Электрохимический ряд напряжений металлов вытеснение металлов из растворов солей другими металлами

Обновлено: 08.01.2025

Ряд напряжений металлов справедлив лишь для реакций, протекающих в водных растворах.

Металлы в ряду напряжений расположены по убыванию их восстановительной способности в растворах. Ряд напряжений металлов позволяет определить возможность прохождения реакций металлов с растворами кислот, солей и водой.

Взаимодействие с водой:

С водой с образованием основания и водорода взаимодействуют только активные металлы (стоящие в ряду напряжений до алюминия).

Взаимодействие с кислотами:

Водород из кислот вытесняют металлы, стоящие в ряду напряжений до водорода.

Взаимодействие с растворами солей

Более активный металл (стоящий в ряду напряжений левее) вытесняет менее активный металл из раствора его соли.

Свойства веществ в свете теории электролитической диссоциации. Ионные реакции.

Химические свойства кислот

1.кислота + металл (стоящий до водорода в ряду напряжений)

2HCl + Mg MgCl2 + H2 2H + + 2Cl - +Mg Mg 2+ + 2Cl - + H2 2H + + Mg Mg 2+ + H2

2.кислота + основный оксид

2HCl + MgO MgCl2 + H2O 2H + + 2Cl - + MgO Mg 2+ + 2Cl - + H2O 2H + +MgO Mg 2+ + H2O

3. кислота + основание

HCl + NaOH NaCl + H2O H + + Cl - + Na + + OH - Na + + Cl - + H2O H + +OH - H2O

4. кислота + соль

HCl + AgNO3 AgCl + HNO3 H + + Cl - + Ag + + NO3 - AgCl + H + +NO3 - Ag + + Cl - AgCl

Химические свойства щелочей

NaOH + HCl NaCl + H2O Na + + OH - + H + + Cl - Na + + Cl - + H2O H + + OH - H2O

2.щёлочь + кислотный оксид

2NaOH + MgCl2 Mg(OH)2 + 2NaCl 2Na + + 2OH - + Mg 2+ + 2Cl - Mg(OH)2 +2Na + +2Cl - 2OH - + Mg 2+ Mg(OH)2

Химические свойства солей

Fe + CuSO4 FeSO4 + Cu Fe + Cu 2+ +SO4 2- Fe 2+ + SO4 2- + Cu Fe + Cu 2+ Fe 2+ + Cu

2NaOH + MgCl2 Mg(OH)2 + 2NaCl 2Na + +2OH - +Mg 2+ +2Cl - Mg(OH)2 + 2Na + + 2Cl - 2OH - + Mg 2+ Mg(OH)2

HCl + AgNO3 AgCl + HNO3 H + + Cl - + Ag + + NO3 - AgCl + H + + NO3 - Ag + + Cl - AgCl

NaCl +AgNO3 AgCl + NaNO3 Na + + Cl - + Ag + + NO3 - AgCl + Na + +NO3 - Ag + + Cl - AgCl

Крахмал. Нахождение в природе, гидролиз крахмала, применение.

Крахмал (C6H10O5)n - аморфный порошок белого цвета, без вкуса и запаха, плохо растворим в воде, в горячей воде образует коллоидный раствор (клейстер). Макромолекулы крахмала построены из большого числа остатков α-глюкозы. Крахмал состоит из двух фракций: амилозы и амилопектина. Амилоза имеет линейные молекулы, амилопектин – разветвлённые.

Биологическая роль.

Крахмал – один из продуктов фотосинтеза, главное питательное запасное вещество растений. Крахмал – основной углевод в пище человека.

Получение.

Крахмал получают чаще всего из картофеля. Для этого картофель измельчают, промывают водой и перекачивают в большие сосуды, где происходит отстаивание. Полученный крахмал ещё раз промывают водой, отстаивают и сушат в струе теплого воздуха.

Химические свойства.

1. С иодом крахмал даёт фиолетовое окрашивание.

2. Крахмал – многоатомный спирт.

3. Крахмал сравнительно легко подвергается гидролизу в кислой среде и под действием ферментов:

В зависимости от условий гидролиз крахмала может протекать ступенчато, с образованием различных промежуточных продуктов:

крахмал растворимый декстрины мальтоза глюкоза

Происходит постепенное расщепление макромолекул.

Применение крахмала.

Крахмал применяется в кондитерском производстве (получение глюкозы и патоки), является сырьём для производства этилового, н-бутилового спиртов, ацетона, лимонной кислоты, глицерина и так далее. Он используется в медицине в качестве наполнителей (в мазях и присыпках), как клеящее вещество.

Крахмал является ценным питательным продуктом. Чтобы облегчить его усвоение, содержащие крахмал продукты подвергают действию высокой температуры, то есть картофель варят, хлеб пекут. В этих условиях происходит частичный гидролиз крахмала и образуются декстрины, растворимые в воде. Декстрины в пищеварительном тракте подвергаются дальнейшему гидролизу до глюкозы, которая усваивается организмом. Избыток глюкозы превращается в гликоген (животный крахмал). Состав гликогена такой же, как у крахмала, – (C6H10O5)n, но его молекулы более разветвлённые.

Общие способы получения металлов.

Природные минералы и горные породы, содержащие металлы и пригодные для их промышленного получения, называются рудами. По составу большинство руд представляют собой оксиды.

1.Восстановление металлов из оксидов происходит разными способами:

1) восстановление углеродом:

2ZnO + C → 2Zn + CO2

восстановление оксидом углерода (II):

восстановление другими металлами (металлотермия):

2.Из растворов солей металлы можно выделить действием более активного металла:

3. Для получения активных металлов используют электролиз растворов и расплавов солей. Электролиз – окислительно-восстановительный процесс, протекающий при прохождении электрического тока через электролит. Катод (отрицательный электрод) – восстановитель, анод (положительный электрод) – окислитель, он забирает электроны.

Если в расплав хлорида натрия опустить электроды и пропустить постоянный электрический ток, то на катоде выделится натрий, а на аноде – хлор:

NaCl Na + +Cl -

катод (-) Na + + 1e → Na 0

анод (+) Cl - - 1e → Cl 0 Cl 0 + Cl 0 → Cl2

Суммарный процесс: 2NaCl →2Na+Cl2

Целлюлоза, состав, физические и химические свойства, применение. Понятие об искусственных волокнах на примере ацетатного волокна.

Целлюлоза (C6H10O5)n – природный полимер, полисахарид, состоящий из остатков β-глюкозы, молекулы имеют линейное строение. В каждом остатке молекулы глюкозы содержатся три гидроксильные группы, поэтому она проявляет свойства многоатомного спирта.

Физические свойства

Целлюлоза – волокнистое вещество, нерастворимое ни в воде, ни в обычных органических растворителях, гигроскопична. Обладает большой механической и химической прочностью.

Химические свойства

1. Целлюлоза – полисахирид, подвергается гидролизу с образованием глюкозы:

2. Целлюлоза – многоатомный спирт, вступает в реакции этерификации с образованием сложных эфиров

Ацетаты целлюлозы – искусственные полимеры, применяются в производстве ацетатного шёлка, плёнки (киноплёнки), лаков.

Применение

Применение целлюлозы весьма разнообразно. Из неё получают бумагу, ткани, лаки, плёнки, взрывчатые вещества, искусственный шёлк (ацетатный, вискозный), пластмассы (целлулоид), глюкозу и многое другое.

Окислительно-восстановительные реакции (на примере взаимодействия алюминия с оксидом железа (III), азотной кислоты с медью).

Химические реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ, называются окислительно-восстановительными.

В окислительно-восстановительных реакциях всегда происходит присоединение или отдача электронов атомами элементов. Это единый взаимосвязанный процесс.

Если атом, ион или молекула в процессе реакции отдают электроны, то они называются восстановителями, а сам процесс отдачи электронов – окислением:

Al 0 -3e→Al +3 ; Fe +2 -1e→Fe +3 ;

Если атом в процессе реакции принимает электроны, то он называется окислителем, а сам процесс присоединения электронов – восстановлением. Например:

S 0 +2e→S -2 ; N +5 +1e→N +4 ;

Атомы металлов – восстановители; атомы неметаллов – окислители. Наиболее сильный восстановитель - франций (Fr), а наиболее сильный окислитель – фтор (F).

Взаимодействие алюминия с оксидами металлов имеет большое практическое значение в промышленности для получения таких металлов, как хром, марганец, титан, вольфрам. Этот способ получил название алюминотермии.

Fe +3 +3e→Fe 0 3 1 окислитель

Al 0 -3e→Al +3 3 1 восстановитель

Взаимодействие азотной кислоты с медью.

Особенности азотной кислоты: она взаимодействует почти со всеми металлами, при этом никогда не выделяется водород.

Взаимодействие концентрированной азотной кислоты с медью приводит к восстановлению её до оксида азота (IV):

N +1e → N 1 2 окислитель

Cu -2e → Cu 2 1 восстановитель

Анилин - представитель ароматических аминов; строение и свойства; получение и применение.

Аминами называются производные аммиака, в молекулах которых один или несколько атомов водорода замещены углеводородными радикалами:

CH3 – NH2 C2H5 – NH2 C3H7 – NH2

метиламин этиламин пропиламин

Группа -NH2 называется аминогруппой. Амины – органические основания.

Наибольшее практическое значение имеет ароматический амин анилин. C6H5 – NH2 (фениламин)

Анилин представляет собой бесцветную маслянистую жидкость с характерным запахом. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит. Анилин более слабое основание, чем амины предельного ряда.

Химические свойства

Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу. Особенности этих реакций обусловлены взаимным влиянием атомов.

С одной стороны, бензольное кольцо ослабляет основные свойства аминогруппы по сравнению алифатическими аминами. С другой стороны, под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения, чем бензол. 1. Анилин энергично реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок). Эта реакция может использоваться для качественного определения анилина:

Электрохимический ряд напряжений металлов

Li. Rb. K. Ba. Sr. Ca. Na. Mg. Al. Mn. Zn. Cr. Fe. Cd. Co.

Ni. Sn. Pb. H... Sb. Bi. Cu. Hg. Ag. Pb. Pt. Au.

В соответствии с этим металлы подразделяются на три группы:

– активные, имеющие значения стандартных окислительно-восстановительных потенциалов от наиболее отрицательного (у лития) до потенциала алюминия (Li-Аl);

– средней активности (Аl-Н2);

– малоактивные (Н2-Аu).

Чем левее расположен металл в ряду напряжений, тем выше его восстановительная способность и тем слабее окислительная способность его катиона в растворе.

Металл способен вытеснять из растворов солей только те металлы (т.е. окисляться их катионом), которые стоят в этом ряду правее него.

Металлы, расположенные левее водорода, способны вытеснять его из растворов кислот, т.е. окисляться катионом водорода кислоты.

Наиболее распространенные окислители металлов:

– катион водорода (протон) в молекулах воды и «кислотах – неокислителях»: разбавленной H2SO4, галогеноводородных кислотах, Н3РО4, Н2S, НСΝ, органических кислотах и некоторых других;

– вода в щелочной среде;

– элементы в высших степенях окисления, входящие в состав «кислот – окислителей»: S +6 в концентрированной H2SO4, N +5 в HNO3 любой концентрации.

– катион менее активного металла в растворе его соли.

Реакции металлов с окислителями сопровождается образованием продуктов восстановления окислителей, состав которых зависит от природы реагирующих веществ (см. ниже таблицу 8.2. и раздел "Влияние на ОВР металлов поверхностных пленок").

При окислении металлов концентрированной H2SO4 и HNO3 любой концентрации образуется смесь продуктов восстановления частиц S +6 и N +5 , среди которых имеются преобладающие вещества (таблица 8.2).

Таблица 8.2 – Состав преобладающих продуктов восстановления окислителя в зависимости от природы металла и окислителя

Активность металла Окислитель Преобладающие продукты восстановления окислителя
Активные металлы H2O (при pH=7) H2
С водой взаимодействуют только Li,K,Rb,Cs,Ba,Sr,Ca,Na, Mg (при нагр.)
Be, Al, Zn H2O (при pH>7) в щелочной среде H2
Mg, Be, Al, Мn Zn (при норм. условиях)

H + в составе кислот-неоки-

H2
N +5 в конц.HNO3 NO2
N +5 в разб HNO3 N2
N +5 в очень разб. HNO3 NH3 (NH4NO3)
S +6 в конц. H2SO4 H2S
Металлы средней активности а H2O (при pH>7) в щелочной среде H2
Sn, Pb, Ge
Fe, Ni, Cr , Sn, Pb, Zn (при нагревании) H + в кислотах-неокисли-телях H2
конц. HNO3 NO2
разб.HNO3 N2O
очень разб.HNO3 N2
конц. H2SO4 S
Неактивные металлы конц. HNO3 разб. HNO3 очень. разб. HNO3 конц. H2SO4 NO2 NO NO SO2
Взаимодействуют только Cu, Hg, Ag Взаимодействуют только Cu и Hg

Металлы со стабильной высшей степенью окисления при окислении конц. HNO3 могут в качестве преобладающих продуктов реакции давать кислоты с высшей степенью окисления металла, например:

Общая схема реакции металлов с кислотами – окислителями:

Me + HNO3 → Me(NO3)x + H2O + преобладающий продукт восстановления

кислоты в зависимости от ее концентрации

Влияние на ОВР металлов поверхностных пленок:

1. В конц. H2SO4 устойчивы Al, Cr и Fe вследствие пассивации (реакция начинается, а затем прекращается из-за образования на поверхности инертного слоя).

2. В конц. HNO3 при нормальной температуре устойчивы из-за пассивации Al, Fe, Cо, Ni, Cr (они начинают реагировать, а затем окисление прекращается из-за образования на поверхности инертного слоя).

3. Не окисляется HNO3 любой концентрации:

– Au, Ru, Os, Pd, Pt, Rh, Jr вследствие их термодинамической устойчивости;

– Ti, Ta, Zr, Hf, Νb из-за пассивации (Ti не окисляется ни разб., ни конц. HNO3).

4. Разбавленная H2SO4 и HCl не окисляют Pb из-за пассивации нерастворимыми солями (реакция начинается, а затем прекращается).

5. На поверхности ряда металлов (Be, Al, Sn, Zn, Pb ) образуются нерастворимые амфотерные оксиды, поэтому они не окисляются H2O в нейтральной среде. Однако в щелочной среде эти металлы реагируют с водой, т.к. у образующихся амфотерных оксидов, а затем и гидроксидов преобладают кислотные свойства, вследствие чего они взаимодействуют со щелочью, образуя растворимые соли.

Электрохимический ряд напряжений металлов (ряд Бекетова)

Первоначально Бекетов предполагал, что способность одних металлов вытеснять из растворов солей другие металлы связана с их плотностью: более лёгкие металлы способны вытеснять металлы более тяжелые. Но опыты говорили о ином. Непонятно было и то, как связан “вытеснительный ряд” с рядом напряжений Алессандро Вольта. Со временем накапливалось всё больше экспериментальных данных того, что некоторые правила вытеснения нарушаются при определенных условиях. Бекетов обнаружил, что водород под давлением 10 атмосфер вытесняет серебро из раствора нитрата серебра. Английский химик Уильям Одлинг (1829-1921) описал множество случаев подобных аномалий. Например, медь вытесняет олово из концентрированного подкисленного раствора хлорида олова (II) и свинец – из кислого раствора хлорида свинца (II). Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора хлорид кадмия.

Теоретическую основу ряда активности (и ряда напряжений) заложил немецкий физикохимик Вальтер Нернст (1864-1941). Вместо качественной характеристики – “склонности” металла и его иона к тем или иным реакциям – появилась точная количественная величина. Такой величиной стал стандартный электродный потенциал металла, а соответствующий ряд, выстроенный в порядке изменения потенциалов, называется рядом стандартных электродных потенциалов.

Электрохимический ряд напряжений металлов (ряд Бекетова) это последовательность расположения металлов и их ионов в порядке возрастания стандартных электродных потенциалов в растворах электролитов. Электродом сравнения обычно служит стандартный водородный электрод, электродный потенциал которого условно принимается равным нулю.

Восстановленная форма Число отданных електронов Окисленная форма Стандартный электродный потенциал, В
Li 1e Li + -3,05
K 1e K + -2,925
Rb 1e Rb + -2,925
Cs 1e Cs + -2,923
Ba 2e Ba 2+ -2,91
Sr 2e Sr 2+ -2,89
Ca 2e Ca 2+ -2,87
Na 1e Na + -2,71
Mg 2e Mg 2+ -2,36
Al 3e Al 3+ -1,66
Mn 2e Mn 2+ -1,18
Zn 2e Zn 2+ -0,76
Cr 3e Cr 3+ -0,74
Fe 2e Fe 2+ -0,44
Cd 2e Cd 2+ -0,40
Co 2e Co 2+ -0,28
Ni 2e Ni 2+ -0,25
Sn 2e Sn 2+ -0,14
Pb 2e Pb 2+ -0,13
Fe 3e Fe 3+ -0,04
H2 2e 2H + 0,00
Cu 2e Cu 2+ 0,34
Cu 1e Cu + 0,52
2Hg 2e Hg2 2+ 0,79
Ag 1e Ag + 0,80
Hg 2e Hg 2+ 0,85
Pt 2e Pt 2+ 1,20
Au 3e Au 3+ 1,50

Место каждого элемента в ряду напряжений условно, т.к. величина электродного потенциала зависит от температуры и состава раствора, в который погружены электроды, в частности от концентрации ионов. Большое значение также имеет состояние поверхности электрода (гладкая, шероховатая). Стандартный электродный потенциал относится к водным растворам при температуре 25 °С, давлении газов 1 атмосфера и концентрации ионов 1 моль/л.

Из электрохимического ряда напряжений металлов вытекает ряд важных следствий:

  1. Каждый металл способен вытеснять (замещать) из растворов солей все другие металлы, стоящие правее данного металла;
  2. Все металлы, расположенные левее водорода, способны вытеснять его из кислот;
  3. Чем дальше расположены друг от друга два металла в ряду напряжений, тем большее напряжение может давать созданный из них гальванический элемент.

Восстановление водородом из оксидов

Металлы, которые водород не восстанавливает из их оксидов

Электрохимический ряд напряжений металлов. Вытеснение металлов из солей другими металлами

Металлы в химических реакциях всегда восстановители. Восстановительную активность металла отображает его положение в электрохимическом ряду напряжений.

На основании ряда можно сделать следующие выводы:

1. Чем левее стоит металл в этом ряду, тем более сильным восстановителем он является.

2. Каждый металл способен вытеснять из солей в растворе те металлы, которые стоят правее

3. Металлы, находящиеся в ряду напряжений левее водорода способны вытеснять его из кислот.

Zn + 2HCl → ZnCl2 + H2

4. Металлы, являющиеся самыми сильными восстановителями (щелочные и щелочноземельные) в любых водных растворах прежде сего реагируют с водой.

Восстановительная способность металла, определённая по электрохимическому ряду не всегда соответствует его положению в периодической системе т.к в ряду напряжений учитывается не только радиус атома, но и энергия отрыва электронов.

Альдегиды, их строение и свойства. Получение, применение муравьиного и уксусного альдегидов.

Альдегиды – это органические соединения, в состав молекулы которых входит карбонильная группа, соединённая с водородом и углеводородным радикалом.

Физические свойства

Метаналь – газообразное вещество, водный раствор – формалинь

Химические свойства

Реактивом на альдегиды является Cu(OH)2

Применение

Наибольшее применение имеют метаналь и этаналь. Большое количество метаналя используется для получения фенолформальдегидной смолы, которую получают при взаимодействии метаналя с фенолом. Эта смола необходима для производства различных пластмасс. Пластмассы изготовлены для из фенолформальдегидной смолы в сочетании с различными наполнителями, называются фенопластами. При растворении фенолформальдегидной смолы в ацетоне или спирту получают различные лаки. При взаимодействии метаналя с карбамидом CO(NH2)2 получают карбидную смолу, а из нее – аминопласты. Из этих пластмасс изготавливают микропористые материалы для нужд электротехники.Метаналь идёт так же на производство некоторых лекарственных веществ и красителей. Широко применяется водный раствор, содержащий в массовых долях 40% метаналя. Он называетсяформалином. Его использование основано на свойстве свёртывать белок.

Получение

Альдегиды получают окислением алканов и спиртов. Этаналь получают гидротациейэтина и окислением этена.

Билет №12

Высшие оксиды химических элементов третьего периода. Закономерности в измерении их свойств в связи с положением химических элементов в периодической системе. Характерные химические свойства оксидов: основных, амфотерных, кислотных.

Оксиды – это сложные вещества, состоящие из двух химических элементов, один из которых является кислород со степенью окисления «-2»

С увеличением степени окисления элементов, увеличиваются кислотные свойства оксидов.

Na2O, MgO – основные оксиды

Al2O3 – амфотерный оксид

Основные оксиды реагируют с кислотами с образованием соли и воды.

Оксиды щелочных и щелочноземельных металлов реагируют с водой с образованием щёлочи.

Na2O + HOH → 2NaOH

Основные оксиды реагируют с кислотными оксидами с образованием соли.
Na2O + SO2 → Na2SO3
Кислотные оксиды реагируют со щелочами с образованием соли и воды

Реагирует с водой, с образованием кислоты

Амфотерные оксиды реагируют с кислотами и щелочами

Жиры, их свойства и состав. Жиры в природе, превращение жиров в организме. Продукты технической переработки жиров, понятие о синтетических моющих средствах. Защита природы от загрязнения СМС.

Жиры – это сложные эфиры глицерина и карбоновых кислот.

Общая формула жиров:

Твёрдые жиры образованы преимущественно высщими предельными карбоновыми кислотами – стеариновой C17H35COOH, пальмитиновой C15H31COOH и некоторыми другими. Жидкие жиры образованы главным образом высшими непредельными карбоновыми кислотами – олеиновойC17H33COOH, ленолевойC17H31COOH

Жиры наряду с углеводородами и белками входят в состав организмов животных и растений. Они являются важной составной частью пищи человека и животных. При окислении жиров в организме выделяется энергия. Когда в органы пищеварения поступают жиры, то под влиянием ферментов они гидролизуются на глицерин и соответствующие кислоты.

Продукты гидролиза всасываются ворсинками кишечника, а затем синтезируется жир, но уже свойственный организм. Потоком крови жиры переносятся в другие органы и ткани организма, где накапливаются или снова гидролизуются и постепенно окисляются до оксида углерода (IV) и воды.

Физические свойства.

Животные жиры в большинстве случаев твёрдые вещества, но встречаются и жидкие (рыбий жир). Растительные жиры чаше всего жидкие вещества – масла; известны и твёрдые растительные жиры – кокосовое масло.

Химические свойства.

Жиры в животных организмах в присутствии ферментов гидролизуются. Кроме реакций с водой, жиры взаимодействуют со щелочами.

В состав растительных масел входят сложные эфиры непредельных карбоновых кислот, то их можно подвергнуть гидрированию. Они превращаются в предельные соединения
Пример: Из растительного масла в промышленности получают маргарин.

Применение.
Жиры в основном применяют в качестве пищевого продукта. Раньше жиры использовали для получения мыла
Синтетические моющие средства.

Синтетические моющие средства оказывают вредное действие на окружающую среду, т.к. они устойчивы и с трудом подвергаются разрушению.

Чем левее стоит металл в ряду стандартных электродных потенциалов, тем более сильным восстановителем он является, самый сильный восстановитель – металлический литий, золото – самый слабый, и, наоборот, ион золото (III) – самый сильный окислитель, литий (I) – самый слабый.

Каждый металл способен восстанавливать из солей в растворе те металлы, которые стоят в ряду напряжений после него, например, железо может вытеснять медь из растворов ее солей. Однако следует помнить, что металлы щелочных и щелочно-земельных металлов будут взаимодействовать непосредственно с водой.

Металлы, стоящее в ряду напряжений левее водорода, способны вытеснять его из растворов разбавленных кислот, при этом растворяться в них.

Восстановительная активность металла не всегда соответствует его положению в периодической системе, потому что при определении места металла в ряду учитывается не только его способность отдавать электроны, но и энергия, которая затрачивается на разрушение кристаллической решетки металла, а также энергия, затрачиваемая на гидратацию ионов.

Взаимодействие с простыми веществами

С кислородом большинство металлов образует оксиды – амфотерные и основные:

Щелочные металлы, за исключением лития, образуют пероксиды:

С галогенами металлы образуют соли галогеноводородных кислот, например,

С водородом самые активные металлы образуют ионные гидриды – солеподобные вещества, в которых водород имеет степень окисления -1.

С серой металлы образуют сульфиды – соли сероводородной кислоты:

С азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании:

С углеродом образуются карбиды:

С фосфором – фосфиды:

Металлы могут взаимодействовать между собой, образуя интерметаллические соединения:

Металлы могут растворяться друг в друге при высокой температуре без взаимодействия, образуя сплавы.

Сплаваминазываются системы, состоящие из двух или более металлов, а также металлов и неметаллов, обладающих характерными свойства, присущими только металлическому состоянию.

Свойства сплавов – самые разнообразные и отличаются от свойств их компонентов, так, например, для того чтобы золото стало более твердым и пригодным для изготовления украшений, в него добавляют серебро, а сплав, содержащий 40 % кадмия и 60 % висмута, имеет температуру плавления 144 °С, т.е намного ниже температуры плавления его компонентов (Cd 321 °С, Bi 271 °С).

Возможны следующие типы сплавов:

- расплавленные металлы смешиваются между собой в любых соотношениях, неограниченно растворяясь друг в друге, например, Ag-Au, Ag-Cu, Cu-Ni и другие. Эти сплавы однородны по составу, обладают высокой химической стойкостью, проводят электрический ток;

- расправленные металлы смешиваются между собой в любых соотношениях, однако при охлаждении расслаиваются, и получается масса, состоящая из отдельных кристалликов компонентов, например, Pb-Sn, Bi-Cd, Ag-Pb и другие.

Читайте также: