Дефект характеризующийся углом альфа между поверхностью основного металла и плоскостью

Обновлено: 22.01.2025

Под атомно-кристаллической структурой понимают взаимное расположение атомов, существующее в кристалле. Кристалл состоит из атомов (ионов), расположенных в определенном порядке, который периодически повторяется в трех измерениях. Для описания атомно-кристаллической структуры пользуются понятием пространственной или кристаллической решетки. Кристаллическая решетка представляет собой воображаемую пространственную сетку, в узлах которой располагаются атомы (ионы), образующие металл (твердое кристаллическое тело).

Металлы образуют одну из следующих высокосимметричных сложных решеток с плотной упаковкой атомов: кубическую объемно-центрированную, кубическую гранецентрированную и гексагональную.

В кубической объемно-центрированной решетке атомырасположены в узлах ячейки и один атом – в центре объема куба. Кубическую объемно-центрированную решетку имеют следующие металлы: Rb, К, Na, Li, Та, W, V, Feα, Cr, Nb, Ba и др.

В кубической гранецентрированной решетке атомы расположены в углах куба и в центре каждой грани.Этот тип решетки имеют металлы Pb, Sc, Ni, Ag, Au, Pd, Pt, Rh, Cu и др.

В гексагональной решетке атомы расположены в углах и центре шестигранных оснований призмы и три атома в средней плоскости призмы. Эту упаковку атомов имеют металлы Hf, Mg, Cd, Re, Os, Ru, Zn, Be, La, и др.

Размеры кристаллической решетки характеризуются величинами периодов, под которыми понимают расстояние между ближайшими параллельными атомными плоскостями, образующими элементарную ячейку. Период решетки металлов находится в пределах от 1 до 7 Å.

Дефекты кристаллического строения подразделяют по геометрическим признакам на точечные (нуль-мерные), линейные (одномерные) и поверхностные (двухмерные).

Точечные дефекты. Эти дефекты малы во всех трех измерениях, и размеры их не превышают нескольких атомных диаметров. К точечным дефектам относятся вакансии, или «дырки» (дефекты Шотки), т. е. узлы решетки, в которых атомы отсутствуют. Вакансии чаще образуются в результате перехода атомов из узлов решетки на поверхность (границу зерна, пустоты, трещины и т. д.) или их полного испарения с поверхности кристалла и реже в результате перехода в междоузлие. В кристалле всегда имеются атомы, кинетическая энергия которых значительно выше средней, свойственной данной температуре нагрева. Такие атомы, особенно расположенные вблизи поверхности, могут выйти на поверхность кристалла, а их место займут атомы, находящиеся дальше от поверхности, а принадлежавшие им узлы окажутся свободными, т. е. возникнут тепловые вакансии. С повышением температуры концентрация вакансий возрастает. Количество вакансий при температуре, близкой к плавлению, может достигать 1% по отношению к числу атомов в кристалле. (Быстрым охлаждением от данной температуры можно зафиксировать эти вакансии при нормальной температуре (закалка вакансий)). Возможно образование не только одиночных вакансий, но и двойных, тройных и более крупных.


Кристаллическая решетка: а - кубическая объемно-центрированная (о. ц. к.); б - кубическая гранецентрироаанная (г. ц. к.); в — гексагональная плотноупакованная (г. п. у.)

Точечные дефекты

Вакансии образуются и в процессе пластической деформации, а также при бомбардировке металла атомами или частицами высоких энергий (облучение в циклотроне или нейтронное облучение в ядерном реакторе).

Межузсльные атомы(дефекты Френкеля). Эти дефекты образуются в результате перехода атома из узла решетки в междоузлие. На месте атома, вышедшего из узла решетки в междоузлие, образуется вакансия. В плотноупакованных решетках, характерных для большинства металлов, энергия образования межузельных атомов в несколько раз больше энергии образования тепловых вакансий. Вследствие этого в металлах очень трудно возникают межузельные атомы, и тепловые вакансии в таких кристаллах являются основными точечными дефектами. (в меди при 1000°С концентрация межузельных атомов на 35 порядков меньше концентрации вакансий.)

Точечные несовершенства кристаллической решетки появляются и в результате действия атомов примесей, которые, как правило, присутствуют даже в самом чистом металле. Точечные дефекты вызывают местное искажение кристаллической решетки. Смещения (релаксация) вокруг вакансий возникают только в первых двух слоях соседних атомов и составляют доли межатомного расстояния. Вокруг межузельного атома в плотноупакованных решетках смещение соседей значительно больше, чем вокруг вакансий.

Линейные дефекты. Линейные несовершенства имеют малые размеры в двух измерениях и большую протяженность в третьем измерении. Эти несовершенства называются дислокациями. Краевая дислокация представляет собой локализованное искажение кристаллической решетки, вызванное наличием в ней «лишней» атомной полуплоскости или экстраплоскости, перпендикулярной к плоскости чертежа.


Наиболее простой и наглядный способ образования дислокаций в кристалле – сдвиг (рис. 9, а). Если верхнюю часть кристалла сдвинуть относительно нижней на одно межатомное расстояние, причем зафиксировать положение, при котором сдвиг охватывает не всю плоскость скольжения, а только часть ее ABCD, то граница АВ между участком, где скольжение уже произошло, и не нарушенным участком в плоскости скольжения и будет дислокацией. Линия краевой дислокации перпендикулярна вектору сдвига.

Кроме краевых различают еще винтовые дислокации. Винтовые дислокации в отличие от краевых располагаются параллельно направлению сдвига (линия AD). При наличии винтовой дислокации кристалл можно рассматривать как состоящий из одной атомной плоскости, закрученной в виде винтовой поверхности. Дислокации окружены полями упругих напряжений, вызывающих искажение кристаллической решетки. В краевой дислокации выше края экстраплоскости межатомные расстояния меньше нормальных, а ниже края – больше.

Дислокации не могут обрываться внутри кристаллита. Они могут прерываться на других дислокациях или на границах раздела (границы зерен, поверхность кристалла и т. д.). В связи с этим внутри кристалла дислокации образуют замкнутые петли или взаимосвязанные сетки.

Под плотностью дислокаций понимают суммарную длину дислокации l, приходящуюся на единицу объема V кристалла n = Σl/V. Таким образом, размерность плотности дислокаций (см -2 ).

Поверхностные дефекты. Представляют собой поверхности раздела между отдельными зернами или их блоками (субзернами) поликристаллического металла. Каждое зерно металла состоит из отдельных блоков, или субзерен, образующих так называемую мозаичную структуру, или субструктуру. Зерна металла обычно разориентированы относительно друг друга на величину, достигающую от нескольких долей градуса (малоугловые границы) до нескольких градусов или нескольких их десятков (высокоугловые границы).

Блоки, или субзерна, повернуты по отношению друг к другу на угол от нескольких секунд до нескольких минут (малоугловые границы), имеют размеры на три-четыре порядка величины меньше размеров кристаллитов (10 -6 – 10 -4 см). В пределах каждого блока, или субзерна, решетка почти идеальная, если не учитывать точечных несовершенств.

(1′ = 1/60 угловых градусов; α[°] = (180 / π ) × α[рад], где: α[рад] — угол в радианах, α[°] — угол в градусах).

Границы между отдельными кристаллитами (зернами) представляют собой переходную область шириной в 5–10 межатомных расстояний, в которой решетка одного кристалла, имеющего определенную кристаллографическую ориентацию, переходит в решетку другого кристалла, имеющего иную кристаллографическую ориентацию.


схема зерна и блочной структуры

На границе зерна атомы расположены менее правильно, чем в объеме зерна. По границам зерен в технических металлах концентрируются примеси, что еще больше нарушает правильный порядок расположения атомов.

Границы блоков, а также малоугловые границы зерен образованы дислокациями. В реальном поликристаллическом металле протяженность границ блоков и зерен очень велика, количество дислокаций в таком металле огромно (10 4 – 10 12 см -2 ). Атомы на границах зерен (или субзерен) имеют повышенную потенциальную энергию. Такую повышенную энергию имеют и атомы, расположенные на поверхности кристалла, вследствие нескомпенсированности сил межатомного взаимодействия.

Ответы общий экзамен. 3. Чем определяется возможность обнаружения дефектов материала ультразвуковым методом Правильный ответ


Единственный в мире Музей Смайликов

Самая яркая достопримечательность Крыма

3. Чем определяется возможность обнаружения дефектов материала ультразвуковым методом?
Правильный ответ: Различием акустических сопротивлений материала и несплошности.
Вопрос:

5. Расстояние преодолеваемое упругой волной за время, равное одному периоду колебаний, это

7. Какой из перечисленных типов волн является единственным, распространяющимся в жидкости?

Продольная.
9. Для какого из перечисленных типов волн скорость распространения ультразвука в стали является максимальной?
Правильный ответ: Продольные волны.
10. Упругие возмущения, распространяющиеся вдоль свободной границы твердого тела практически без затухания, это .
Правильный ответ: поверхностные волны (волны Рэлея).
17. При контроле прямым преобразователем время от начала излучения зондирующего импульса в изделие до момента прихода эхо-сигнала от дефекта, залегающего на глубине 30 мм (скорость звука в металле - 6000 м/с), составляет:
Правильный ответ: 10 мкс.
Вопрос:

18. При распространении в идеальной безграничной среде (коэффициент затухания равен нулю) не зависит от расстояния амплитуда волны с .

19. Явление, при котором волна, упавшая на границу раздела двух сред, меняет свое направление в первой среде, называется:
Правильный ответ: отражение.
21. Явление частичного огибания волнами препятствия, находящегося на пути их распространения, называется:
Правильный ответ: дифракцией.
Вопрос:

22. Угол преломления продольных ультразвуковых волн, наклонно падающих под определенным углом на границу раздела вода-металл, зависит от:

соотношения скоростей звука в воде и металле.
23. Продольные ультразвуковые колебания вводят из воды в сталь под углом 5 град. к нормали. В этом случае угол преломления для поперечных колебаний будет:

меньше, чем угол преломления для продольных колебаний.

24. Угол отражения ультразвукового пучка от поверхности раздела вода-сталь:
Правильный ответ: равен углу падения.
25. Если ультразвуковая волна проходит через границу раздела двух сред, первая из которых имеет большее значение акустического сопротивления, но скорости звука в обеих средах одинаковы, то угол преломления будет:
Правильный ответ: равным углу падения.

26. Угол падения, при котором угол преломления составляет 90° , называется .

28. Волны какого типа возбуждаются в объеме твердого тела при падении на его границу плоской продольной волны под углом больше второго критического?
Правильный ответ: Объемные волны не возбуждаются.
Вопрос:

31. При прозвучивании прямым ПЭП с торца сплошного цилиндра, диаметр которого много меньше его длины, периферийные лучи ультразвукового пучка могут отразиться от боковой поверхности до того, как ось пучка достигнет донной поверхности. Это может вызвать:

эхо-сигналы после первого донного сигнала и неравномерно изменяющуюся чувствительность по высоте цилиндра.
32. От акустических сопротивлений материалов первой и второй сред на границе их раздела зависит:

энергетические соотношения на границе раздела сред.

33. Параметр, определяющий количество ультразвуковой энергии, отраженной от поверхности раздела двух сред, называется:
Правильный ответ: коэффициентом отражения.
35. При падении ультразвуковой волны на дефект в каком случае эхо-сигнал будет больше?

Когда полость дефекта заполнена газом.

36. Для экспериментального сравнения коэффициента прозрачности границы "ПЭП-контролируемый материал" в изделии и стандартном образце используют отражатели:
Правильный ответ: одного и того же вида, расположенные на одной и той же глубине.
37. При контроле на глубине 30 мм была выявлена пора диаметром 2 мм. Поры какого диаметра будут выявляться на глубине 60 мм?
Правильный ответ: 8.
39. Коэффициент отражения пучка продольных волн от двугранного угла

равен 1 при углах падения 0° и 90°

43. Производится контроль крупнозернистого материала при фиксированной частоте колебаний. Для волн какого типа коэффициент затухания наименьший?

47. Коэффициент затухания ультразвуковых колебаний в дальней зоне в стали составляет 0,016 дБ/мм плита имеет толщину 250 мм. Как отличаются амплитуды первого и второго донных сигналов?

48. При контроле полуфабрикатов амплитуда эхо-сигнала от надежно выявляемой несплошности должна превышать максимальную амплитуду эхо-сигналов от структурных неоднородностей материала, по крайней мере, на .
Правильный ответ: 6 дБ.
49. Будут ли результаты одинаковыми, если измерять коэффициент затухания продольных ультразвуковых волн по соотношению донных сигналов в образце одной толщины (первого и второго донных сигналов) и в образце, имеющем участок той

же толщины и участок удвоенной толщины?

50. По какому закону убывает амплитуда волны под влиянием затухания?
Правильный ответ: По экспоненте.
51. Метод контроля, при котором ультразвук, излучаемый одним ПЭП, проходит сквозь объект контроля и регистрируется другим ПЭП на противоположной стороне объекта, называется:
Правильный ответ: теневым методом.
52. Признаком наличия несплошности при контроле теневым методом является:
Правильный ответ: уменьшение амплитуды импульса, прошедшего через объект контроля на дефектном участке, по сравнению с бездефектными участками.
Вопрос:

54. Зеркально-теневой метод можно реализовать .

И одним прямым, и двумя наклонными ПЭП.

55. В каких пределах изменяется коэффициент выявляемости дефекта при зеркально-теневом методе?

От 0 до 1.
Вопрос:

56. Амплитуда первого донного сигнала в отсутствии дефекта в 5 раз больше амплитуды того же донного сигнала при наличии дефекта. Это значит, что коэффициент выявляемости дефекта Кд:

58. Угол ввода наклонного преобразователя:

определяется экпериментально на стандартном образце с цилиндрическим отверстием.

59. Схема контроля, реализующая эхо-зеркальный метод, когда наклонные излучатель и приемник ориентированы в одну сторону, а плоскости падения центральных лучей совмещены, называется:

схемой ТАНДЕМ.
61. Каково назначение пьезоэлемента в преобразователе?

Преобразование электрических колебаний в акустические и обратное преобразование.

62. Каково назначение протектора в прямом преобразователе?
Правильный ответ: Защита пьезоэлемента от механических повреждений.
Вопрос:

63. Прямые ПЭП с мягким протектором в отличие от ПЭП с жестким протектором .

менее чувствительны к неровностям и шероховатости поверхности.

65. Какой из нижеперечисленных ПЭП содержит наиболее тонкий пьезоэлемент?
Правильный ответ: На частоту 10,0 МГц.
Вопрос:

66. Что такое стрела преобразователя?

Расстояние от точки выхода наклонного ПЭП до его передней грани.

71. Область контролируемого металла, прилегающая к контактной поверхности объекта контроля, в пределах которой невозможно обнаружить дефект, называют:

72. При прочих равных условиях величина мертвой зоны с увеличением угла ввода луча .
Правильный ответ: уменьшается.
73. Глубина залегания H плоскодонного отражателя, плоскость которого ориентирована под углом 45° к поверхности изделия, измерена двумя наклонными преобразователями с углом ввода 1=40° и 2=65°.

Как соотносятся значения H1 и H2, измеренные преобразователями с углами ввода 1 и 2 соответственно?
Правильный ответ: H1>H2
Вопрос:

74. Главной характеристикой акустического поля в дальней зоне является:

75. Рассчитайте длину ближней зоны преобразователя радиусом 8 мм и частотой 1,5 МГц в среде со скоростью звука С=6,0 мм/мкс.

76. Какая из перечисленных формул используется для расчета полного угла  раскрытия основного лепестка диаграммы направленности прямого преобразователя радиусом на частоту f, если скорость звука в среде С?
Правильный ответ: sin = 0,61 C/af.
Вопрос:

77. По мере увеличения частоты ультразвука угол раскрытия основного лепестка диаграммы направленности излучателя данного диаметра .

78. Пьезопластины из одного и того же пьезоматериала с радиусами а1 D.

123. По каким из перечисленных ниже отражателям следует настраивать ВРЧ дефектоскопа, чтобы сохранить по всей толщине контролируемого изделия равную предельную чувствительность?

По плоскодонным отверстиям одинакового диаметра на разной глубине.

126. Эхо-сигналы от какого отражателя не зависят от угла ввода ПЭП при одинаковом расстоянии до него?
Правильный ответ: Цилиндрическое отверстие, параллельное поверхности изделия и перпендикулярное звуковому лучу.
127. Мерой эквивалентной площади дефекта служит .
Правильный ответ: площадь диска.
129. Два дефекта расположены в дальней зоне на одинаковом расстоянии от ПЭП. Амплитуда эхо-сигнала от первого дефекта в 4 раза больше, чем от второго, отсечка выключена. Определить эквивалентную площадь второго дефекта, если для

первого она составляет 40 мм2.

134. При контроле прямым совмещенным ПЭП амплитуда эхо сигнала от плоскости на глубине 150 мм превышает амплитуду от плоскодонного отражателя на 25 дБ. Какова будет разница амплитуд, если такие же отражатели расположены на глубине 600мм?

139. При измерении условного углового размера дефекта в сварном шве смещение преобразователя в широких пределах практически не влияет на амплитуду эхо-сигнала. Это означает, что .

дефект имеет округлую форму в плане сварного соединения.

141. Коэффициент формы Кф дефекта измеряют при включении преобразователей по .

схеме ТАНДЕМ, режим раздельно-совмещенный.

142. Дефект имеет плоскостную форму, если для его коэффициента формы Кф выполняется условие .

ГОСТ 30242-97 Дефекты соединений при сварке металлов плавлением. Классификация, обозначение и определения

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
ДЕФЕКТЫ СОЕДИНЕНИЙ ПРИ СВАРКЕ
МЕТАЛЛОВ ПЛАВЛЕНИЕМ
Классификация, обозначение и определения
МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
Минск
Предисловие

1 РАЗРАБОТАН Институтом электросварки им. Е.О. Патона Национальной Академии наук Украины; Межгосударственным техническим комитетом по стандартизации МТК 72 «Сварка и родственные процессы»
ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации
2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 11 от 23 апреля 1997 г.)
За принятие проголосовали:

Наименование национального органа по стандартизации

Госстандарт Республики Беларусь

3 Настоящий стандарт полностью соответствует ИСО 6520 - 82 «Классификация дефектов швов при сварке металлов плавлением (с пояснениями)»
4 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 2 марта 2001 г. № 115 - ст межгосударственный стандарт ГОСТ 30242 - 97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2003 г.
5 ВВЕДЕН ВПЕРВЫЕ

СОДЕРЖАНИЕ

1 Область применения
2 Классификация дефектов
3 Наименование, определение и обозначение дефектов
Группа 1. Трещины
Группа 2. Поры
Группа 3. Твердые включения
Группа 4. Несплавление и непровар
Группа 5. Нарушение формы шва
Группа 6. Прочие дефекты

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
ДЕФЕКТЫ СОЕДИНЕНИЙ ПРИ СВАРКЕ МЕТАЛЛОВ ПЛАВЛЕНИЕМ
Классификация, обозначение и определения
Imperfections in metallic fusion welds.
Classification, designation and definitions
Дата введения 2003 - 01 - 01

1 Область применения

Настоящий стандарт устанавливает классификацию, определения и условные обозначения дефектов швов, зон термического влияния и основного металла при сварке металлов плавлением.

2 Классификация дефектов

2.1 Дефекты при сварке металлов плавлением образуются вследствие нарушения требований нормативных документов к сварочным материалам, подготовке, сборке и сварке соединяемых элементов, термической и механической обработке сварных соединений и конструкции в целом.
2.2 В настоящем стандарте дефекты классифицированы на шесть следующих групп:
1 - трещины;
2 - полости, поры;
3 - твердые включения;
4 - несплавления и непровары;
5 - нарушение формы шва;
6 - прочие дефекты, не включенные в вышеперечисленные группы.

3 Наименование, определение и обозначение дефектов

Наименование, определение и обозначение дефектов приведены в таблице 1.
В таблице приведены:
- в графе 1 - трехзначное цифровое обозначение каждого дефекта или четырехзначное цифровое обозначение его разновидностей;
- в графе 2 - буквенное обозначение дефекта, используемое в сборниках справочных радиограмм Международного института сварки (МИС);
- в графе 3 - наименование дефекта на русском, английском и французском языках;
- в графе 4 - определение и/или поясняющий текст;
- в графе 5 - рисунки, дополняющие определение при необходимости.
Таблица 1

Дефекты сварных соединений

Дефектами сварных соединений называют такие отклонения качества соединений от нормы, которые могут снизить их прочность, сплошность, коррозионную стойкость, жаропрочность и другие характеристики.

В зависимости от вида и размера дефектов их можно подразделить на допустимые и недопустимые. Вид и размер допустимых дефектов обычно указываются в технических условиях или стандартах на данный вид изделия.

По времени возникновения дефекты можно разделить на: образующиеся в процессе сварки, возникающие после сварки и появляющиеся в процессе эксплуатации.

По расположению в сварном соединении дефекты бывают наружные, внутренние и сквозные.

По природе образования дефекты подразделяются на следующие:

а) образующиеся из-за пороков основного металла (расслоения, плены, закаты, трещины, сульфидные включения, раковины, окалинами др.); при этом в сварном соединении могут возникнуть трещины, шлаковые и газовые включения, непровары, прожоги и другие;

б) образующиеся в результате неудовлетворительной подготовки и сборки деталей под сварку (непровары, превышение кромок, дефекты формирования и другие);

в) появляющиеся вследствие несоответствия химического состава основного и присадочного металлов и неудовлетворительной свариваемости (трещины, дефекты структуры, низкие механические и физико-химические свойства соединения);

г) обусловленные составом и технологическими свойствами присадочного металла, флюса и защитных газов (трещины, поры, шлаковые включения, плохое формирование, повышенное содержание серы и фосфора и другие);

д) пороки швов, связанные с неправильным ведением процесса сварки или последующей термообработки сварных соединений (непровары, шлаковые включения, наплывы, подрезы, ослабления швов, закалка околошовной зоны, значительные деформации и другие);

е) возникающие в процессе эксплуатации конструкции (задиры, трещины, деформации, коррозионные повреждения и другие).

Остановимся подробнее на основных дефектах сварных соединений.

Трещина- несплошность, вызванная местным разрывом шва, который может возникнуть в результате охлаждения или действия нагрузок. Продольная трещина - трещина, ориентированная параллельно оси сварного шва, может располагаться: в металле сварного шва; на границе сплавления; в зоне термического влияния; в основном металле. Поперечная трещина - трещина, ориентированная поперек оси сварного шва. Оба вида трещин могут быть: в металле сварного шва; в зоне термического влияния; в основном металле. Трещины в сварном шве показаны на рисунке 27. Трещина в сварном шве резервуара показана на рисунке 28.


Рисунок 27 – Трещины в сварном шве


Рисунок 28 – Трещина в сварном шве резервуара

Микротрещина - трещина, имеющая микроскопические размеры, которую обнаруживают физическими методами не менее чем при пятидесятикратном увеличении. Микротрещина сварного шва показана на рисунке 29.


Рисунок 29 – Микротрещина сварного шва

Радиальные трещины (известны как звездоподобные трещины) - трещины, радиально расходящиеся из одной точки. Радиальные трещины показаны на рисунке 30.

Рисунок 30 – Радиальные трещины (1031) в металле сварного шва, (1033) в зоне термического влияния, (1034) в основном металле

Трещина в кратере - трещина в кратере сварного шва, которая может быть: продольной; поперечной; звездообразной. Трещины в кратере приведены на рисунке 31.

Рисунок 31 – Трещины в кратере

Разветвленные трещины - группа трещин, возникших из одной трещины. Они могут располагаться: в металле сварного шва, в зоне термического влияния и основном металле. Разветвленные трещины приведены на рисунке 32.

Рисунок 32 – Разветвленные трещины (1061) в сварном шве, (1063) в зоне термического влияния, (1064) в основном металле

Газовая полость - полость произвольной формы, образованная газами, задержанными в расплавленном металле, которая не имеет углов. Газовая полость показана на рисунке 33.

Рисунок 33 – Газовая полость

Газовая пора - газовая полость обычно сферической формы. Газовая пора показана на рисунке 34.

Рисунок 34 – Газовая пора

Равномерно распределенная пористость - группа газовых пор, распределенных равномерно в металле сварного шва. Равномерно распределенная пористость показана на рисунке 35.

Рисунок 35 - Равномерно распределенная пористость

Скопление пор - группа газовых полостей (три или более), расположенных кучно с расстоянием между ними менее трех максимальных размеров большей из полостей. Скопление пор показано на рисунке 36. Пористость сварного шва резервуара показана ни рисунке 37.

Рисунок 36 – Скопление пор


Рисунок 37 – Пористость сварного шва резервуара

Цепочка пор - ряд газовых пор, расположенных в линию, обычно параллельно оси сварного шва, с расстоянием между ними менее трех максимальных размеров большей из пор. Цепочка пор показана на рисунке 38.

Рисунок 38 — Цепочка пор

Продолговатая полость - несплошность, вытянутая вдоль оси сварного шва. Длина несплошности не менее чем в два раза превышает высоту. Продолговатая полость показана на рисунке 39.

Рисунок 39 - Продолговатая полость

Свищ - трубчатая полость в металле сварного шва, вызванная выделением газа. Форма и положение свища определяются режимом затвердевания и источником газа. Обычно свищи группируются в скопления и распределяются елочкой. Свищ показан на рисунке 40.

Рисунок 40 — Свищ в сварном шве

Поверхностная пора - газовая пора, которая нарушает сплошность поверхности сварного шва. Поверхностная пора показана на рисунке 41.

Рисунок 41 — Поверхностная пора

Усадочная раковина - полость, образующаяся вследствие усадки во время затвердевания. Усадочная раковина показана на рисунке 42.

Рисунок 42 — Усадочная раковина

Кратер - усадочная раковина в конце валика сварного шва, незаваренная до или во время выполнения последующих проходов. Кратер показан на рисунке 43. Кратер в сварном шве резервуара показан на рисунке 44.

Рисунок 43 — Кратер в сварном шве


Рисунок 44 – Кратер в сварном шве резервуара

Твердое включение - твердые инородные вещества металлического или неметаллического происхождения в металле сварного шва. Включения, имеющие хотя бы один острый угол, называются остроугольными включениями. Твердое включение показано на рисунке 45.

Рисунок 45 — Твердое включение в сварном шве

Шлаковое или флюсовое включение - шлак, либо флюс, попавший в металл сварного шва. В зависимости от условий образования такие включения могут быть: линейными (3011), разобщенными (3012), прочими (3013). Шлаковое включение показано на рисунке 46.

Рисунок 46 — Шлаковое включение

Оксидное включение - оксид металла, попавший в металл сварного шва во время затвердевания. Оксидное включение показано на рисунке 47.

Рисунок 47 — Оксидное включение

Металлическое включение - частица инородного металла, попавшая в металл сварного шва. Металлическое включение показано на рисунке 48.

Рисунок 48 — Металлическое включение в сварном шве

Несплавление - отсутствие соединения между металлом сварного шва и основным металлом или между отдельными валиками сварного шва. Различают несплавления: по боковой стороне, между валиками, в корне сварного шва. Несплавление показано на рисунке 49.

Рисунок 49 — Несплавление в сварном шве

Непровар (неполный провар) - несплавление основного металла по всей длине шва или на участке, возникающее вследствие неспособности расплавленного металла проникнуть в корень соединения. Непровар показан на рисунке 50.

Рисунок 50 — Непровар сварного шва

Нарушение формы - отклонение формы наружных поверхностей сварного шва или геометрии соединения от установленного значения. Нарушение формы показано на рисунке 51. Вогнутость сварного шва резервуара показана на рисунке 52.

Рисунок 51 — Нарушение формы сварного шва


Рисунок 52 – Вогнутость сварного шва резервуара

Подрез непрерывный - углубление продольное на наружной поверхности валика сварного шва, образовавшееся при сварке. Подрез непрерывный показан на рисунке 53.

Рисунок 53 — Подрез непрерывный

Подрез перемежающийся локальный – продольное углубление отдельными участками на наружной поверхности валика сварного шва. Подрез перемежающийся локальный приведен на рисунке 54. Подрез в сварном шве резервуара показан на рисунке 55

Рисунок 54 – Подрез перемежающийся локальный


Рисунок 55 – Подрез в сварном шве резервуара

Усадочная канавка - подрез со стороны корня одностороннего сварного шва, вызванный усадкой по границе сплавления. Усадочная канавка показана на рисунке 56.

Рисунок 56 - Усадочная канавка

Превышение выпуклости стыкового (углового) шва (502) - избыток наплавленного металла на лицевой стороне стыкового (углового) шва сверх установленного значения. Превышение выпуклости стыкового (углового) шва показано на рисунке 57.

Рисунок 57 - Превышение выпуклости стыкового (углового) шва

Неправильный профиль сварного шва (505) - угол между поверхностью основного металла и плоскостью, касательной к поверхности сварного шва, менее установленного значения. Неправильный профиль сварного шва показан на рисунке 58.

Рисунок 58 - Неправильный профиль сварного шва

Наплыв - избыток наплавленного металла сварного шва, натекший на поверхность основного металла, но не сплавленный с ним. Наплыв показан на рисунке 59.

Рисунок 59 — Наплыв сварного шва

Линейное смещение - смещение между двумя свариваемыми элементами, при котором их поверхности располагаются параллельно, но не на требуемом уровне. Линейное смещение показано на рисунке 60.

Рисунок 60 — Линейное смещение

Угловое смещение - смещение между двумя свариваемыми элементами, при котором их поверхности располагаются под углом, отличающимся от требуемого. Угловое смещение показано на рисунке 61.

Рисунок 61 — Угловое смещение

Натек - металл сварного шва, осевший вследствие действия силы тяжести и не имеющий сплавления с соединяемой поверхностью. В зависимости от условий это может быть: натек при горизонтальном положении сварки; натек в нижнем или потолочном положении сварки; натек в угловом сварном шве; натекание в шве нахлесточного соединения. Натек показан на рисунке 62.

Рисунок 62 — Натек сварного шва

Прожог - вытекание металла сварочной ванны, в результате которого образуется сквозное отверстие в сварном шве. Прожог показан на рисунке 63. Прожог сварного шва резервуара показан на рисунке 64.

Рисунок 63 — Прожог сварного шва


Рисунок 64 – Прожог сварного шва резервуара

Неполностью заполненная разделка кромок - продольная непрерывная или прерывистая канавка на поверхности сварного шва из-за недостаточности присадочного металла при сварке. Неполностью заполненная разделка кромок показана на рисунке 65.

Рисунок 65 - Неполностью заполненная разделка кромок

Чрезмерная асимметрия углового шва - чрезмерное превышение размеров одного катета над другим. Чрезмерная асимметрия углового шва показана на рисунке 66.

Рисунок 66 - Чрезмерная асимметрия углового шва

Неравномерная ширина шва - отклонение ширины от установленного значения вдоль сварного шва. Неравномерная ширина шва показана на рисунке 67.

Рисунок 67 - Неравномерная ширина шва

Неровная поверхность- грубая неравномерность формы поверхности усиления шва по длине. Неровная поверхность показана на рисунке 68.

Рисунок 68 — Неровная поверхность

Вогнутость корня шва - неглубокая канавка со стороны корня одностороннего сварного шва, образовавшаяся вследствие усадки. Вогнутость корня шва показана на рисунке 69.

Рисунок 69 — Вогнутость корня шва

Пористость в корне сварного шва - наличие пор в корне сварного шва вследствие возникновения пузырьков во время затвердевания металла. Пористость в корне сварного шва показана на рисунке 70.

Рисунок 70 — Пористость в корне сварного шва

Возобновление шва - местная неровность поверхности в месте возобновления сварки. Возобновление шва показано на рисунке 71.

Рисунок 71 — Возобновление шва

Брызги металла - капли наплавленного или присадочного металла, образовавшиеся во время сварки и прилипшие к поверхности затвердевшего металла сварного шва или околошовной зоны основного металла. Брызги металла показаны на рисунке 72.

Рисунок 72 — Брызги металла

Поверхностные задиры - повреждение поверхности, вызванное удалением временно приваренного приспособления. Поверхностный задир показан на рисунке 73.

Рисунок 73 — Поверхностный задир

Утонение металла - уменьшение толщины металла до значения менее допустимого при механической обработке. Утонение металла показано на рисунке 74.

Читайте также: