы избежать образования гальванопар во влажной атмосфере, место соединения алюминия с другими металлами герметизируется лакировкой или другим путем.
Таблица 1. Основные характеристики проводниковых материалов
Плотность, кг/м 3 ·10 3
Удельное электрическое сопротивление при 20 °C, Ом×м·10 –6
Средний температурный коэффициент сопротивления от 0 до 100 °C, 1/град
Провода, кабели, шины, проводники короткозамкнутых роторов, корпуса и подшипниковые щиты малых электромашин
Читайте также: