Действие щелочи на металлы

Обновлено: 07.01.2025

Действие кислот и щелочей на разные металлы различно в зависимости от реакционной способности металла и концентрации кислоты или щелочи.

В разбавленных кислотах и щелочах металлы с более отрицательным потенциалом окисляются ионом водорода, вытесняя его из растворов. При этом протекают следующие реакции окисления - восстановления:

2 nH + + ne = n/2 Н2

Эти реакции протекают с одинаковой скоростью, взаимно обуславливая друг друга, и могут быть реализованы как на одной и той же поверхности металла (и даже в одной материальной точке поверхности), так и на разных металлах, если они находятся в контакте. В последнем случае анодный процесс (реакция 1) будет протекать на металле с более отрицательным потенциалом, а катодный процесс (реакция 2) будет протекать преимущественно на металле с более положительным потенциалом.

В технических металлах и сплавах видимого разделения участков с анодными и катодными процессами не наблюдается, если поверхность однородна с точки зрения чистоты обработки, наклепа, наличия загрязнений и т.д. При погружении таких металлов в кислоту происходит выделение водорода со всей поверхности, объем которого эквивалентен количеству растворенного металла. Концентрированные кислоты (особенно горячие) являются более сильными окислителями, поэтому в них не устойчивы благородные металлы. Так, например, окисление в концентрированной серной кислоте может протекать до различной степени восстановления ее, в зависимости от реакционной способности металла, с выделением SO2 и даже H2S.

Азотная кислота в зависимости от концентрации и реакционной способности металла проходит следующие стадии восстановления:

Судить о количестве растворенного металла в таких кислотах по объему выделившихся газообразных продуктов трудно, так как состав газовой фазы является сложным и не остается постоянным в процессе окисления металла, поскольку некоторые газы хорошо растворяются в воде (SO2, NO2), а другие образуют комплексные соединения.

Для некоторых металлов концентрированные кислоты менее опасны, чем разбавленные. Например, серная кислота для железа, свинца и алюминия. Потому, что на их поверхности образуются нерастворимые соли, играющие роль защитных покрытий. В сильно разбавленных щелочах ввиду малой концентрации ионов водорода окисление происходит, главным образом, за счет кислорода по реакции (для двухвалентного металла):

Эта реакция идет с поглощением кислорода из воздуха.

Стойкость металлов в щелочах зависит от характера образующейся гидроокиси. Если гидроокись амфотерна, и может образовывать с гидроксид-ионом растворимый комплексный продукт, то металл будет неустойчив в щелочи. Такие гидроокиси образуют алюминий, цинк, олово, свинец и др.

Если гидроокиси металлов не амфотерны (гидроокиси никеля, магния), то они не растворяются в щелочных растворах, и поверхность металла пассивируется гидроокисной пленкой, предохраняющей его от окисления. В этом случае водород перестает выделяться, и коррозия не протекает.

Явление самопроизвольной пассивности наблюдается и при действии разбавленных кислот на некоторые сплавы, например, при действии серной кислоты концентрацией до 20 % на высокохромистые чугуны с добавками титана или соляной кислоты на высокохромистые чугуны с добавкой молибдена и т.п. Для этих сплавов характерным является интенсивное растворение ( и, соответственно, обильное выделение водорода). В начальные периоды испытания наблюдается замедление, и даже прекращение процесса через некоторое время. Время до наступления пассивного состояния зависит от состава сплава и концентрации раствора. Это время легко установить по прекращению выделения водорода, а также по изменению знака потенциала.

Объемный метод широко используют в лабораторной практике, когда нужно установить кинетику коррозионного разрушения металла или сплава в кислотах или щелочах, окисляющих ионом водорода. Измеряя объем водорода через равные промежутки времени, можно выяснить характер изменения скорости коррозии и установить способность металла к самопроизвольному пассивированию в данных условиях.

Количество выделившегося водорода, являющегося мерой скорости коррозии, зависит от суммарноготока, возникшего в коррозионной системе.

Предполагая, что токи, протекающее через микроэлементы, равны между собой, объём выделившегося водорода будет пропорциональным количеству микропор, имеющихся на поверхности металла, т. е. его неоднородности.

Величина тока, протекающего через каждый микроэлемент, пропорционально разности потенциалов, установившихся в процессе растворения между анодным и катодным участками.

Введение в сплав легирующих элементов, вызывающих пассивацию сплава должно вызвать увеличение перенапряжения выделение водорода на микрокатодах и уменьшение скорости коррозии.

Увеличение структурной неоднородности и образование ликокатодов с малым перенапряжение выделяющего водорода должно вызвать увеличение количества выделившегося водорода, т. е. скорость коррозии.

Этот метод позволяет непрерывно следить за изменением скорости коррозии.

Выполнение работы

Пред проведением работ необходимо ознакомится:

1. с влиянием примесей и присадок на коррозионную устойчивость металлов в кислотах;

2. с объёмны методом определения скорости коррозии;

3. с оценкой коррозионной стойкости металлов.

1-й вариант. Наблюдения за объемом выделяющегося водорода можно производить с помощью бюретки, опущенной в стакан. В первом случае нижняя часть бюретки соединяется с воронкой, под которую помещаем испытуемый образец. Раствор наливаем в стакан с помощью водоструйного насоса, засасываем его в бюретку до метки. Затем бюретку отключаем от насоса и производим запись показаний уровня жидкости в ней через 10 минут.

Опыт производят на двух образцах. Желательно иметь сплавы с различной способностью к самопроизвольному пассивированию. Взвешенные на аналитических весах образцы помещают в стакан, куда наливают раствор.

Можно начинать опыт, отсчитывая объем выделяющегося водорода. Длительность испытания - 1,5 часа. По окончании испытания образцы необходимо взвесить на тех же аналитических весах и с той же точностью. Потерю в весе выразить в г/(м 2 ч), произвести оценку стойкости металла по 10-бальной шкале. В том случае если сплав перешел в пассивное состояние в процессе испытания, необходимо определить время коррозии, а весовые потери разделить не на все время испытания, а на то, в течение которого происходило растворение.

По данным наблюдений построить графики:

1. Объем водорода, отнесенный к единице поверхности S - время в мин.

2. Изменения относительного объема водорода во времени V - время в мин. Для построения первого графика необходимо объем водорода, полученный за каждый отсчет, разделить на поверхность образца.

Для построения второго графика необходимо найти разницу показаний относительно объема водорода между ближайшими отсчетами и разделить на время между отсчетами (10 мин).

По общему объему водорода, выделившегося за время опыта, можно вычислить весовые потери в граммах, пользуясь уравнением:

где М – атомная масса металла

n- валентность металла

V –объем выделившегося водорода, мл

VH2 – измеренный объем водорода, мл

t – температура раствора, о С.

Задание:

1. Опишите процессы, которые вы наблюдали.

2 Оцените стойкость металла в данной агрессивной среде

3 Сделайте заключение о целесообразности использования сплава в данной среде.

2-й вариант. Для определения скорости коррозии по выделению водорода широко применяется метод, при котором водород вытесняет раствор, объём которого измеряется.

Выделяющийся водород вытесняет из герметически закрытой бутылки кислоту, которая капает в бюретку; объём вытесненной жидкости соответствует объёму выделившегося водорода.

Образцами для испытаний служат:

- серый чугун – феррит + перлит + зеерлит ;

- сталь 0,4% - феррит + перлит

- хромистая сталь с 12% Cr – твёрдый раствор + карбиды;

- хромоникелевая сталь с 8% Ni + 18% Cr – аустенит;

Образцы с измеренной поверхностью должны быть зачищены наждачной бумагой, тщательно обезжирены содой, промыты в проточной воде и вытерты фильтровальной бумагой. Опыт проводят в установке, изображенной на рисунке

Подготовленные образцы М помещают в стеклянные держатели, которые подвешивают на стеклянные крючки, укреплённые в пробке Б.

. В склянки с тубусом наливают 5% - ную Н2SO4, пробку Б и кран А плотно закрывают, после чего открывают зажим Е, из которого при этом вытекает в бюретку небольшое количество раствора. Зажим Е в дальнейшем при работе оставляют открытым.

Загрузив образец, записывают уровень жидкости в бюретке – этот момент и является началом опыта.

В дальнейшем в течение 100 мин такую запись повторяют каждые 20 мин.

После окончания опыта закрывают зажимы Е и вынимают образцы с пробками.

. Образцы хорошо ополаскивают водой и вытирают

Результаты опытов записывают по форме.

Результаты опытов т. е. объём выделившегося водорода в см 3 относят к единице поверхности образцов и выражают в см 3 /см 2 .

Кроме того, результаты опытов оформляются в виде диаграмм, показывающие зависимость количества выделившегося водорода с единицы поверхности образца ΔV ( см 3 /см 2 ) от продолжительности испытания для каждого образца τ.мин.

Зная объём водорода, выделившегося за время опыта, можно вычислить весовые потери корродировавших образцов.

При вычислении исходят из того, что при растворении одного грамм-эквивалента металла выделившегося при нормальных условиях 11,2л. водорода.

Условно принимаем, что во всех взятых для испытания образцах происходит растворение железа.

Характеризую коррозионную устойчивость испытанных образцов по шкале коррозионной стойкости ( таблица 3).

Химические свойства металлов

Металлы занимают в Периодической таблице левый нижний угол. Металлы относятся к семействам s-элементов, d-элементов, f-элементов и частично – р-элементов.

Самым типичным свойством металлов является их способность отдавать электроны и переходить в положительно заряженные ионы. Причём металлы могут проявлять только положительную степень окисления.

1. Взаимодействие металлов с неметаллами.

а) Взаимодействие металлов с водородом.

С водородом непосредственно реагируют щелочные и щелочноземельные металлы, образуя гидриды.

Например:

Образуются нестехиометрические соединения с ионной кристаллической структурой.

б) Взаимодействие металлов с кислородом.

Все металлы за исключением Au, Ag, Pt окисляются кислородом воздуха.

Пример:

в) Взаимодействие металлов с галогенами.

Все металлы реагируют с галогенами с образованием галогенидов.

Пример:

В основном это ионные соединения: MeHaln

г) Взаимодействие металлов с азотом.

С азотом взаимодействуют щелочные и щелочноземельные металлы.

д) Взаимодействие металлов с углеродом.

Соединения металлов и углерода – карбиды. Они образуются при взаимодействии расплавов с углеродом. Активные металлы образуют с углеродом стехиометрические соединения:

Металлы – d-элементы образуют соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC – используются для получения сверхтвёрдых сталей.

2. Взаимодействие металлов с водой.

С водой реагируют металлы, имеющие более отрицательный потенциал, чем окислительно-восстановительный потенциал воды.

Активные металлы более активно реагируют с водой, разлагая воду с выделением водорода.

Менее активные металлы медленно разлагают воду и процесс тормозится из-за образования нерастворимых веществ.

3. Взаимодействие металлов с растворами солей.

Такая реакция возможна, если реагирующий металл активнее, чем находящийся в соли:

Металл, обладающий более отрицательным или менее положительным стандартным электродным потенциалом, вытесняет другой металл из раствора его соли.

4. Взаимодействие металлов с растворами щелочей.

Со щелочами могут взаимодействовать металлы, дающие амфотерные гидрооксиды или обладающие высокими степенями окисления в присутствии сильных окислителей. При взаимодействии металлов с растворами щелочей, окислителем является вода.

1 Zn 0 + 4OH – – 2e = [Zn(OH)4] 2– окисление

Zn 0 – восстановитель

1 2H2O + 2e = H2 + 2OH – восстановление

Металлы, обладающие высокими степенями окисления, могут взаимодействовать со щелочами при сплавлении:

5. Взаимодействие металлов с кислотами.

Это сложные реакции, продукты взаимодействия зависят от активности металла, от вида и концентрации кислоты и от температуры.

По активности металлы условно делятся на активные, средней активности и малоактивные.

Кислоты условно делятся на 2 группы:

I группа – кислоты, обладающие невысокой окислительной способностью: HCl, HI, HBr, H2SO4(разб.), H3PO4, H2S, окислитель здесь H + . При взаимодействии с металлами выделяется кислород (H2↑). С кислотами первой группы реагируют металлы, обладающие отрицательным электродным потенциалом.

II группа – кислоты, обладающие высокой окислительной способностью: H2SO4(конц.), HNO3(разб.), HNO3(конц.). В этих кислотах окислителями являются анионы кислоты: . Продукты восстановления аниона могут быть самыми разнообразными и зависят от активности металла.

H2S↑ – c активными металлами

H2SO4 +6е S 0 ↓ – с металлами средней активности

SO2↑ – c малоактивными металлами

HNO3 +4,5e N2O, N2 – с металлами средней активности

NO – c малоактивными металлами

HNO3(конц.) – NO2↑ – c металлами любой активности.

Если металлы обладают переменной валентностью, то с кислотами I группы металлы приобретают низшую положительную степень окисления: Fe → Fe 2+ , Cr → Cr 2+ . При взаимодействии с кислотами II группы – степень окисления +3: Fe → Fe 3+ , Cr → Cr 3+ , при этом никогда не выделяется водород.

Некоторые металлы (Fe, Cr, Al, Ti, Ni и др.) в растворах сильных кислот, окисляясь, покрываются плотной оксидной плёнкой, которая защищает металл от дальнейшего растворения (пассивация), но при нагревании оксидная плёнка растворяется, и реакция идёт.

Малорастворимые металлы, обладающие положительным электродным потенциалом, могут растворяться в кислотах I группы, в присутствии сильных окислителей.

Основания. Химические свойства и способы получения


Перед изучением этого раздела рекомендую прочитать следующую статью:

Основания – сложные вещества, которые состоят из катиона металла Ме + (или металлоподобного катиона, например, иона аммония NH4 + ) и гидроксид-аниона ОН — .

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания . Также есть неустойчивые основания, которые самопроизвольно разлагаются.


Получение оснований

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например , оксид натрия в воде образует гидроксид натрия (едкий натр):

Na2O + H2O → 2NaOH

При этом оксид меди (II) с водой не реагирует:

CuO + H2O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий) , кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например , калий реагирует с водой очень бурно:

2K 0 + 2 H2 + O → 2 K + OH + H2 0



3. Электролиз растворов некоторых солей щелочных металлов . Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например , электролиз хлорида натрия:

2NaCl + 2H2O → 2NaOH + H2↑ + Cl2

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

щелочь + соль1 = соль2↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II):

CuCl2 + 2NaOH → Cu(OH)2↓ + 2NaCl


Химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами (и некоторыми средними кислотами). При этом образуются соль и вода.

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например , гидроксид меди (II) взаимодействует с сильной соляной кислотой:

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например , гидроксид железа (III) разлагается на оксид железа (III) и воду при прокаливании:

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид ≠

нерастворимое основание + амфотерный гидроксид ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей. Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления, которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например , гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4 Fe +2 (OH)2 + O2 0 + 2H2O → 4 Fe +3 ( O -2 H)3

Химические свойства щелочей

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.



2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли , а в растворе – комплексные соли .

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например , при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

А в растворе образуется комплексная соль:

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (как правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.


3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли, в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь(избыток) + кислотный оксид = средняя соль + вода

щёлочь + кислотный оксид(избыток) = кислая соль

Например , при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO2 = NaHCO3

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе , при условии, что в продуктах образуется газ или осадок . Такие реакции протекают по механизму ионного обмена.

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Cu 2+ SO4 2- + 2Na + OH — = Cu 2+ (OH)2 — ↓ + Na2 + SO4 2-

Также щёлочи взаимодействуют с растворами солей аммония.

Например , гидроксид калия взаимодействует с раствором нитрата аммония:

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль !

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид , взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла .

Например , избыток сульфата цинка реагирует в растворе с гидроксидом калия:

Однако, в данной реакции образуется не основание, а амфотерный гидроксид. А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей . Т аким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла(избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь(избыток) = комплексная соль + соль

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например , гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO3 мы разбиваем на уольную кислоту H2CO3 и карбонат натрия Na2CO3. Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например , железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6 H2 + O = 2Na[ Al +3 (OH)4] + 3 H2 0

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О2

NaOH +N2

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например , хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl2 0 = NaCl — + NaOCl + + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl2 0 = 5NaCl — + NaCl +5 O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например , в растворе:

2NaOH + Si 0 + H2 + O= Na2Si +4 O3 + 2H2 0

Фтор окисляет щёлочи:

2F2 0 + 4NaO -2 H = O2 0 + 4NaF — + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

Гидроксиды щелочных металлов (щелочи)


1. Щелочи получают электролизом растворов хлоридов щелочных метал-лов:

2NaCl + 2H2O → 2NaOH + H2 + Cl2

2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гид-ридов и некоторых других бинарных соединений с водой также образуют-ся щелочи.

Например , натрий, оксид натрия, гидрид натрия и пероксид натрия при растворении в воде образуют щелочи:

2Na + 2H2O → 2NaOH + H2

Na2O + H2O → 2NaOH

2NaH + 2H2O → 2NaOH + H2

3. Некоторые соли щелочных металлов (карбонаты, сульфаты и др.) при взаимодействии с гидроксидами кальция и бария также образуют щелочи.

Например , карбонат калия с гидроксидом кальция образует карбонат кальция и гидроксид калия:

Химические свойства

1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид калия с фосфорной кислотой реагирует с образова-нием фосфатов, гидрофосфатов или дигидрофосфатов:

2. Гидроксиды щелочных металлов реагируют с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид натрия с углекислым газом реагирует с образованием карбонатов или гидрокарбонатов:

Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том, что этому оксиду соответствуют две кислоты — азотная (HNO3) и азотистая (HNO2). «Своей» одной кислоты у него нет. Поэтому при взаимодействии оксида азота (IV) с щелочами образуются две соли- нитрит и нитрат:

А вот в присутствии окислителя, например, молекулярного кислорода, образуется только одна соль — нитрат, т.к. азот +4 только повышает степень окисления:

3. Гидроксиды щелочных металлов реагируют с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли.

Например , гидроксид натрия с оксидом алюминия реагирует в расплаве с образованием алюминатов:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

Еще пример : гидроксид натрия с гидроксидом алюминия в растворе образует также комплексную соль:

4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.

Например : гидроксид калия реагирует с гидрокарбонатом калия с образованием карбоната калия:

5. Щелочи взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется щелочами до силиката и водорода:

Фтор окисляет щелочи. При этом выделяется молекулярный кислород:

Другие галогены, сера и фосфор — диспропорционируют в щелочах:

Сера взаимодействует с щелочами только при нагревании:

6. Щелочи взаимодействуют с амфотерными металлами , кроме железа и хрома . При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2

7. Гидроксиды щелочных металлов вступают в обменные реакции с растворимыми солями .

С щелочами взаимодействуют соли тяжелых металлов.

Например , хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):

2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl

Также с щелочами взаимодействуют соли аммония.

Например , при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:

NH4Cl + NaOH = NH3 + H2O + NaCl

8. Гидроксиды всех щелочных металлов плавятся без разложения , гидроксид лития разлагается при нагревании до температуры 600°С:

2LiOH → Li2O + H2O

9. Все гидроксиды щелочных металлов проявляют свойства сильных оснований . В воде практически нацело диссоциируют , образуя щелочную среду и меняя окраску индикаторов.

NaOH ↔ Na + + OH —

10. Гидроксиды щелочных металлов в расплаве подвергаются электролизу . При этом на катоде восстанавливаются сами металлы, а на аноде выделяется молекулярный кислород:

Щелочные металлы. Химия щелочных металлов и их соединений


Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.

Электронное строение щелочных металлов и основные свойства

Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns 1 , на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1.

Рассмотрим некоторые закономерности изменения свойств щелочных металлов.

В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус , усиливаются металлические свойства , ослабевают неметаллические свойства , уменьшается электроотрица-тельность .


Физические свойства

Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.


Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.


Нахождение в природе

Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы , в которых присутствуют щелочные металлы:

Поваренная соль, каменная соль, галит — NaCl — хлорид натрия


Сильвин KCl — хлорид калия


Сильвинит NaCl · KCl


Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия


Едкое кали KOH — гидроксид калия

Поташ K2CO3 – карбонат калия

Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:


Способы получения

Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl (расплав) → 2Na + Cl2

Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).

Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний:

KCl + Na = K↑ + NaCl

KOH + Na = K↑ + NaOH

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl → 2Cs + CaCl2

В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме.

Качественные реакции

Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов .


Цвет пламени:
Li — карминно-красный
Na — жѐлтый
K — фиолетовый
Rb — буро-красный
Cs — фиолетово-красный

1. Щелочные металлы — сильные восстановители . Поэтому они реагируют почти со всеми неметаллами .

1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:

2K + I2 = 2KI

1.2. Щелочные металлы реагируют с серой с образованием сульфидов:

2Na + S = Na2S

1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды:

3K + P = K3P

2Na + H2 = 2NaH

1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:

Остальные щелочные металлы реагируют с азотом при нагревании.

1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид.

Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь.

2. Щелочные металлы активно взаимодействуют со сложными веществами:

2.1. Щелочные металлы бурно (со взрывом) реагируют с водой . Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.

2K 0 + H2 + O = 2 K + OH + H2 0

Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.

2.2. Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например , натрий бурно реагирует с соляной кислотой :

2Na + 2HCl = 2NaCl + H2

2.3. При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород.

Например , при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:

2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодействии с концентрированной азотной кислотой образуется оксид азота (I):

С разбавленной азотной кислотой образуется молекулярный азот:

При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства . Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртами , фенолом и органическими кислотами .

Например , при взаимодействии лития с аммиаком образуются амиды и водород:

Ацетилен с натрием образует ацетиленид натрия и также водород:

Н ─ C ≡ С ─ Н + 2Na → Na ─ C≡C ─ Na + H2

Фенол с натрием реагирует с образованием фенолята натрия и водорода:

Метанол с натрием образуют метилат натрия и водород:

Уксусная кислота с литием образует ацетат лития и водород:

2СH3COOH + 2Li → 2CH3COOLi + H2

Щелочные металлы реагируют с галогеналканами (реакция Вюрца).

Например , хлорметан с натрием образует этан и хлорид натрия:

2.6. В расплаве щелочные металлы могут взаимодействовать с некоторыми солями . Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например , натрий взаимодействует в расплаве с хлоридом алюминия :

3Na + AlCl3 → 3NaCl + Al

Оксиды щелочных металлов

Оксиды щелочных металлов (кроме лития) можно получить только к освенными методами : взаимодействием натрия с окислителями в расплаве:

1. О ксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве:

2. Взаимодействием натрия с пероксидом натрия :

3. Взаимодействием натрия с расплавом щелочи :

2Na + 2NaOН → 2Na2O + Н2

4. Оксид лития можно получить разложением гидроксида лития :

2LiOН → Li2O + Н2O

Химические свойства

Оксиды щелочных металлов — типичные основные оксиды . Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой.

1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами :

Например , оксид натрия взаимодействует с оксидом фосфора (V):

Оксид натрия взаимодействует с амфотерным оксидом алюминия:

2. Оксиды щелочных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).

Например , оксид калия взаимодействует с соляной кислотой с образованием хлорида калия и воды:

K2O + 2HCl → 2KCl + H2O

3. Оксиды щелочных металлов активно взаимодействуют с водой с образованием щелочей.

Например , оксид лития взаимодействует с водой с образованием гидроксида лития:

Li2O + H2O → 2LiOH

4. Оксиды щелочных металлов окисляются кислородом (кроме оксида лития): оксид натрия — до пероксида, оксиды калия, рубидия и цезия – до надпероксида.

Пероксиды щелочных металлов

Свойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные , так и восстановительные свойства.

1. Пероксиды щелочных металлов взаимодействуют с водой . При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода:

При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород:

2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами .

Например , пероксид натрия реагирует с углекислым газом с образованием карбоната натрия и кислорода:

3. При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода:

При нагревании пероксиды, опять-таки, диспропорционируют:

4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода:

5. При взаимодействии с восстановителями пероксиды проявляют окислительные свойства.

Например , пероксид натрия с угарным газом реагирует с образованием карбоната натрия:

Пероксид натрия с сернистым газом также вступает в ОВР с образованием сульфата натрия:

6. При взаимодействии с сильными окислителями пероксиды проявляют свойства восстановителей и окисляются, как правило, до молекулярного кислорода.

Например , при взаимодействии с подкисленным раствором перманганата калия пероксид натрия образует соль и молекулярный кислород:

Гидроксиды щелочных металлов (щелочи)

2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гидридов и некоторых других бинарных соединений с водой также образуются щелочи.

Например , гидроксид калия с фосфорной кислотой реагирует с образованием фосфатов, гидрофосфатов или дигидрофосфатов:

Еще пример : гидроксид натрия с гидроксидом алюминия в расплаве образут также комплексную соль:

4NaOH → 4Na + O2 + 2H2O

Соли щелочных металлов

Нитраты и нитриты щелочных металлов

Нитраты щелочных металлов при нагревании разлагаются на нитриты и кислород. Исключение — нитрат лития. Он разлагается на оксид лития, оксид азота (IV) и кислород.

Например , нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород:

Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей.

Нитриты щелочных металлов могут быть окислителями или восстановителями.

В щелочной среде нитраты и нитриты — очень мощные окислители.

Например , нитрат натрия с цинком в щелочной среде восстанавливается до аммиака:

Сильные окислители окисляют нитриты до нитратов.

Например , перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия:

Читайте также: