Электрохимическая резка металла в домашних условиях

Обновлено: 22.01.2025

Использование: электрохимическая резка деталей электродом-проволокой. Сущность изобретения: проволочный электрод-инструмент и деталь подключают к источнику технологического напряжения, подают в зону обработки электролит и осуществляют перемотку электрода и его рабочую подачу к детали. При этом через электрод-инструмент в зоне обработки дополнительно пропускают униполярный ток для создания дополнительного давления прокачки. При пропускании дополнительного тока, величина которого определяется по приведенной зависимости, вокруг проволочного электрода возникает магнитное поле, воздействующее на электролит и приводящее к повышению эффективности прокачки электролита через межэлектродный промежуток и эвакуации продуктов анодного растворения. 2 ил.

Изобретение относится к области технологии машиностроения, к электрофизикохимической обработке деталей машин и касается способа электрохимической обработки деталей непрофилированным электродом-проволокой. Изобретение может быть использовано при электрохимической резке деталей в различных отраслях промышленности.

Известен способ электрофизикохимической обработки деталей машин, когда к электрод-инструменту и детали подключают основной источник технологического напряжения и дополнительный источник. При этом работу источников осуществляют последовательно [1] Известны также устройства для электрохимической обработки деталей машин путем резки, которые включают непрофилированный электрод-проволоку, образующий совместно с деталью межэлектродный промежуток [2, 3] Устройство включает также источник технологического напряжения в соответствующей полярности, подключенный к межэлектродному промежутку. Имеются также механизм перемотки и рабочей подачи электрода-инструмента, система подачи в межэлектродный промежуток рабочей жидкости-электролита.

К недостаткам известных технических решений относятся малая производительность, нестабильность процесса, особенно при электрохимической резке относительно толстых заготовок. Это обусловлено сложностью оптимального обеспечения рабочей жидкостью зоны обработки и трудностью эффективной эвакуации продуктов анодного растворения материала заготовки.

Наиболее близким по технической сущности к изобретению является техническое решение [4] выбранное авторами в качестве прототипа. В известном изобретении электрохимическую резку ведут непрофилированным электродом-проволокой, на межэлектродный промежуток подают технологическое напряжение, а рабочую жидкость-электролит подают в зону обработки через сопло. Устройство для осуществления известного способа обработки включает непрофилированный электрод-проволоку, источник технологического напряжения, механизмы перемотки и рабочей подачи электрода-проволоки и обрабатываемой детали, систему прокачки рабочей жидкости. Недостатки прототипа в целом такие же, какие были отмечены при рассмотрении аналогов изобретения.

Целью изобретения является повышение производительности и стабильности процесса электрохимической резки непрофилированным электродом-проволокой, упрощение конструкции устройства.

Поставленная цель достигается созданием оптимальных магнито-гидродинамических сил в межэлектродном промежутке, что сопровождается повышением эффективности обмена рабочей жидкости в зоне обработки и, как следствие, повышением производительности и стабильности процесса. При этом в известном способе, когда электрод-инструмент и деталь подключают к источнику технологического напряжения, подают в зону обработки электролит и осуществляют перемотку электрода-проволоки и его рабочую подачу к детали, предлагается через электрод-инструмент в зоне обработки дополнительно пропустить униполярный ток для создания дополнительного давления прокачки, а величину тока определять по формуле: где 3 электрохимический эквивалент, кг/Кл; з плотность материала заготовки, кг/м 3 ; lп периметр профиля электрода-инструмента, м; bз длина участка электрода-инструмента в рабочей зоне, м; Pпр дополнительное давление прокачки рабочей жидкости, Па; vп скорость подачи электрода-инструмента, м/с.

Проведенный литературный и патентный анализ показывает, что отсутствуют аналоги отличительных признаков заявляемого технического решения, которые квалифицируются как существенные.

Изобретение поясняется фиг. 1 и фиг. 2. На фиг. 1 представлен общий вид заявляемого технического решения. Рабочая зона при электрохимической резке - межэлектродный промежуток поз. 1 заполнен рабочей жидкостью электролитом. Между обрабатываемой деталью поз. 2 и проволочным электрод-инструментом поз. 3 с радиусом rп имеется зазор a. При обработке между электродами поз.2 и поз. 3 протекает технологический ток плотностью J. Электрод-инструмент поз. 3 имеет рабочую подачу по направлению к детали, причем за ним образуется область реза поз. 4.

В соответствии с сущностью изобретения по проволочному электрод-инструменту поз. 3 пропускают дополнительно униполярный ток Iд. За счет наличия тока Iд вокруг проволочного электрод-инструмента поз. 3 формируется круговое магнитное поле с индукцией . На основании закона электромагнитной силы на каждый малый объем электролита поз. 5 действует сила , причем [5]
Следовательно, в рабочей жидкости, окружающей проволочный электрод-инструмент поз. 3 создаются объемные силы , которые действуют вдоль поверхности инструмента. Благодаря этому в межэлектродном промежутке создается усилие, обеспечивающее повышение эффективности прокачки электролита через межэлектродный промежуток и эвакуации продуктов анодного растворения материала детали. На фиг. 1 электрод-инструмент поз. 3 показан в виде проволоки кругового сечения, что является лишь частным случаем широкого класса непрофилированных электрод-инструментов [4] Естественно, что заявляемое техническое решение может быть реализовано для электрод-инструментов в виде ленты и др.

Дополнительные усилия для прокачки электролита от силы преимущественно формируются вблизи передней (фиг. 1) поверхности электрод-инструмента поз. 3, где плотность рабочего тока максимальная. За электрод-инструментом в области реза поз. 4 плотность тока существенно меньше, поэтому дополнительные усилия, воздействующие на электролит, невелики. Следовательно, на задней (фиг. 1) поверхности электрод-инструмента поз. 3 движение электролита малоинтенсивное, что способствует снижению негативного явления электрохимического растравливания поверхности детали.

На фиг. 2 представлено устройство для осуществления заявляемого способа электрохимической резки. Устройство включает проволочный электрод-инструмент поз. 3, традиционные узлы механизмы перемещения и перемотки электрод-инструмента, систему подачи рабочей жидкости в зону обработки (для упрощения последние на фиг. 2 не показаны). Источник технологического напряжения поз. 6 подключен к детали поз. 2 и электрод-инструменту поз. 3. Дополнительный источник поз. 7, создающий ток Iд, подключен к электрод-инструменту поз. 3 в двух местах вне зоны обработки таким образом, что источники поз. 6 и поз. 7 имеют только одну общую точку. Следовательно, электрические цепи этих источников работают независимо. Деталь поз. 2 и электрод-инструмент поз. 3 размещены в рабочей жидкости-электролите поз. 8. Устройство снабжено дополнительным источником питания, подключаемым так, чтобы не создать общей электрической цепи с технологическим источником питания.

Межэлектродный зазор a между деталью и электрод-инструментом можно считать имеющим цилиндрическую форму на передней поверхности инструмента. При обработке плотность тока составит:

где U технологическое напряжение источника питания поз. 6;
а и к анодное и катодное падение напряжения;
электропроводность раствора электролита.

Поскольку электрод-инструмент имеет подачу в направлении к детали, на передней кромке электрод-инструмента плотность тока составляет:

где з и з соответственно плотность и электрохимический эквивалент материала заготовки;
A выход по току.

Магнитная индукция в межэлектродном промежутке согласно закону полного тока равна:

где o магнитная постоянная;
r расстояние от оси инструмента (фиг. 1).

В выражении (5) расстояние r от оси инструмента изменяется в пределах rпrrп+a, где rп радиус проволочного электрод-инструмента. Поэтому среднее значение магнитной индукции в межэлектродном промежутке составит:

Среднее значение объемной силы с рабочей стороны электрод-инструмента равно:

На длине межэлектродного промежутка bз создается давление прокачки электролита:
Pпр fсрbз. (8)
По полученным выражениям можно определить величину тока Iд, обеспечивающего необходимое давление прокачки:

Направление тока Iд должно быть таким, чтобы дополнительное ускорение раствора совпадало с направлением перемотки проволоки и направлением принудительной прокачки.

Для оценки эффективности заявляемого изобретения проведены теоретические исследования. Известно [3] что пороговое значение тока, при котором возможна эффективная прокачка, определяется критерием Гартмана:

где динамическая вязкость раствора электролита;
vэ.ср средняя скорость электролита.

По полученным данным, чем меньше отношение Ja/vэ.ср, тем слабее гидродинамические ограничения скорости подачи. Прокачка интенсифицируется с ростом зазора a, снижением вязкости электролита, увеличением тока Iд. В реальных условиях электрохимической резки отношение Ja/vэ.ср 0,1.10 А.с/м 2 . Поэтому эффективность изобретения повышается при обеспечении условия:

В общем случае электрода-инструмента любого профиля, например квадратного, прямоугольного (ленточного) и прочих, среднюю магнитную индукцию Bср можно также рассчитать по формуле (6). Поскольку согласно закону полного тока индукция Bср определяется длиной контура, то вместо радиуса в формуле (6), (7), (9) следует подставлять эквивалентную величину lп/2 где lп длина периметра любого профиля сечения электрода-инструмента. Например, для ленточного электрода, у которого длина сторон профиля c и d, длина периметра lп 2(с+d).

Пример. Заявляемое техническое решение было реализовано в лабораторных условиях на модернизированной электрохимической установке. Обрабатывали образцы листовой стали 45 ГОСТ 1050-74 толщиной 10 мм в 10%-ном растворе нитрата натрия при температуре 22 o C. Технологическое напряжение составляло 10 В, скорость подачи электрод-инструмента 1 мм/мин. Для получения дополнительного тока применялся понижающий трансформатор, имеющий на второй обмотке выпрямительный диодный мост и проволочный резистор. Использовался проволочный латунный электрод-инструмент диаметром 1 мм, к которому на расстоянии 20 мм вне зоны обработки подключали дополнительный источник питания. Дополнительный ток, как показали оценки, должен составлять порядка 100 А из следующих соображений: плотность материала (железо) - 7,810 3 кг/м 3 , радиус инструмента 0,5 мм 510 -4 м, электрохимический эквивалент 0,2910 -6 кг/Кл, толщина детали 10 мм10 -2 м, скорость инструмента 1 мм/мин 1,710 -5 м/с, давление прокачки 1,510 5 Па. Результаты проведенных опытов в сравнении с прототипом показали, что процесс электрохимической резки проволочным электрод-инструментом протекает стабильно, с высокой эффективностью удаления из межэлектродного промежутка продуктов растворения. Более того, при небольших скоростях подачи инструмента можно вообще отказаться от принудительной прокачки электролита через зону обработки. Для толстых заготовок заявляемое техническое решение может обеспечить увеличение производительности за счет роста подачи инструмента.

Способ электрохимической резки проволочным электродом-инструментом, при котором электрод-инструмент и деталь подключают к источнику технологического напряжения, подают в зону обработки электролит и осуществляют перемотку электрода-проволоки и ее рабочую подачу к детали, отличающийся тем, что, с целью повышения производительности и стабильности процесса, через электрод-инструмент в зоне обработки дополнительно пропускают униполярный ток для создания дополнительного давления прокачки, а величину тока определяют по формуле

где з электрохимический эквивалент, кг/Кл;
з плотность материала заготовки, кг/м 3 ;
lп периметр профиля электрода-инструмента, м;
bз длина участка электрода-инструмента в рабочей зоне, м;
Pпр дополнительное давление прокачки электролита, Па;
vп скорость подачи электрода-инструмента, м/с.

Электролит вместо резца

Оборудование орбитальной сварки из Германии! Низкие цены! Наличие в России! Демонстрация у Вас.
Orbitalum Tools - Ваш надежный партнер в области резки и торцевания труб, а так же автоматической орбитальной сварки промышленных трубопроводов.

Одни специалисты, подсчитывая огромные потери, сокрушаются над тем, что металл недостаточно устойчив к коррозии. А другие, как это ни парадоксально, в это же время сожалеют о том, что он разрушается слишком медленно. К последним относятся химики и технологи, работающие над проблемами нового способа обработки металлов — так называемого химического «резания».

Как это часто бывает, один из вариантов этого способа появился тогда, когда известные методы обработки металла оказались бессильными. Перед группой инженеров была поставлена на первый взгляд простая задача — в трубе с очень тонкими стенками необходимо было вырезать сбоку отверстие определенной конфигурации. Но при этом ставилось условие: деформация трубы недопустима, И это условие превращало задачу в, казалось бы, неразрешимую: любой режущий инструмент неизбежно вызвал бы пусть небольшое, но все же искажение формы и размеров детали.

Выход нашли химики. Они покрыли трубу тонким слоем кислотостойкого лака, острой иглой аккуратно процарапали в нем контуры отверстия и обработали их кислотой. Кислота растворила металл на обнаженных участках, «выпилив» при этом в стенке трубы достаточно точное отверстие — отклонения в размерах не превышали 0,02 миллиметра. Этот вариант размерной химической обработки металла впоследствии получил название контурного травления.

Приведенный пример — один из многих, когда методы химического «резания» приходили на помощь там, где остальные способы обработки металлов оказывались несостоятельными. Но сфера использования этих методов не только подобные «аварийные» ситуации: нередко они оказываются намного производительнее и экономически выгоднее целого ряда иных технологических процессов.

Одна из областей, где химические методы «резания» впервые стали успешно конкурировать с механическими, — это фрезерование. Представьте себе, что в огромной детали сложной формы необходимо сделать несколько больших облегчающих углублений определенной конфигурации. При механическом фрезеровании для выполнения этой задачи понадобилось бы уникальное оборудование со сложной автоматикой, управляющей ходом режущего инструмента. Химические же методы срезания» позволяют обойтись несколькими несложными приспособлениями и ванной с электролитом (например, раствором щелочи или кислоты), в которую помещается деталь, покрытая защитным слоем из стойкого к воздействию раствора материала.

Весь процесс обработки в этом случае слагается из достаточно простых операций. Сначала детали подвергают очистке от грязи и жира. Затем из лейкопластыря вырезают шаблоны, конфигурация которых соответствует будущим углублениям. Эти шаблоны наклеиваются па деталь, которую затем из пульверизаторов покрывают слоем «защиты» — стойкого к растворителю материала. После этого шаблоны снимаются, оставляя обнаженными соответствующие участки металла, деталь погружается в ванну с раствором и выдерживается там в течение того отрезка времени, за который раствор успевает «выесть» металл на требуемую глубину. Теперь остается только вынуть деталь из ванны и смыть с нее остатки растворителя.

Еще больший эффект дает замена механических методов на химические при обработке, например, большого числа сравнительно мелких деталей. На практике нередко приходится сталкиваться с задачами, когда на предназначенные для работы в особых условиях стандартные детали — болты, гайки, винты — необходимо нанести слои защитного покрытия. А это означает, что с каждой такой детали предварительно нужно снять соответствующий слой металла, иначе болты и пинты просто не будут входить в предназначенные для них гнезда. Механическая обработка потребовала бы в этом случае массу труда. А с помощью химических методов задача решается просто: детали загружают в ванну с «режущим» раствором и выдерживают в ней необходимое время.

Сегодня химические методы «резания» могут заменить большинство из известных механических способов обработки металла. Так, например, они могут быть использованы для токарной обработки тонкостенных труб, обладающих малой жесткостью. В этом случае на смену резцу из сверхпрочного сплава, приходит простое приспособление в виде стакана с двумя боковыми пробками, медленно скользящего вдоль обрабатываемой детали. «Режущий» раствор подается в стакан через входной патрубок, омывает вращающуюся деталь, «съедает» часть металла и выходит через отводной патрубок.

Химическое «точение» может быть применено и для получения деталей сложной конфигурации. Так, например, в тех случаях, когда детали необходимо придать коническую форму, установка для выполнения этой операции представляет собой длинную ванну, вдоль которой движется лента конвейера, несущая в своих гнездах цилиндрические заготовки. Если теперь через равные отрезки времени уменьшать глубину погружения деталей на равные величины, то они приобретут форму ступенчатых пирамид: на каждом шаге раствор будет «съедать» металл на одну и ту же глубину. Но если подъем осуществляется плавно и непрерывно, то ступеньки будут сглаживаться и деталь примет форму конуса.

В «арсенал» химического «резания» входит и такая операция, как сверление, или, точнее, развертка больших отверстий. Для этого деталь так же, как и в предыдущих случаях, покрывают слоем «защиты», оставляя в нем отверстие, соответствующее диаметру сверления. А вместо дорогостоящего сверла из специальных сплавов здесь используется простой патрубок из стойкого к коррозии материала (например, пластмассы), по которому в отверстие поступает «режущий» раствор.

Спрашивается, почему, несмотря на такие достоинства, как простота оборудования и высокая экономичность, химические методы «резания» до сих пор не вытеснили механическую обработку? Оказывается, все дело в низких скоростях растворения металла, из-за которых производительность химических методов во многих случаях остается ниже, чем у механических. Даже у такого податливого материала, как алюминий, эти скорости удалось довести до 0,035 миллиметра в минуту, а у других металлов они и того ниже. Поэтому усилия исследователей направлены к тому, чтобы увеличить эти скорости, или, иными словами, устранить причины, препятствующие быстрому растворению металлов.

Одна из таких причин — образование в процессе растворения па металле различных защитных пленок. Простейший путь борьбы с этим явлением состоит в том, что раствор заставляют циркулировать вокруг детали с большой скоростью. Однако такой способ борьбы не всегда приносит эффект: образовавшаяся пленка может быть весьма устойчива к подобным механическим воздействиям.

Уже в конце 20-х годов инженер ленинградского завода «Большевик» В. Гусев разработал первые электрохимические установки для размерной обработки металлов. Идея была проста: обрабатываемая деталь, покрытая соответствующим защитным слоем, присоединялась к положительному полюсу внешнего источника тока, а рядом в раствор опускался второй электрод, форма которого представляла собой зеркальное отображение обрабатываемой детали. При этом положительный полюс внешнего источника тока как бы откачивал электроны из металла и одновременно «выталкивал» из него положительные ионы. А в результате скорость растворения резко возросла.

Переход к электрохимическим методам позволил не только увеличить скорость «резания», но и придать ему определенную направленность.

Электрохимические методы «резания» позволяют изготовлять детали сложной формы с высокой степенью точности.

Нельзя не остановиться еще на одном способе электрохимического «резания», который может конкурировать, например, с газовой резкой,— речь идет об электрохимическом раскрое листового материала. Здесь роль режущего инструмента выполняет тонкая проволока-катод, которую пропускают через предварительно просверленное отверстие, а «режущий» раствор подается из сопровождающего ее движение патрубка. При использовании такого «инструмента» потерн металла при раскрое сводятся к минимуму.

И, наконец, «тонкая» область применения электрохимических методов обработки металлов — шлифование. Установка для выполнения этой операции представляет собой ванну с раствором поваренной соли, в которую на изолирующей подставке 6 устанавливается деталь — анод. Над деталью помещается катод, а под ним по шлифуемой поверхности движется специальный притир. Притир разрушает защитную пленку, возникшую в результате взаимодействия раствора с металлом, и металл вступает в контакт с «режущим» раствором, который шаг за шагом постепенно «съедает» все неровности.

Применение электрохимических способов активизации процесса в сочетании с быстрой прокачкой раствора, предотвращающей образование различных пленок, позволяет довести скорости «резания» до 4 миллиметров в минуту. Однако и эта цифра не предел.

Усилия многих исследователей направлены на поиски особых химических веществ, повышающих активность «режущего» раствора, или, иными словам, вызывающих ускоренное растворение металла, например, в растворах кислот. Эти вещества получили название стимуляторов коррозии.

По своему механизму действия стимуляторы коррозии в кислотах делятся на несколько групп, в одну из которых входят вещества, активно снимающие электроны с катодных участков растворяющегося металла или способствующие их поглощению другими составляющими раствора (например, катионами водорода). Соответственно эти вещества носят название стимуляторов катодного действия. Некоторые из этих стимуляторов, «сняв» с металла электроны, взаимодействуют с катионами водорода и образуют соединения, которые уже не могут снова перейти в первоначальную «стимулирующую» форму. Поэтому для поддержания высокой скорости «резания» стимуляторы этого типа необходимо постоянно добавлять в раствор.

Травление металла

Удаление части поверхностного слоя металлического изделия с помощью химической реакции называют травлением. Эта технология известна человеку уже несколько тысячелетий, наряду с чеканкой и чернением ее применяли для отделки металлических деталей оружия и домашней утвари, украшений и ритуальных предметов. В наши дни травление металлов применяется в художественных промыслах, для нанесения гальванических покрытий, для создания изображений и надписей на металлических изделиях.

Электрохимическое травление лезвия ножа

Электрохимическое травление лезвия ножа

Суть метода

Перед проведением травления на те участки поверхности металла, которые не должны быть вытравлены, наносится защитное покрытие, устойчивое к травящему веществу (протраве).

Далее деталь подвергают воздействию кислой среды или погружают в емкость с электролитической жидкостью. Чем дольше деталь подвергается обработке, тем больший слой металла разъедается агрессивной средой. Травление металла может осуществляться в несколько приемов, это так называемое многослойное протравливание.

Травление изображений на металле проводят как в промышленных, так и в домашних условиях.

Способы травления металла

Исходя из применяемых для разъедания слоя металла материалов, различают такие способы травления металлов, как:

  • Химический (жидкий). Применяются кислые растворы. Не требует сложного оборудования и дорогостоящих материалов. В ходе работы образуются вредные для здоровья испарения.
  • Электрохимический. Применяется раствор электролита и пропускаемый через него электрический ток. Характеризуется большей скоростью процесса, более точным исполнением деталей рисунка, экономным расходованием рабочей жидкости. Не образует вредных испарений
  • Ионно-плазменный (сухой). Поверхностный слой испаряется пучком ионизированной плазмы. Применяется при производстве микроэлектронных компонентов.

Ионно-плазменный метод требует высокоточного и дорогостоящего оборудования и применяется только в условиях промышленного производства. Жидкий метод, электрохимическое травление металла и даже электрохимическая гравировка доступны и в домашних условиях.

С помощью гальванического травления можно самостоятельно сделать печатную плату, практически не уступающую промышленной.

Гальваническое травление металла

Гальванический способ травления выгодно отличается от жидкого отсутствие необходимости использования кислот, дающих вредные испарения. В зависимости от материала заготовки используются разные электролитические растворы:

  • Сталь и железо — нашатырь и железный купорос
  • Медь и ее сплавы (бронза, латунь)- медный купорос
  • Цинк – цинковый купорос.

Гальванический способ травления рисунка на металле

Гальванический способ травления рисунка на металле

Для проведения процесса в домашних условиях потребуется:

  • Гальваническая ванна из непроводящего материала.
  • Блок питания на 5 вольт постоянного тока.
  • Металлический катод (из того же металла, что и заготовка.)
  • Проволочные подвесы для заготовки и катода. Заготовка не должна касаться стенок или дна ванны.
  • Две проводящие штанги, превосходящие по длине ванну.

Одну штангу присоединяют к отрицательному выводу блока питания и вешают на нее катод.

Другую штангу — к положительному выводу и подвешивают на нее изделие, которое будет служить анодом.

При подаче напряжения начинается процесс электролитического переноса металла с изделия на катод. Он будет происходить с участков поверхности, не покрытых защитным лаком.

Художественное травление металла

Художественное травление металла проводят как гальваническим, так и жидким методом.

Художественное многослойное травление металла

Художественное многослойное травление металла

Мастера народных промыслов и просто домашние умельцы получают с его помощью высокохудожественные изображения на холодном и огнестрельном оружии, всевозможной кованой и литой утвари. Для мастеров, делающих авторские охотничьи и бытовые ножи, травление стало практически обязательным элементом отделки. Особенно популярны охотничьи сцены, арабские, рунические или абстрактно — геометрические орнаменты. Многие мастера комбинируют травление металла с его воронением, придавая рисунку синеваты, черный или желтоватый оттенок.

Для переноса изображений используют как способ покрытия детали лаком, так и глянцевую бумагу. Применяют также еще один способ – оклеивание детали скотчем. Горячей иглой процарапывают линии рисунка, после чего пинцетом аккуратно удаляют скотч с участков, подлежащих протравливанию. Остатки клеевой массы нужно смыть растворителем.

Перед травлением деталь следует тщательно обезжирить.

Подготовка поверхности металла

Перед началом травления поверхность следует подготовить. Это позволит обеспечить:

  • Высокую скорость процесса
  • удаление металла ровным слоем.

В ходе обработки поверхности с нее удаляются все механические и химические загрязнения. Для нее применяют теплый мыльный раствор, подойдет и любое моющее средство. После высыхания поверхности ее надо протереть ветошью, пропитанной растворителем или обезжиривателем. Это позволит удалить остатки жидкости и масляные пленки.

Процесс обезжиривания поверхности металла

Процесс обезжиривания поверхности металла

Химическую обработку хорошо сочетать с механической:

  • полировка до зеркального состояния
  • шлифовка наждачкой. Применяется при недоступности полировки. Следует проследить, чтобы шкурка все время двигалась в одном направлении и следы от нее были строго параллельны

Механическая обработка значительно улучшит внешний вид изделия после травления.

Нанесение рисунка

Для этой операции применяется несколько способов. Все их объединяет общий принцип: защита части поверхности от разъедающего действия протравы, а различает вещество, используемое для нанесения рисунка.

Лак для ногтей

Популярный и доступный способ. Обладает некоторыми недостатками:

Использование лака для ногтей

Использование лака для ногтей

Грунтовка или битумный лак

Используется грунтовка ГФ 021, ХВ 062 или битумный лак. Сначала веществом покрывается все протравливаемое изделие. Далее тонкой ручкой или маркером переносят контуры рисунка. Из тонкой проволоки или прутка из мягких сплавов следует изготовить иглу, заострив конец проволоки.

Травление с применением грунтовки

Травление с применением грунтовки

Те участки изображения, которые должны быть вытравлены, процарапываются до металла. Следует следить за тем, чтобы грунтовка не скалывалась.

Глянцевая бумага

Кроме глянцевой бумаги (ее можно купить в магазинах товаров для творчества, а можно просто вырезать лист из журнала), потребуется лазерный принтер, приложение для работы с изображениями и утюг. Изображение рисунка следует сделать зеркальным и распечатать в натуральную величину. Изображение прикладывают к поверхности и проглаживают несколько раз. После остывания заготовки бумагу смывают теплой водой, а тонер остается на поверхности детали. Тыльную и боковые поверхности, не подлежащие протравке, нужно защитить лаком или пластилином.

Глянцевая бумага для травления

Глянцевая бумага для травления

Основное достоинство метода — можно точно переносить мельчайшие детали изображения.

Основной недостаток — работать таким образом можно только с плоскими или цилиндрическими заготовками. Способ весьма популярен при изготовлении печатных плат.

Травление стали

Кроме художественного травления металла, позволяющего получать изысканные изображения на стальных поверхностях, травление стали используют и для удаления окалины и оксидных пленок. При этом следует особо тщательно соблюдать требования технологического процесса во всем, что связано с концентрацией протравочных растворов и времени выдержки детали в протраве или в электролитной ванне. Перетравливание в ходе такой операции крайне нежелательно.

При травлении стали применяют как жидкий, так и электрохимический метод. Протраву готовят на основе сильнодействующих кислот, таких, как соляная или серная. Особое внимание следует уделить тщательному обезжириванию поверхности. Пропущенное масляное или жировое пятно может привести заготовку в негодность. Для защиты частей заготовки, не подлежащих травлению, использую лаки, составляемые на основе канифоли, скипидара, гудрона.

Эти компоненты легко воспламеняемы, поэтому во время работы с лаком следует сбыть особо внимательным и осторожным. По окончании травления непротравленные участки заготовки очищают от защитного лака растворителем.

Протравы, используемые для стали

Большой популярностью среди домашних мастеров — травильщиков пользуется азотная кислота. Ее применяют как единственную основу для протравы, так и в смеси с виннокаменной или соляной. Раствор для травления металла на основе смеси азотной и соляной кислоты обладает очень высокой химической активностью, и обращаться с ним следует крайне осторожно.

Азотная кислота

Для обработки твердых и специальных сортов стали используют смеси азотной и уксусной кислоты. Обработку проводят в два этапа. Сначала готовят специальную предварительную протраву — глифоген, представляющий собой смесь воды, азотной кислоты и этилового спирта. В ней деталь выдерживают в течение нескольких минут. Далее заготовку промывают раствором винного спирта в дистиллированной воде и тщательно высушивают. После этого проводят основное протравливание.

Для травления чугунов применяют растворы серной кислоты средних концентраций.

Травление цветных металлов

Исходя их атомного веса и определяемых им физико-химических свойств вещества, для каждого металла и сплава подбирают свою, наилучшим образом воздействующую именно на него, протраву.

Травление медных сплавов

Травление медных сплавов

Как чистая медь, так и медные сплавы протравливают с применением серной, соляной, фосфорной, азотной кислоты. Для повышения скорости реакции в растворы добавляют соединения хрома или азота. На первой стадии травления с заготовки удаляют окалину и оксидную пленку, далее переходят собственно к травлению металла. При травлении меди в домашних условиях следует соблюдать осторожность.

Алюминий и сплавы на его основе выделяются среди других металлов тем, что для их травления применяют не кислотные, а щелочные растворы. Для молибдена также применяют щелочные растворы на основе едкого натра и перекиси водорода.

Титан стоит еще большим особняком — на первом этапе предварительного протравливания применяют щелочь, а на основном — уже кислоту. Для титана применяю самые сильные кислоты — плавиковую и концентрированные серную и азотную. Титановые заготовки протравливают с целью снятия поверхностного слоя окислов непосредственно перед тем, как нанести гальваническое покрытие.

Для протравливания таких металлов, как никель или вольфрам, используют водный раствор перекиси водорода и муравьиной кислоты.

Травление печатных плат

Заготовка для печатной платы представляет собой лист текстолита, с одной или с двух сторон покрытый слоем медной фольги. Целью травления печатных плат является создание проводящих дорожек из медной фольги в точном соответствии с чертежом. Дорожки покрывают защитным лаком, остальную часть фольги удаляют травлением.

В домашних условиях применяет несколько способов:

  1. Хлорным железом. Реагент приобретают в магазине химических товаров или делают самостоятельно. В соляной кислоте следует растворить железные опилки. Перед использованием раствор следует выдержать до полного растворения железа и тщательно перемешать.
  2. Азотной кислотой.
  3. Водным раствором серной кислоты, смешанной с таблетированной перекисью водорода.
  4. Медным купоросом с добавлением горячей воды и хлорида натрия. Этот вариант самый безопасный, но и самый продолжительный. На протяжении всего процесса температуру протравы следует поддерживать не менее 40 о С, иначе протравливание растянется на многие часы.
  5. Электролитическим методом. Следует взять диэлектрическую емкость (хорошо подходят кюветы для проявки фотографий), наполнить ее раствором поваренной соли, поместить туда плату и кусок медной фольги, которая будет служить катодом.

По окончании протравливания жидким методом плату следует тщательно промыть раствором соды, чтобы погасить остатки кислоты.

Процесс травления для других материалов

Кроме металлов, операции травления подвергают и другие материалы. Наиболее часто встречается протравливание стекла с декоративными целями. Травление осуществляют в парах плавиковой кислоты, единственной, способной растворить стекло. На этапах подготовки проводится предварительная кислотная полировка поверхности изделия, потом на нее переводится контур будущего изображения. Защитные покрытия для стекла делают из смеси воска, канифоли и парафинов. После нанесения защитного покрытия заготовку окунают в травильную емкость.

Применение плавиковой кислоты создает на поверхности красивую матовую структуру. Чтобы получить гладкую, прозрачную поверхность, в протравочную смесь добавляют концентрированную серную кислоту. Для получения рельефного, глубокого узора операцию повторяют.

Техника безопасности при травлении

В травлении металлов используются чрезвычайно активные в химическом отношении вещества-сильные кислоты, щелочи и их растворы. При неправильном обращении они могут причинить серьезный вред здоровью и нанести значительный материальный ущерб.

Использование резиновых перчаток

Использование резиновых перчаток

Поэтому при работе с ними нужно соблюдать особые меры предосторожности и строго выполнять правила техники безопасности при проведении работ:

  • Работы проводят только при наличии хорошей вентиляции, предпочтительно — вытяжного шкафа.
  • Обязательно использование средств индивидуальной защиты: резиновых перчаток и фартука, плотной производственной одежды, респиратора, защитного лицевого щитка.
  • Нельзя ставить банки с кислотами и щелочами на высоко расположенные полки и шкафы.
  • Во время разведения кислот КИСЛОТУ ЛЬЮТ в ВОДУ, и никогда — воду в кислоту.
  • При работе с кислотой иметь под рукой раствор соды, а при работе со щелочью — слабый уксусный раствор для промывания участков кожи, на которые случайно попали капли раствора.
  • При работе гальваническим методом перед началом работы тщательно осмотреть все используемое электрооборудование на предмет отсутствия механических повреждений и целостности изоляции.
  • Иметь под рукой исправный огнетушитель.

В случае попадания травильного раствора на кожу следует немедленно промыть пораженный участок соответствующим нейтрализующим раствором. Если брызги кислоты или щелочи попали на одежду — ее следует немедленно снять.

Промыть водой пораженный участок

Промыть водой пораженный участок

Если травильный раствор попал на слизистые оболочки — следует немедленно обратиться за медицинской помощью. Промедление в таких случаях может стоить здоровья или даже жизни.

Электрохимическая обработка металлов

Изменять форму, размер, получать поверхность с малой шероховатостью позволяет электрохимическая обработка металлов на специальном оборудовании. Материал не подвергается при этом механическому воздействию. Происходит его растворение в электролитическом составе под действием тока заданной величины.

Схема ЭХО

Преимущества способа

Методы электрохимической анодной обработки изделий из металлов разработаны для случаев, в которых применение других технологий не дает нужного результата или затруднено. Уникальность результата применения способа:

  • сохранение формы рабочего органа;
  • независимость от твердости/хрупкости материала;
  • отсутствие деформирующих усилий на тонкие стенки;
  • сохранение поверхности детали (термоупрочнение, оплавление, наклеп);
  • доступность воздействия в узких полостях, сложных переходах плоскостей, наклонных пазах, отверстиях малого сечения при большой глубине(соотношение 1:200);
  • регулировка интенсивности воздействия.

Составляющие процесса

Основывается электрохимическая обработка металлов на вымывании вещества анода в электролитическом растворе при определенной плотности тока между электродами. Станки для нее имеют узкую специализацию (1,2 операции), в зависимости от того, какая применяется технология обработки. Изготавливают индивидуальное оборудование под конкретное изделие.

Рабочая среда

Раствор составляют на водной основе из соответствующих компонентов:

  • солей натрия;
  • солей калия;
  • кислот (соляная, серная, азотная).

Концентрация солей от 5% до 15%, кислоты 5% — 10%.

Обработку отдельных мест заготовки проводят, локализуя процесс в нужной зоне накладыванием защитных масок на остальную часть детали.

Продукты процесса удаляются из зоны реакции потоком электролита.

В рабочих растворах содержаться активные реагенты, поэтому одновременно выполняют комплекс мер по защите оборудования и изделий от коррозии.

Разновидность обработки

Анодное подключение изделия выполняют при таких операциях:

  • Полировка. Получение гладкой поверхности, зеркала, защитной оксидной пленки;
  • Травление. Очистка перед покраской, сборкой, оклеиванием, точечной сваркой. Получение рельефа путем локализации действия;
  • Прошивание отверстий, резка с высокой точностью;
  • Обработка по размеру, копирование согласно образцу на электроде.

Совмещая анодный (растворение) и катодный (напыление) методы обработки, получают высокотехнологические изделия для различных областей применения.

Производительность

Станок имеет скорость процесса снятия слоя материала ниже, чем у механического оборудования. Выигрыш времени в том, что конечный результат по сложности, выдержке формы, сравним с работой 5 фрезерных станков.

Величина производительности определяется, как объем снятого материала (мм³) в единицу времени (мин) при подведенном токе в 1 А. Каждый состав электролита имеет свой показатель. Хлористый натрий, например, имеет значение 2,2 мм³/мин, азотнокислый натрий – 1,1 мм³/мин. Использование состав из нескольких реагентов увеличивает скорость растворения анода, повышает степень обработки.

Нужно выдерживать установленные зазоры (боковой, торцевой) между электродом и заготовкой. Учитываются напряжение, скорость подачи, конструкция рабочего органа, электропроводность раствора.

Производительность повышают, применяя методы многоэлектродного воздействия на площадь детали.

Резка

Увеличение плотности тока приводит к более интенсивному процессу съема металла с поверхности. Выравнивая скорость растворения с подачей катода, получают непрерывный процесс прорезывания канавок в материале. Удаление продуктов реакции обеспечивают непрерывным потоком прокачиваемой жидкости. В качестве электрода выступает проволока, перематываемая с одного барабана на другой.

Прошивание

Метод сходен резке, но электрохимический процесс происходит в основном на торце катода, который подается с равной скоростью. В этой операции электрод должен иметь достаточную жесткость, чтобы не воспринимать вибрацию, которая может передаваться через станок, не деформироваться при движении. Рабочая его часть способствует поддержанию устойчивого потока электролита в зазоре. Не рабочие края надежно изолируют.

Точность обработки плоскости металла составляет ±0,13 мм, отверстий 0,1 – 0,15 мм.

Станок может быть оборудован следящей за параметрами системой.

Копирование

Форма электродов в этом случае совпадает. Зазор выдерживают в расчетном значении. В результате электрохимической реакции, материал разрыхляется, вымывается в не совпадающих местах. В точках, где зазор меньше процесс идет интенсивнее, металл растворяется сильнее. В результате промежуток становится одинаковым, происходит электрохимическое копирование формы металлов обрабатываемых деталей (с допустимыми припусками из-за трудности контроля в малом зазоре). Точность достигаемого копирования от 0,5 мкм до 3 мкм, повторяемость параметров 0,5 — 10 мкм от электрода – эталона в партии.

Распространены универсальные варианты станка для электрохимической обработки металлов – копировально-прошивочные с широкой номенклатурой изделий. Область применения – твердосплавная обработка: инструмент, штампы, пуансоны.

Размерная

Эта технология предназначена для получения у детали требуемой формы, размера. Процедура выполняется при условии скоростного, непрерывного обновления электролитической среды в зоне действия полюсов. Принудительную прокачку ведут под давлением, создаваемым насосом. Постоянный поток жидкости позволяет уменьшать величину зазора между обрабатываемыми металлами. Сопротивление среды снижается, плотность тока растет, электрохимическая реакция ускоряется.

Схема 2 электроэрозионной обработки

Анодно-механическая обработка

Заточка

Использованы особенности электрохимических явлений при растворении кромки металлов. Получение острия происходит в неравномерном электрическом поле при постоянном перемещении. Регулируя угол наклона, получают заточку заданной формы (наконечники, иглы, электроды). Используют, в основном, соли натрия при плотности тока 4-7 А/см², напряжение 8 — 15В.

Технология электрохимической обработки

Технология электрохимической обработки

Эффективность

Методы электрохимической обработки металлов в производстве получают все большее распространение из-за сравнительно небольшого энергопотребления, низкого уровня шума, вибраций, высокой точности и повторяемости результата при соблюдении технологической карты обработки металлов. Допустима обработка любых токопроводящих материалов, устойчивых к химическим составляющим раствора.

Травление металлов в домашних условиях

Процедура травления уже много лет применяется в металлообработке. Она представляет собой обработку металлических поверхностей с помощью химических средств и электричества. В ходе процедуры мастер удаляет слой металла и таким образом создает специфический узор на конкретном изделии.

Травление алюминия

Сегодня травление металла используется для решения разных задач. Эта процедура используется как в промышленности, так и частными мастерами в домашних условиях. Благодаря травлению травильщик придает металлу:

  • декоративные и технологические свойства;
  • процедура дает возможность мастеру увидеть микроструктуру металла;
  • с ее помощью удаляются окалины и другие не металлические вкрапления;
  • подготовить металл к пайке;
  • создать орнамент.

Если говорить о травлении металла в домашних условиях, то чаще оно проводится в декоративных целях для того чтобы придать изделию эстетические свойства. Причем такая процедура проводится при обработке стали с высокой прочностью, так как другие методы гравировки в этом случае будут не эффективны.

Отметим, что травление – это довольно простая процедура, которая не требует особых навыков, главное это соблюсти технологию.

Суть методики

Холодное травление металла, как и любое другое действие, требует подготовительного процесса. В первую очередь такая подготовка в домашних условиях требует удаления с поверхностей загрязнения, особенно это касается масла.
Дальше требуется защитить те участки металла, которые не должны подвергаться травлению. Для этого на узор наносят специальное покрытие, которое способно противостоять химическим веществам, применяемым в травлении.

Схема травильного аппарата

На следующем этапе изделие или элемент погружают в емкость, где находится электролиз, создающий кислую среду. Помните, что чем дольше металл будет находиться в кислой среде, тем большая часть поверхности будет разъедена агрессивным составом. В некоторых случаях используется технология многослойного травления, когда процедура применяется в несколько раз.

Сегодня травильщики используют разные методы травления металла, рассмотрим их подробно.

  1. Метод электрохимического травления. Определенные виды металлов (например, нержавеющая сталь), которые обладают высокой стойкостью к воздействию кислоты. Поэтому для обработки таких металлов в домашних условиях применяется электрохимическое травление.

Чтобы провести травление электрохимическим способом понадобится: пластмассовая ванная наполненная электролитом, клеммы, провода, а также источник электричества, передающий постоянный ток. Также следует помнить, что процесс реакции происходит чрезвычайно бурно, и поэтому используем емкость с большим объемом. Само травление обычно занимает от нескольких минут до получаса. При этом мастеру нужно периодически проверять изделие, чтобы состав не разъел металл, больше чем это требуется. Схема подключения при травлении металла выглядит следующим образом, в раствор электролиза погружается медная пластина, по которой подается ток. Как показывает практика, метод эффективен.

  1. Методика химического травления . Процесс происходит в емкости где куда предварительно было залит активный состав. В качестве такого состава используется лимонная кислота, солевой раствор, уксусная кислота. Если раствор для травления металла приготовлен из соли, то его химическая эффективность будет, ниже чем у кислотных растворов.

Ионно-стимулированое травление
Ионно-химическое травление
Химическое травление

Инструкция по химическому травлению в солевом растворе или лимонной кислоте, предполагает погружение металлической поверхности покрытой защитным раствором в емкость. При этом срок процедуры зависит от того, какой состав использует мастер.

Для чего применяют травление

Травление как способ обработки металла позволяет мастеру выполнять технические действия. Однако, если говорить про травление в домашних условиях, то чаще всего его используют для создания орнаментов и декоративных узоров на клинках и других металлических изделиях.

Сегодня многие люди занимаются производством всевозможного холодного оружия и инструмента в домашних условиях. При этом, подобные авторские вещи украшаются орнаментом. Травление ножа, топора позволяет мастеру быстро создать своеобразное декоративное украшение лезвия.

Применение травления нержавеющей стали

Начиная работы, травильщик первым делом подготавливает эскиз будущего орнамента или рисунка. Сегодня это можно легко сделать с помощью специальных программ, которые позволяют создавать изображения. Если узор планируется нанести на обе стороны клинка, то тогда распечатывают два эскиза. После того как изображение подготовлено, оно переносится на лезвие с помощью ручки, а в дальнейшем процарапывается с помощью скрабера.

При этом еще до нанесения рисунка, металлическую поверхность нужно хорошо вычистить, освободить от ржавчины. Дальше железо в местах нанесения узора обрабатывается специальным составом и обезжиривается. Также следует позаботиться о торцах будущего ножа, защитив их от последствий воздействия соленого раствора или кислоты.

Травление можно производить двумя разными способами. Первый предполагает полное погружение металла в емкость с электролизом. Второй вариант это точечное нанесение кислотного состава на конкретные участки поверхности с помощью ватного тампона. В обычных условиях изделие погружается в раствор на десять, пятнадцать минут. Однако, этот параметр сильно зависит от типа выбранного электролиза.

После того как травление окончено, лезвие промывают водой и проверяют полученный результат. Если все получилось как надо, тогда остается произвести шлифовку ножа, удалив, таким образом, остатки коррозии, придав ему соответствующий вид.

Метод позволяет создавать по-настоящему замечательные и красивые изделия.

Какое оборудование необходимо для успешного травления в домашних условиях

Травление металла в домашних условиях это достаточно простая процедура, которая не требует от человека особых навыков. Но для того чтобы произвести успешное травление нужно подготовить некоторые предметы и оборудование.

  • Емкость из стекла или пластика. Только такие материалы могут выдержать химическую реакцию, которая сопровождает процедуру , а также способны противостоять кислотной среде.
  • Соль поваренная. Это вещество чаще всего используется для создания электролиза.
  • Медная пластина. Они играет роль клеммы, которая распространяет ток внутри емкости.
  • Источник энергии. В качестве него может использоваться зарядка для телефона.
  • Провода для соединения клемм и зарядного устройства.

Травление с помощью зарядного устройства от телефона, как показывает практика, позволяет эффективно обрабатывать даже поверхности, сделанные из стали высокой стойкости.

Растворы, применяемые в процедуре травления

В процедуре травления металлов могут применяться различные составы и вещества. Рассмотрим наиболее популярные разновидности таких смесей.

  1. Раствор для травления из соляной или серной кислоты. Такие составы применяются при обработке углеродистой стали. Причем в емкость для травления также следует добавить ингибитор коррозии. Это необходимо для того чтобы устранить хрупкость материала а также снизить вероятность перетравливания.
  2. Для работы с нержавеющей или жаропрочной сталью применяют жидкость, состоящую из азотной, серной или соляной кислоты. Причем часто одно изделие обрабатывается сразу несколькими веществами, таким образом можно полностью удалить все загрязнения и проявить рисунок;
  3. Алюминий и его сплавы травят с помощью кислотных и щелочных растворов. При этом если в раствор добавить хлористый натрий, то конечное изделие будет иметь равномерный рисунок на всех участках.

Конечно, применять серьезные химические вещества для травления металла в домашних условиях, можно далеко не всегда. Именно поэтому в большинстве случаев такие процедуры осуществляются с помощью солевых или электролизных растворов. При этом в качестве защитного средства, которое может противостоять кислотной среде ,часто применяют лак для ногтей, или хорошую краску.

Подготавливаем изделие к процедуре травления

Подготовка изделия из стали или железа к процедуре травления в домашних условиях включает целый ряд необходимых действий. Для начала поверхность нужно хорошо очистить от любых загрязнений, только таким образом можно гарантировать, что травление пройдет быстро, а глубина удаленных слоев будет одинаковой.

Очищение детали перед травлением

Для очистки металла вполне подойдут популярные моющие средства и обыкновенная вода. После того как металл будет вымыт ему нужно дать высохнуть. Дальше поверхность необходимо протереть с помощью фибры, которую перед этим смачивают в растворителе. Таким образом, можно не только удалить остатки влаги, но также обезжирить поверхность.

Еще следует отметить, что улучшить качество обрабатываемой поверхности можно путем ее полировки. Это можно сделать на специальной машине. Если же такой возможности нет, то тогда металл нужно обработать наждачной бумагой. Таким образом, можно своими руками создать очень интересный оптический эффект.

Теперь нужно нанести будущий рисунок на металлическую поверхность. Сейчас для этого используется множество методик. Главное что нужно помнить участки, которые не должны подвергнуться травлению, нужно обработать защитными средствами.

Сегодня в качестве такой защиты часто применяют лак для ногтей. Но у этого способа есть определенные недостатки, а именно:

На поверхность изделия наносится слой лака или грунтовки. Когда этот состав высохнет, нужно с помощью тонкого инструмента или ручки нанести изображение. Дальше следует найти тонкую иглу, шило или специальный инструмент, с помощью которого изображение процарапывается на металле. Это нужно делать крайне аккуратно, чтобы не повредить полированную поверхность вне контуров рисунка.

Состав для протравки цветных металлов

Если мастер хочет заняться протравкой изделий из таких материалов как: медь, латунь, бронза или серебро. Ему нужно подготовить специальный раствор, в который входят такие элементы как:

  • Вода;
  • Азотная кислота;
  • Уксусный раствор;
  • Нашатырь.

Такое средство позволит быстро и эффективно протравить выше указанные материалы.

Соблюдаем технику безопасности

Травление металлов требует использования всевозможных химических веществ и составов (щелочи, кислоты, растворы). Все эти элементы могут быть крайне опасными, если в процессе работ будет нарушена технология. Именно поэтому правила техники безопасности при проведении подобных работ выходят на первый план.

Средства защиты при травлении

Специалисты разработали целый комплекс таких правил, которые позволяют гарантировать то что травление пройдет в штатном режиме.

  • Работы могут проводиться только в хорошо вентилируемом помещении. Лучше всего чтобы в нем был расположен вентиляционный шкаф.
  • В обязательном порядке мастер должен применять всевозможные средства защиты в том числе: резиновые перчатки, фартук, специальную одежду, защиту для лица и защиту для органов дыхания.
  • Ни в коем случае нельзя устанавливать емкости с щелочами или кислотой на высокие полки или другие плоскости.
  • В процессе разведения раствора нужно помнить, что всегда льют кислоту в воду и никогда наоборот.
  • Если мастер работает с кислотой, то ему всегда нужно иметь рядом соду, если же он работает с щелочью, то тогда ему нужно иметь раствор уксуса. Только эти средства помогут, в случае если раствор попадет на оголенные участки кожи.
  • Если применяется электрохимический тип травления, то крайне важно удостоверится в надежности всех приборов подающих ток в емкость.
  • В помещении, где проводятся работы, должен быть огнетушитель.

Если в процессе травления на кожу попадает щелочной или кислотный раствор. Необходимо как можно быстрее промыть этот участок нейтрализующим средством. Если же брызги раствора оказались на одежде ее следует снять.

В том случае если раствор для травления попал на слизистую оболочку нужно в максимально сжатые сроки обратиться за помощью к врачу. Это крайне важно, так как промедление в подобной ситуации может привести к тяжелым последствиям для здоровья.

Только выполнение выше перечисленных правил позволит безопасно провести процедуру травления металла.

Читайте также: