Цветные металлы и сплавы материаловедение

Обновлено: 22.01.2025

Ценные свойства цветных металлов обусловили их широкое применение в различных отраслях современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы являются незаменимыми материалами для приборостроительной и электротехнической промышленности, самолетостроения и радиоэлектроники, ядерной и космической отраслей техники. Цветные металлы обладают рядом ценных свойств: высокой теплопроводностью, очень малой плотностью (алюминий и магний), очень низкой температурой плавления (олово, свинец), высокой коррозионной стойкостью (титан, алюминий). В различных отраслях промышленности широко применяются сплавы алюминия с другими легирующими элементами.

Сплавы на магниевой основе отличаются малой плотностью, высокой удельной прочностью, хорошо обрабатываются резанием. Они нашли широкое применение в машиностроении и в частности в авиастроении.

Техническая медь, содержащая не более 0,1 % примесей, применяется для различных видов проводников тока.

Медные сплавы по химическому составу классифицируются на латуни и бронзы. В свою очередь латуни по химическому составу подразделяются на простые, легированные только цинком, и специальные, которые, помимо цинка, содержат в качестве легирующих элементов свинец, олово, никель, марганец.

Бронзы также подразделяются на оловянные и безоловянные. Безоловянные бронзы имеют высокую прочность, хорошие антикоррозионные и антифрикционные свойства.

В металлургии широко используется магний, с помощью которого осуществляют раскисление и обессеривание неко

торых металлов и сплавов, модифицируют серый чугун с целью получения графита шаровидной формы, производят трудно восстанавливаемые металлы (например, титан), смеси порошка магния с окислителями служат для изготовления осветительных и зажигательных ракет в реактивной технике и пиротехнике. Свойства магния значительно улучшаются за счет легирования. Алюминий и цинк с массовой долей до 7 % повышают его механические свойства, марганец улучшает его сопротивление коррозии и свариваемость, цирконий, введенный в сплав вместе с цинком, измельчает зерно (в структуре сплава), повышает механические свойства и сопротивление коррозии.

Из магниевых сплавов изготавливают фасонные отливки, а также полуфабрикаты – листы, плиты, прутки, профили, трубы, проволоки. Промышленный магний получают электролитическим способом из магнезита, доломита, карналлита, морской воды и отходов различного производства по схеме получение чистых безводных солей магния, электролиз этих солей в расплавленном состоянии и рафинирование магния В природе мощные скопления образуют карбонаты магния – магнезит и доломит, а также карналлиты.

В пищевой промышленности широко применяется упаковочная фольга из алюминия и его сплавов – для обертки кондитерских и молочных изделий, а также в больших количествах используется алюминиевая посуда (пищеварочные котлы, поддоны, ванны и т. д.).

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

ЛЕКЦИЯ № 4. Свойства древесины

ЛЕКЦИЯ № 4. Свойства древесины 1. Цвет, блеск и текстура древесины Цвет древесины зависит от климатических условий произрастания дерева. В умеренном климате древесина почти всех пород окрашена бледно, а в тропическом имеет яркую окраску. Влияние климатического фактора

ЛЕКЦИЯ № 5. Сплавы

ЛЕКЦИЯ № 5. Сплавы 1. Строение металлов Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот.

ЛЕКЦИЯ № 6. Механические свойства металлов

ЛЕКЦИЯ № 6. Механические свойства металлов 1. Деформация и разрушение Приложение нагрузки вызывает деформацию. В начальный момент нагружение, если оно не сопровождается фазовыми (структурными) изменениями, вызывает только упругую (обратимую) деформацию. По достижении

ЛЕКЦИЯ № 7. Железоуглеродистые сплавы

ЛЕКЦИЯ № 7. Железоуглеродистые сплавы 1. Диаграмма железо—цементит Диаграмма железо—цементит охватывает состояние железоуглеродистых сплавов, которые содержат до 6,67 % углерода. Рис. 7. Диаграмма состояния железоуглеродистых сплавов (сплошные линии – система Fe—Fe 3 C;

ЛЕКЦИЯ № 8. Способы обработки металлов

ЛЕКЦИЯ № 8. Способы обработки металлов 1. Влияние легирующих компонентов на превращения, структуру, свойства сталей Легирующие компоненты или элементы, вводимые в стали в зависимости от их взаимодействия с углеродом, находящемся в железоуглеродистых сплавах,

ЛЕКЦИЯ № 10. Твердые и сверхтвердые сплавы

ЛЕКЦИЯ № 10. Твердые и сверхтвердые сплавы 1. Твердые сплавы и режущая керамика Твердые сплавы и режущую керамику получают с помощью методов порошковой металлургии. Порошковая металлургия – область техники, охватывающая совокупность методов изготовления

ЛЕКЦИЯ № 15. Клеи

ЛЕКЦИЯ № 15. Клеи 1. Классификация клеев и требования к ним В различных отраслях хозяйства широко применяются различные клеевые материалы, которые изготавливаются на основе природных (натуральных) или синтетических клеящих веществ.Природные клеи подразделяются на клеи

ЛЕКЦИЯ № 17. Полы

ЛЕКЦИЯ № 17. Полы 1. Виды полов Устройство и вид полов при строительстве различных зданий и сооружений определяются строительными нормами и правилами (СНиП). В зависимости от назначения зданий и сооружений полы внутри них – в помещениях могут быть самыми разнообразными:

ЛЕКЦИЯ № 18. Строительные материалы

ЛЕКЦИЯ № 18. Строительные материалы 1. Материалы из природного камня Материалы из природного камня в строительстве применяются с незапамятных времен. Основными и широко используемыми материалами из природного камня являются песок (горный и речной), гравий, мел, каолин,

ЛЕКЦИЯ № 1. Метрология

ЛЕКЦИЯ № 1. Метрология 1. Предмет и задачи метрологии С течением мировой истории человеку приходилось измерять различные вещи, взвешивать продукты, отсчитывать время. Для этой цели понадобилось создать целую систему различных измерений, необходимую для вычисления

ЛЕКЦИЯ № 2. Техническое регулирование

ЛЕКЦИЯ № 2. Техническое регулирование 1. Основные понятия технического регулирования Основным нормативным документом, дающим определение и толкование технического регулирования, является Закон «О техническом регулировании». Исходя из определения, данного в этом

ЛЕКЦИЯ № 3. Основы стандартизации

ЛЕКЦИЯ № 3. Основы стандартизации 1. История развития стандартизации Человек прошел долгий путь развития труда от грубых каменных топоров и наконечников из кремня для стрел до микросхем и информационного общества. На протяжении очень долгого времени трудовая

7.4. Сплавы меди, имитирующие золотые и серебряные сплавы

7.4. Сплавы меди, имитирующие золотые и серебряные сплавы С целью удешевления художественных изделий при производстве недорогих украшений широко используются томпак, латунь, мельхиор, нейзильбер; при изготовлении художественных изделий – бронзы.Сплавы меди с цинком,

43. Маркировка, структура, свойства и области применения цветных металлов и их сплавов

43. Маркировка, структура, свойства и области применения цветных металлов и их сплавов К цветным металлам относятся медь, алюминий, магний, титан, свинец, цинк и олово, которые обладают ценными свойствами и применяются в промышленности, несмотря на относительно высокую

Цветные металлы и сплавы материаловедение

ЛЕКЦИЯ № 11. Сплавы цветных металлов

1. Цветные металлы и сплавы, их свойства и назначение

2. Медные сплавы

Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. В настоящее время медь широко используется в электромашиностроении, при строительстве линий электропередач, для изготовления оборудования телеграфной и телефонной связи, радио—и телевизионной аппаратуры. Из меди изготовляют провода, кабели, шины и другие токопроводящие изделия. Медь обладает высокой электропроводностью и теплопроводностью, прочностью вязкостью и коррозионной стойкостью. Физические свойства ее обусловлены структурой. Она имеет кубическую гра—нецентрированную пространственную решетку. Ее температура плавления – +1083 °C, кипения – +2360 °C. Средний предел прочности зависит от вида обработки и составляет от 220 до 420 МПа (22–45 кгс/мм 2 ), относительное удлинение – 4—60 %, твердость – 35—130 НВ, плотность – 8,94 г/см 3 . Обладая замечательными свойствами, медь в то же время как конструкционный материал не удовлетворяет требованиям машиностроения, поэтому ее легируют, т. е. вводят в сплавы такие металлы, как цинк, олово, алюминий, никель и другие, за счет чего улучшаются ее механические и технологические свойства. В чистом виде медь применяется ограниченно, более широко – ее сплавы. По химическому составу медные сплавы подразделяют на латуни, бронзы и медноникелевые, по технологическому назначению – на деформируемые, используемые для производства полуфабрикатов (проволоки, листа, полос, профиля), и литейные, применяемые для литья деталей.

Латуни – сплавы меди с цинком и другими компонентами. Латуни, содержащие, кроме цинка, другие легирующие элементы, называются сложными, или специальными, и именуются по вводимым, кроме цинка, легирующим компонентам. Например: томпак Л90 – это латунь, содержащая 90 % меди, остальное – цинк; латунь алюминиевая ЛА77–2 – 77 % меди, 2 % алюминия, остальное – цинк и т. д. По сравнению с медью латуни обладают большой прочностью, коррозионной стойкостью и упругостью. Они обрабатываются литьем, давлением и резанием. Из них изготовляют полуфабрикаты (листы, ленты, полосы, трубы конденсаторов и теплообменников, проволоку, штамповки, запорную арматуру – краны, вентили, медали и значки, художественные изделия, музыкальные инструменты, сильфоны, подшипники).

Бронзы – сплавы на основе меди, в которых в качестве добавок используются олово, алюминий, бериллий, кремний, свинец, хром и другие элементы. Бронзы подразделяются на безоловянные (БрА9Мц2Л и др.), оловянные (БрО3ц12С5 и др.), алюминиевые (БрА5, БрА7 и др.), кремниевые (БрКН1–3, БрКМц3–1), марганцевые (БрМц5), бериллиевые бронзы (БрБ2, БрБНТ1,7 и др.). Бронзы используются для производства запорной арматуры (краны, вентили), различных деталей, работающих в воде, масле, паре, слабоагрессивных средах, морской воде.

3. Алюминиевые сплавы

Название «алюминий» происходит от латинского слова alumen – так за 500 лет до н. э. называли алюминиевые квасцы, которые использовались для протравливания при крашении тканей и дубления кож.

По распространенности в природе алюминий занимает третье место после кислорода и кремния и первое место среди металлов. По использованию в технике он занимает второе место после железа. В свободном виде алюминий не встречается, его получают из минералов – бокситов, нефелинов и алунитов, при этом сначала производят глинозем, а затем из глинозема путем электролиза получают алюминий. Механические свойства алюминия невысоки: сопротивление на разрыв – 50–90 МПа (5–9 кгс/мм 2 ), относительное удлинение – 25–45 %, твердость – 13–28 НВ.

Алюминий хорошо сваривается, однако трудно обрабатывается резанием, имеет большую линейную усадку – 1,8 % В чистом виде алюминий применяется редко, в основном широко используются его сплавы с медью, магнием, кремнием, железом и т. д. Алюминий и его сплавы необходимы для авиа—и машиностроения, линий электропередач, подвижного состава метро и железных дорог.

Алюминиевые сплавы подразделяются на литейные и деформируемые. Литейные сплавы алюминия выпускаются в чушках – рафинированные и нерафинированные.

Сплавы, в обозначении марок которых имеется буква «П», предназначены для изготовления пищевой посуды. Механические свойства сплавов зависят от их химического состава и способов получения. Химический состав основных компонентов, входящих в сплав, можно определить по марке. Например, сплав АК12 содержит 12 % кремния, остальное – алюминий; АК7М2П – 7 % кремния, 2 % меди, остальное – алюминий. Наиболее широко применяется в различных отраслях промышленности сплав алюминия с кремнием – силумин, который изготовляется четырех марок – СИЛ–00,

СИЛ–0, СИЛ–1 и СИЛ–2. Кроме алюминия (основа) и кремния (10–13 %), в этот сплав входят: железо – 0,2–0,7 %, марганец – 0,05—0,5 %, кальций – 0,7–0,2 %, титан – 0,05—0,2 %, медь – 0,03 % и цинк – 0,08 %. Из силуминов изготовляют различные детали для автомобилей, тракторов, пассажирских вагонов. Алюминиевые деформируемые сплавы в чушках, предназначенные для обработки давлением и для подшик—товки при получении других алюминиевых сплавов, нормируются определенными стандартами. Сплавы для обработки давлением состоят из алюминия (основа), легирующих элементов (медь – 5 %, магний – 0,1–2,8 %, марганец – 0,1–0,7 %, кремний – 0,8–2,2 %, цинк – 2–6,5 % и небольшого количества других примесей). Марки этих сплавов: ВД1, АВД1, АВД1–1, АКМ, из алюминиевых сплавов изготавливают полуфабрикаты – листы, ленты, полосы, плиты, слитки, слябы.

Кроме того, цветная металлургия производит алюминиевые антифрикционные сплавы, применяемые для изготовления монометаллических и биметаллических подшипников методом литья. В зависимости от химического состава стандартом предусмотрены следующие марки этих сплавов: АО3–7, АО9–2, АО6–1, АО9–1, АО20–1, АМСТ. Стандартом также определены условия работы изделий, изготовленных из этих сплавов: нагрузка от 19,5 до 39,2 МН/м2 (200–400 кгс/см 2 ), температура от 100 до 120 °C, твердость – от 200 до 320 НВ.

4. Титановые сплавы

Титан – металл серебристо—белого цвета. Это один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61 %) он занимает десятое место. Титан легок (плотность его 4,5 г/см 3 ), тугоплавок (температура плавления 1665 °C), весьма прочен и пластичен. На поверхности его образуется стойкая окисная пленка, за счет которой он хорошо сопротивляется коррозии в пресной и морской воде, а также в некоторых кислотах. При температурах до 882 °C он имеет гексагональную плотно упакованную решетку, при более высоких температурах – объемно—центрированный куб. Механические свойства листового титана зависят от химического состава и способа термической обработки. Предел прочности его – 300—1200 МПа (30—120 КГС/мм 2 ), относительное удлинение – 4—10 %. Вредными примесями титана являются азот, углерод, кислород и водород. Они снижают его пластичность и свариваемость, повышают твердость и прочность, ухудшают сопротивление коррозии.

При температуре свыше 500 °C титан и его сплавы легко окисляются, поглощая водород, который вызывает охрупчи—вание (водородная хрупкость). При нагревании выше 800 °C титан энергично поглощает кислород, азот и водород, эта его способность используется в металлургии для раскисления стали. Он служит легирующим элементом для других цветных металлов и для стали.

Благодаря своим замечательным свойствам титан и его сплавы нашли широкое применение в авиа-, ракето—и судостроении. Из титана и его сплавов изготовляют полуфабрикаты: листы, трубы, прутки и проволоку. Основными промышленными материалами для получения титана являются ильменит, рутил, перовскит и сфен (титанит). Технология получения титана сложна, трудоемка и длительна: сначала вырабатывают титановую губку, а затем путем переплавки в вакуумных печах из нее производят ковкий титан.

Губчатый титан, получаемый магнийтермическим способом, служит исходным материалом для производства титановых сплавов и других целей. В зависимости от химического состава и механических свойств стандартом установлены следующие марки губчатого титана: ТГ–90, ТГ–100, ТГ–110, ТГ–120, ТГ–130. В обозначении марок буквы «ТГ» означают – титан губчатый, «Тв» – твердый, цифры означают твердость по Бринеллю. В губчатый титан входят примеси: железо – до 0,2 %, кремний – до 0,04 %, никель – до 0,05 %, углерод – до 0,05 %, хлор – до 0,12 %, азот – до 0,04 %, кислород – до 0,1 %. Для изготовления различных полуфабрикатов (листы, трубы, прутки, проволока) предназначены титан и титановые сплавы, обрабатываемые давлением. В зависимости от химического состава стандарт предусматривает следующие их марки: ВТ1–00, ВТ1–0, ОТ4–0, ОТ4–1, ОТ4, ВТ5, ВТ5–1, ВТ6, ВТ20, ВТ22, ПТ–7М, ПТ–7В, ПТ–1 м. Основные компоненты: алюминий – 0,2–0,7 %, марганец – 0,2–2 %, молибден – 0,5–5,5 %, ванадий – 0,8–5,5 %, цирконий – 0,8–3 %, хром – 0,5–2,3 %, олово – 2–3 %, кремний – 0,15—0,40 %, железо – 0,2–1,5 %. Железо, кремний и цирконий в зависимости от марки сплава могут быть основными компонентами или примесями.

5. Цинковые сплавы

Сплав цинка с медью – латунь – был известен еще древним грекам и египтянам. Но выплавка цинка в промышленных масштабах началась лишь в XVII в.

Цинк – металл светло—серо—голубоватого цвета, хрупкий при комнатной температуре и при 200 °C, при нагревании до 100–150 °C становится пластичным.

В соответствии со стандартом цинк изготовляется и поставляется в виде чушек и блоков массой до 25 кг. Стандарт устанавливает также марки цинка и области их применения: ЦВ00 (содержание цинка – 99,997 %) – для научных целей, получения химических реактивов, изготовления изделий для электротехнической промышленности; ЦВО (цинка – 99,995 %) – для полиграфической и автомобильной промышленности; ЦВ1, ЦВ (цинка – 99,99 %) – для производства отливок под давлением, предназначенных для изготовления деталей особо ответственного назначения, для получения окиси цинка, цинкового порошка и чистых реактивов; ЦОА (цинка 99,98 %), ЦО (цинка 99,975 %) – для изготовления цинковых листов, цинковых сплавов, обрабатываемых давлением, белил, лигатуры, для горячего и гальванического цинкования; Ц1С, Ц1, Ц2С, Ц2, Ц3С, Ц3 – для различных целей.

В промышленности широко применяются цинковые сплавы: латуни, цинковые бронзы, сплавы для покрытия различных стальных изделий, изготовления гальванических элементов, типографские и др. Цинковые сплавы в чушках для литья нормируются стандартом. Эти сплавы используются в автомобиле—и приборостроении, а также в других отраслях промышленности. Стандартом установлены марки сплавов, их химический состав, определены изготовляемые из них изделия:

1) ЦАМ4–10 – особо ответственные детали;

2) ЦАМ4–1 – ответственные детали;

3) ЦАМ4–1В – неответственные детали;

4) ЦА4О – ответственные детали с устойчивыми размерами;

5) ЦА4 – неответственные детали с устойчивым размерами.

Цинковые антифрикционные сплавы, предназначенные для производства монометаллических и биметаллических изделий, а также полуфабрикатов, методами литья и обработки давлением нормируются стандартом. Механические свойства сплавов зависят от их химического состава: предел прочности ?В = 250–350 МПа (25–35 КГС/мм 2 ), относительное удлинение ? = 0,4—10 %, твердость – 85—100 НВ. Стандарт устанавливает марки этих сплавов, области их применения и условия работы: ЦАМ9–1,5Л – отливка монометаллических вкладышей, втулок и ползунов; допустимые: нагрузка – 10 МПа (100 кгс/см 2 ), скорость скольжения – 8 м/с, температура 80 °C; если биметаллические детали получают методом литья при наличии металлического каркаса, то нагрузка, скорость скольжения и температура могут быть увеличены до 20 МПа (200 КГС/см 2 ), 10 м/с и 100 °C соответственно: ЦАМ9–1,5 – получение биметаллической ленты (сплав цинка со сталью и дюралюминием) методом прокатки, лента предназначена для изготовления вкладышей путем штамповки; допустимые: нагрузка – до 25 МПА (250 кгс/см 2 ), скорость скольжения – до 15 м/с, температура 100 °C; АМ10–5Л – отливка подшипников и втулок, допустимые: нагрузка – 10 МПа (100 КГС/см 2 ), скорость скольжения – 8 м/с, температура 80 °C.

Цветные металлы и сплавы. Марки, свойства и применение

Ценные свойства цветных металлов обусловили их широкое применение в различных машинах современного производства. Медь, алюминий, цинк, магний, титан и дру гие метадгы и их сплавы являются незаменимыми материалами для приборостроительной и электротехнической промышленности, самолетостроения и радиоэлектроники, ядерной и космической отраслей техники.

1. Медь и ее сплавы

В настоящее время медь широко используется в электромашиностроении, при строительстве линий электропередач, для изготовления оборудования телеграфной и телефонной связи, ради- и телевизионной аппаратуры. Из меди изготовляют провода, кабели, шины и другие токопроводящие изделия. Большое количество меди идет на производство бронзы, латуни и других медных, а также алюминиевых и железных сплавов.

ГОСТ 859-2001 предусматривает следующие марки меди:

  • катодная — МВ4к, МООк, МОку, МОк, М1к;
  • бескислородная — М006, М06, М1б;
  • катодная переплавленная — Mly, Ml;
  • раскисленная — М1р, М1ф, М2р, МЗр, М2, М3 (для раскисления используется фосфористая медь).

Обладая замечательными свойствами, медь в то же время как конструкционный материал не удовлетворяет требованиям машиностроения, поэтому ее легируют, т.е. вводят в ее состав такие металлы, как цинк, олово, алюминий, никель и др., за счет чего улучшаются ее механические и технологические свойства.

По химическому составу медные сплавы подразделяют на латуни, бронзы и медноникелевые, по технологическому назначению — на деформируемые, используемые для производства полуфабрикатов (проволоки, листа, полос, профиля), и литейные, применяемые для литья деталей.

2. Латунь

Латунь — сплав меди с цинком и другими компонентами. Латуни, содержащие кроме цинка другие легирующие элементы, называются сложными, или специальными, и именуются по вводимым, кроме цинка, легирующим компонентам. Например: железомарганцовая (ЛЖМц59-1-1), алюминиевоникелькремнистомарганцовая (ЛАНКМц75-2-2,5-0,5-0,5) и др.

В обозначении марок латуней принята буквенно-цифровая система. Первая буква означает «латунь», остальные буквы соответствуют условным обозначениям химических элементов, входящих в латунь; первая цифра указывает на содержание меди, остальные цифры — на содержание других легирующих элементов. Содержание цинка в обозначении марки не указывается. Для того чтобы определить содержание цинка в латуни, необходимо от 100% вычесть процентное содержание меди и других химических элементов, входящих в данную латунь. Например: томпак Л90 — это латунь, содержащая 90% меди, остальное — цинк; латунь алюминиевая ЛА77-2 — 77% меди, 2% алюминия, остальное — цинк; латунь алюминиевоникель- кремнистомарганцовая ЛАНКМц75-2-2,5-0,5-0,5 -75% меди, 2% алюминия, 2,5% никеля, 0,5% кремния, 0,5% марганца, остальное — цинк.

По сравнению с медью латуни обладают большей прочностью, коррозионной стойкостью и упругостью. Детали получают литьем, давлением и резанием. Латуни, обрабатываемые давлением, нормируются ГОСТ 15527-2004. Из них изготовляют полуфабрикаты (листы, ленты, полосы, трубы конденсаторов и теплообменников, проволоку, прутки, фольгу, поковки, штамповки), медали и значки, художественные изделия, музыкальные инструменты, сильфоны, гибкие шланги, застежки- молнии, подшипники скольжения и разную фурнитуру. В табл. 27 приводятся марки этих латуней, их основные свойства и области применения.

Таблица 27. Латуний, их основные свойства и применение

Литейные латуни поставляются в виде чушек ( ГОСТ 1020-97) и служат сырьем для получения латуней определенных марок для фасонных отливок (ГОСТ 17711-93) — это различная арматура, работающая при температурах до 250°С и подвергающаяся гидровоздушным испытаниям; детали, работающие в морской воде (при условии их протекторной защиты); подшипники и втулки неответственного назначения, гайки нажимных винтов, детали без притираемых поверхностей, сепараторы подшипников, шестерни, детали, подвергающиеся лужению или заливке баббитом; детали судо- и автомобилестроения и др. (табл. 28).

Таблица 28. Марки литейных латуней

ГОСТ 17711-80 кроме химического состава нормирует механические свойства медноцинковых сплавов: предел прочности σв — от 146 до 705 МПа (от 15 до 72 кгс/мм 2 ), относительное удлинение δ — от 6 до 20%, твердость — от 587 до 1600 МПа (от 60 до 165 кгс/мм 2 ).

1. Цветные металлы и сплавы, их свойства и назначение

1. Углеродистые и легированные конструкционные стали: назначение, термическая обработка, свойства

1. Углеродистые и легированные конструкционные стали: назначение, термическая обработка, свойства Из углеродистых качественных конструкционных сталей производят прокат, поковки, калиброванную сталь, сталь—серебрянку, сортовую сталь, штамповки и слитки. Эти стали

1.1. Назначение

1.1. Назначение Настоящий стандарт устанавливает, используя четко определенную терминологию, общую структуру процессов жизненного цикла программных средств, на которую можно ориентироваться в программной индустрии. Настоящий стандарт определяет процессы, работы и

Художественная обработка металла. Драгоценные металлы. Сплавы и добыча

Художественная обработка металла. Драгоценные металлы. Сплавы и добыча Драгоценными металлами называют металлы, которые относятся к так называемой благородной группе. Это золото, серебро, платина и металлы платиновой группы. Такие, как рутений, палладий, иридий, осмий,

Металлы

Металлы Железо общее Железо – один из самых распространенных элементов в природе. Его содержание в земной коре составляет около 4,7 % по массе, поэтому железо, с точки зрения его распространенности в природе, принято называть макроэлементом.В природной воде железо

Тяжелые металлы

Тяжелые металлы Понятие «тяжелые металлы» не относится к строго определенным. Разные авторы в составе группы тяжелых металлов указывают разные химические элементы. В экологических публикациях в эту группу включают около 40 элементов с атомной массой более 50 атомных

Назначение оборудования

Назначение оборудования Индивидуальные магистральные промывные фильтры предназначены для очистки холодной и/или горячей воды от механических примесей. Степень очистки определяется размером ячейки фильтрующего элемента – фильтрующей

2.1. Назначение устройств

2.1. Назначение устройств По своему назначению принципиально все баки можно разделить на две большие подгруппы: баки для компенсации температурных расширений теплоносителя и баки для работы с хозяйственной и питьевой (холодной) водой, находящейся под рабочим давлением

VI. В ЧЬЕМ РАСПОРЯЖЕНИИ ДОЛЖНЫ БЫТЬ ЦВЕТНЫЕ СЛУГИ.

VI. В ЧЬЕМ РАСПОРЯЖЕНИИ ДОЛЖНЫ БЫТЬ ЦВЕТНЫЕ СЛУГИ. 1. Как лучше использовать цветных слуг.По мере развитии техники производственный труд человека все более и более механизируется. Работа человека и животных заменяется работой машины. И вместе с тем в высокой степени

Раздел II Художественное литье: чугун и цветные металлы

Раздел II Художественное литье: чугун и цветные металлы О природе вещей «…металлам, расплавленным жаром, может даны быть фигура и форма какая угодно» Лукреций

7.2. Металлы для изготовления знаков и ювелирных украшений

7.2. Металлы для изготовления знаков и ювелирных украшений Золото – химический элемент – красивый желтый металл. Тяжелый, мягкий, пластичный, химически инертный. Применяется в основном в виде сплавов с другими металлами, что повышает его прочность и твердость.

§1. БОЕВЫЕ БРОНЕПОВОЗКИ, ИХ СВОЙСТВА И НАЗНАЧЕНИЕ.

§1. БОЕВЫЕ БРОНЕПОВОЗКИ, ИХ СВОЙСТВА И НАЗНАЧЕНИЕ. Танк, с одной стороны, можно рассматривать, как гусеничною самоходную пулеметную или артиллерийскую установку, покрытую со всех сторон броней, с другой стороны, как броневой автомобиль, снабженный гусеничным ходом. Таким

44. Алюминий; влияние примесей на свойства алюминия; деформируемые и литейные алюминиевые сплавы

44. Алюминий; влияние примесей на свойства алюминия; деформируемые и литейные алюминиевые сплавы Алюминий отличают низкая плотность, высокие тепло– и электропроводность, хорошая коррозийная стойкость во многих средах за счет образования на поверхности металла плотной

45. Медь; влияние примесей на свойства меди. Латуни, бронзы, медно-никелевые сплавы

45. Медь; влияние примесей на свойства меди. Латуни, бронзы, медно-никелевые сплавы Медь – это металл красного, в изломе розового цвета, имеет температуру плавления 1083о С. Кристаллическая решетка ГЦК с периодом а 0,31607 ям. Плотность меди 8,94 г/см3. Медь обладает высокими

5.2.3 Назначение уровня ПО

5.2.3 Назначение уровня ПО Первоначально процесс оценки безопасности системы присваивает уровень(ни) ПО, соответствующий(ие) компонентам ПО конкретной системы. При проведении данного назначения учитывают воздействие отказов как потери функции или неправильного

43. Маркировка, структура, свойства и области применения цветных металлов и их сплавов

К цветным металлам относятся медь, алюминий, магний, титан, свинец, цинк и олово, которые обладают ценными свойствами и применяются в промышленности, несмотря на относительно высокую стоимость. Иногда, когда это возможно, цветные металлы заменяют черными металлами или неметаллическими материалами (например, пластмассами).

Выделяют следующие группы цветных металлов и сплавов: легкие металлы и сплавы (с плотностью 3.0 г/см3); медные сплавы и специальные цветные сплавы – мельхиор, незильбер, драгоценные сплавы и т. д.

В промышленности по применению медь занимает одно из первых мест среди цветных металлов. Свойства меди – высокая пластичность, электропроводность, теплопроводность, повышенная коррозионная стойкость. Медь используется в электромашиностроении, изготовлении кабелей и проводов для передачи электроэнергии и служит основой для изготовления различных сплавов, широко применяемых в машиностроении.

Алюминий – легкий металл, который обладает высокой пластичностью, хорошей электропроводностью и коррозионной стойкостью. Применяется для изготовления электропроводов, посуды, для предохранения других металлов и сплавов от окисления путем плакирования. В машиностроении чистый алюминий применяется мало, потому что имеет невысокие механические свойства. Алюминий является основой для получения многих сплавов, широко применяемых в самолетостроении, авто– и вагоностроении, приборостроении. Алюминиевые сплавы бывают деформированными (упрочняемые при помощи термической обработки и не упрочняемые) и литейными. Дюралюминий – самый распространенный сплав, который используется в деформированном виде и укрепляется при помощи термической обработки.

Магний является наиболее распространенным металлом, имеет серебристо-белый цвет. Большое преимущество магния состоит в том, что это очень легкий металл. Главным недостатком является его малая стойкость против коррозии. Чистый магний не нашел распространения в технике, но применяется в качестве основы для производства легких сплавов.

Установлены следующие марки цветных металлов (ГОСТ):

алюминий – АВ1, АВ2, АОО, АО, А1, А2 и А3;

медь – МО, М1, М2, МЭ, М4;

олово – 01, 02, ОЭ и 04; свинец – СВ, СО, С1, С2, С3, С4;

цинк – ЦВ, ЦО, Ц1, Ц2, Ц3, Ц4;

магний – Мг1, Мг2.

Латуни. По сравнению с чистой медью латуни имеют большую прочность, пластичность и твердость, они более жидкотекучи и коррозионностойки.

Кроме простой латуни, применяются специальные латуни с добавками железа, марганца, никеля, олова, кремния. Количество легирующих компонентов в специальных латунях не превышает 7–8%. Специальные латуни имеют повышенные механические свойства; некоторые из них по прочности не уступают среднеуглеродис-той стали.

По ГОСТу латуни обозначаются буквой Л и цифрой, которая указывает количество меди в сплаве.

Обозначение легирующих компонентов следующее: Ж – железо; Н – никель; О – олово; К – кремний; С – свинец. Количество легирующего компонента указывается цифрами.

Латуни бывают литейные (применяемые для фасонного литья) и подвергаемые обработке давлением. Латунь применяют для изготовления листов, проволоки, гильз, штампованной арматуры, посуды.

Бронзы бывают: оловянные, алюминиевые, кремнистые, никелевые. Оловянные бронзы обладают высокой коррозионной стойкостью, хорошей жидкотекучестью и повышенными антифрикционными свойствами. Из них изготовляют отливки. Простые оловянные бронзы применяются редко, так как введением дополнительных элементов (цинка, свинца, никеля) можно достигнуть лучших свойств при меньшем содержании дефицитного олова.

По ГОСТу оловянные бронзы маркируются буквами БрО и цифрой, которая показывает содержание олова; последующие буквы и цифры показывают наличие и количество в бронзе дополнительных элементов. Для обозначения дополнительных элементов применяют те же буквы, что и при маркировке специальной латуни; цинк обозначается буквой Ц, а фосфор буквой Ф.

Олово – дорогой металл и в практике применяется редко. Заменителями оловянной бронзы являются алюминиевая, кремнистая, марганцовая и другие бронзы.

Алюминиевая бронза применяется с содержанием до 11 % А1. По структуре бронза в основном (до 9,7 % А1) однофазная и представляет твердый раствор алюминия в меди. По механическим свойствам алюминиевая бронза лучше оловянной, она обладает пластичностью, коррозийной стойкостью и износоупорностью.

Недостаток – большая усадка при охлаждении от жидкого состояния, а также в легком образовании окислов алюминия в жидкой бронзе, что ухудшает ее жидкотекучесть. Дополнительные элементы (железо, марганец) повышают ее механические свойства. Кремнистая бронза относится к однородным сплавам – твердым растворам, обладает высокими механическими и литейными свойствами. Заменяет оловянную бронзу. Для повышения свойств в кремнистые бронзы вводятся марганец, никель.

Свойства металлов и сплавов

Свойства металлов и сплавов В этой главе будет рассказано о металлах, сплавах и их свойствах, что полезно не только для мастеров слесарного дела, но для всех, кто занимается чеканкой, ковкой, художественным литьем (этому посвящены последующие главы).Металл относится к

2. Кристаллизация и структура металлов и сплавов

2. Кристаллизация и структура металлов и сплавов Порядок расположения атомов – тип кристаллической решетки – природное свойство металла, форма кристаллов и их размеры зависят от процесса перехода металла из жидкого состояния в твердое. Процесс образования кристаллов

3. Способы упрочнения металлов и сплавов

3. Способы упрочнения металлов и сплавов Поверхностное упрочнение металлов и сплавов широко применяется во многих отраслях промышленности, в частности в современном машиностроении. Оно позволяет получить высокую твердость и износостойкость поверхностного слоя при

ЛЕКЦИЯ № 11. Сплавы цветных металлов

ЛЕКЦИЯ № 11. Сплавы цветных металлов 1. Цветные металлы и сплавы, их свойства и назначение Ценные свойства цветных металлов обусловили их широкое применение в различных отраслях современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы

17. Теплоемкость и теплопроводность металлов и сплавов

17. Теплоемкость и теплопроводность металлов и сплавов Теплоемкость – это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость – количество энергии, поглощаемой единицей массы при нагреве на один градус. От величины

18. Дилатометрия. Магнитные свойства металлов и сплавов. Методы определения

18. Дилатометрия. Магнитные свойства металлов и сплавов. Методы определения Дилатометрия – раздел физики; основная задача: изучение влияния внешних условий (температуры, давления, электрического, магнитного полей, ионизирующих излучений) на размеры тел. Главный предмет

29. Белые, серые, половинчатые, высокопрочные и ковкие чугуны Формирование микроструктуры, свойства, маркировка и применение

29. Белые, серые, половинчатые, высокопрочные и ковкие чугуны Формирование микроструктуры, свойства, маркировка и применение Чугун – это сплав железа с углеродом. Чугун содержит углерод – 2,14 % и более дешевый материал, чем стали. Он обладает пониженной температурой

48. Виды композиционных материалов. Строение, свойства, области применения

48. Виды композиционных материалов. Строение, свойства, области применения Композиционные материалы состоят из двух компонентов, объединенных различными способами в монолит при сохранении их индивидуальных особенностей.Признаки материала:– состав, форма и

Читайте также: