Цвет пламени горения металлов

Обновлено: 22.01.2025

Добрых полтора миллиона лет назад человек укротил огонь. Это было, пожалуй, самое выдающееся событие в истории человечества: огонь давал свет и тепло, отгонял диких зверей и делал мясо вкуснее. Он был великим волшебником: вел от дикости к цивилизации, от природы к культуре.

Цветовая гамма огня довольно разнообразна. С незапамятных времен человеку было интересно, почему огонь меняет свой цвет. Ученые проводили многочисленные эксперименты и пытались выяснить, что же влияет на цвет огня.

Все мы знаем, что пламя газовой горелки обычной бытовой плиты горит голубовато-синим пламенем. Зажженная спичка, дрова в печке и обычная хозяйственная свеча имеют желтовато-оранжевое пламя.

Однажды родители подарили мне китайские новогодние свечки, которые горели цветным пламенем: желтым, красным, фиолетовым, синим и зеленым. Мне стало интересно: почему так происходит? Ведь если в расплавленный парафин хозяйственной свечки добавить какой-нибудь пищевой краситель, она не будет гореть цветным пламенем.

Исходя из вышеизложенного, я сформулировал цель проекта: узнать, какие химические вещества в ходе горения излучают необычный для пламени цвет; найти практичное применение цветному пламени.

Объектом исследования: пламя огня.

Предмет: постановка опытов по получению цветного пламени огня.

Гипотеза: цвет пламени огня зависит от веществ, которые в нем сгорают.

В соответствии с целью, объектом, предметом исследования определены следующие задачи:

1. Поиск информации в различных литературных источниках и Интернет-ресурсах по теме работы.

2. Разработать и воспроизвести опыты по получению цветного пламени.

3. Найти практическое применение цветному пламени.

В работе применялись следующие методы исследования:

Глава 1. Сведения о пламени огня.

1.1. Горение. Пламя.

Горение - представляет собой сложный физико-химический процесс взаимодействия горючего вещества и окислителя (экзотермическая реакция окисления вещества), сопровождающаяся выделением тепла, света, дыма и др. продуктов сгорания (в зависимости от вида и состава горючего вещества).

Горение – это химическая реакция окисления, сопровождающаяся выделением тепла.

Для возникновения горения необходимо наличие трёх условий горючего вещества, окислителя и источника зажигания:

  1. Горючее вещество - это всякое твёрдое, жидкое или газообразное вещество, способное окисляться с выделением тепла.
  2. Окислители — вещества и материалы, обладающие способностью вступать в реакцию с горючими веществами, вызывая их горение, а также увеличивать его интенсивность. Окислителем чаще всего является кислород воздуха (могут быть также хлор, пары брома, серы и т.д.).
  3. Источник зажигания - средство энергетического воздействия, инициирующее возникновение горения. Источники зажигания принято делить на открытые (светящиеся) – молния, пламя, искры, накалённые предметы, световое излучение; и скрытые (несветящиеся) – тепло химических реакций, микробиологические процессы, адиабатическое сжатие, трение, удары и т. п. Они имеют различную температуру пламени и нагрева. Всякий источник зажигания должен иметь достаточный запас теплоты или энергии, передаваемой реагирующим веществам. Поэтому на процесс возникновения горения влияет и продолжительность воздействия источника зажигания. После начала процесса горения оно поддерживается тепловым излучением из его зоны.

Пламя — это светящаяся зона, образующаяся в ходе горения. Температура пламени зависит от состава исходной смеси и условий, при которых осуществляется горение. Пламя спички достигает температуры 800 °С; искра от удара металлических тел — 1900 °С; температура электрического разряда — 10 000 °С. При горении природного газа в воздухе температура в горячей зоне может превышать 1730 о С, а при горении ацетилена в кислороде (газовая сварка) — 2730 о С.

1.2. Цветное пламя.

Цвет огня определяется, главным образом, температурой пламени и тем, какие химические вещества в нем сгорают.

В середине XIX века Робертом Бунзеном была изобретена горелка, которая дает ровный бесцветный цвет пламени. Он вводил в пламя горелки различные элементы на платиновой проволоке. Платина не влияет на цвет пламени и не окрашивает его. При внесении в горелку различных металлов, цвет пламени изменялся.

Знаменитый голубой огонек, который можно видеть при горении природного газа, обусловлен угарным газом, который и дает этот оттенок.

В нормальных условиях пламя и должно быть голубым, так как это означает, что газ сгорает целиком. А желтые или оранжевые язычки пламени – признак того, что газ сгорает не полностью и выделяется ядовитый угарный газ. В этом случае газовым прибором пользоваться нельзя, нужно срочно вызвать мастера из аварийной газовой службы.

Если на конфорку газовой плиты посыпать немножко поваренной соли - в пламени появятся желтые язычки. Такое желто-оранжевое пламя дают соли натрия (поваренная соль, хлорид натрия). Такими солями богата древесина, поэтому обычный лесной костер или бытовые спички горят желтым пламенем.

Медь придает пламени зеленый оттенок. При высоком содержании меди в сгораемом веществе пламя имеет яркий зеленый цвет.

Зеленый цвет и его оттенки огню придают также барий, молибден, фосфор, сурьма. В синий окрашивает пламя селен, а в сине-зеленый - бор.

Красное пламя даст литий, стронций и кальций, фиолетовое – калий, желто-оранжевый оттенок выходит при сгорании натрий.

1.3. Применение цветного пламени.

Благодаря свойству атомов и молекул испускать свет определенного цвета был разработан метод определения состава веществ, который называется спектральным анализом.

Ученые исследуют спектр, который испускает вещество, например, при горении, сравнивают его со спектрами известных элементов, и, таким образом, определяют его состав.

Так, например, спектр лития состоит из одной яркой красной линии и одной оранжевой послабее, а спектр стронция – из одной голубой и нескольких красных, оранжевых, желтых линий.

Бунзеновская горелка используется для исследования минералов и определения их состава. Роберт Бунзен был родоначальником метода определения состава вещества по цвету пламени.

Металлы, соли которых окрашивают пламя в различные цвета, используют для приготовления цветных огней для салютов и римских свечей. Ф ейерверки во время праздников расцвечивают небо красивыми красками и собирают огромное количество любителей эффектного светового шоу. Хлорид лития используется в пиротехнике для придания пламени темно-красного оттенка. Хлорид стронция компонент пиротехнических составов - придает пламени карминово-красный цвет.

Для подачи сигналов бедствия используются сигнальные ракеты. В рыболовных и охотничьих магазинах можно приобрести сигнальные факелы или файеры.

В оборонной промышленности используются трассирующие боеприпасы, которые светятся в полете и позволяют солдатам вести прицельный огонь ночью.

Теплую и приятную атмосферу в доме создают камин или свечи. В канун миллениума китайский бизнесмен Лу Цзин основал кампанию, которая выпустила на рынок свечи с цветным пламенем.

Высоко ценится для топки каминов древесина, прибитая к океанскому берегу. Находясь, долгое время в море, бревна адсорбируют большое количество разных веществ. Эти вещества при горении бревен окрашивают пламя во множество разных цветов.

Сегодня активно ведутся разработки безопасных фейерверков. Ученые пытаются вывести подходящие формулы и найти верные рецептуры для безопасной пиротехники. Академик Александр Ферсман назвал стронций «металлом красных огней». Соли стронция окрашивают ф ейерверки в красный цвет, а соли бария – в зеленый. Соли стронция и бария опасны. Дым после фейерверков опасен для людей, которые имеют заболевания органов дыхания (аллергиков, астматиков). Таким людям становится тяжело дышать. Тяжелые металлы оседают на почву, попадают в водоемы, что приводит отравлению живых организмов. Световые эффекты, шум от фейерверков приводит к тому, что птицы вынуждены покинуть места, выбранные для ночлега и гнездования. Статистика об использовании пиротехники з а первые дни нового 2016 года печальна: только в Москве от взрывов петард и салютов пострадали 30 взрослых и 12 детей. Возможно, красивое лазерное шоу может стать хорошей альтернативой более дорогим фейерверкам и салютам.

Цвет пламени при горении соединений, содержащих металлы - стронций, литий, кальций, натрий, железо, молибден, барий, медь, бор, теллур, таллий, селен, мышьяк, индий, цезий, рубидий, калий, свинец, сурьма, цинк. Цвет пламени спирта.

Цвет пламени при горении соединений, содержащих металлы - стронций, литий, кальций, натрий, железо, молибден, барий, медь, бор, теллур, таллий, селен, мышьяк, индий, цезий, рубидий, калий, свинец, сурьма, цинк. Цвет пламени спирта.

Про спирт: хотя чистый этиловый спирт горит синим пламенем, а метиловый спирт горит зелёным пламенем - технические присадки поменяют цвет в соответствии с таблицей ниже, что не позволяет достоверно отличить метиловый спирт от этилового по цвету пламени, да и остальные способы малонадежны. Не пейте неизвестно какой спирт - вероятность умереть, если это метанол, выше 80%.

Металл, входящий в соединение Цвет пламени Цвет пламени при горении соединений, содержащих металлы - стронций, литий, кальций, натрий, железо, молибден, барий, медь, бор, теллур, таллий, селен, мышьяк, индий, цезий, рубидий, калий, свинец, сурьма, цинк.
Стронций Sr Темно-красный
Литий Li Малиновый
Кальций Ca Кирпично-красный
Натрий Na Желтый
Железо Fe Светло-желтый
Молибден Mb Желто-зеленоватый
Барий Ba Желтовато-зеленый
Медь Cu Ярко-зеленый или сине-зеленый
Бор B Бледно-зеленый
Теллур Te Зеленый
Таллий Tl Изумрудный
Селен Se Голубой
Мышьяк As Бледно-синий
Индий in Сине-фиолетовый
Цезий Cs Розово-фиолетовый
Рубидий Rb Красно-фиолетовый
Калий K Фиолетовый
Свинец Pb Голубой
Сурьма Sb Зелено-синий
Цинк Zn Бледно сине-зеленый

Дополнительная информация от Инженерного cправочника DPVA, а именно - другие подразделы данного раздела:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

И это ОГОНЬ ⁠ ⁠

И это ОГОНЬ Длиннопост, Жизнь, Природа, Наука

Когда люди говорят об огне, они представляют простую светящуюся капельку тепла. А что если посмотреть глубже, наконец, разобраться что же это за теплая капля, почему светится, да еще и разными цветами, в общем, понять огонь.

На самом деле это очень просто. Огонь – это совокупность раскаленных газов, которые выделяются в результате горения. В свою очередь горение – это процесс превращения веществ в продукты сгорания, сопровождающийся интенсивным выделением тепла.

Итак, разобрались, что огонь – это раскаленные газы, но почему мы их видим? А это как раз потому, что газы раскалены до определенной температуры, при которой они начинают светиться. Если разобрать все по полочкам, то высокая температура пламени дает возможность атомам перескакивать на некоторое время в более высокое энергетическое состояние. Когда атомы возвращаются в исходное состояние, они излучают свет с определённой длиной волны, по-разному воспринимаемую нашим зрением, отсюда и разный цветовой спектр свечения. Конечно же, цвет пламени определяется главным образом не различной температурой горения вещества, а именно самим веществом. Самые известные цвета – это голубой и желто-оранжевый, как раз те цвета, которые мы встречаем всегда и везде. Голубой огонек дает при горении природный газ, а желто-оранжевый – соли натрия, которыми богата древесина, поэтому старый добрый лесной костер дает именно такой цвет. Существуют и другие цвета, вспомните например пламя из выхлопной трубы крутых гоночных машин: малиновый, ярко-зеленый, фиолетовый, розово-фиолетовый, а это горят металлы, входящие в соединение с горящим веществом. Малиновый цвет дает горение лития, ярко-зеленый – медь, фиолетовый – калий, розово-фиолетовый – цезий.

В разном цвете может показать себя огонь, но увы его нельзя потрогать, ведь газы раскалены, а обычный огонь газовой горелки имеет температуру 15600C в самой горячей точке, а именно где-то в середине, чуть ниже ¼ части пламени. Как есть самая горячая точка, так есть и самая холодная, внизу пламени, температура которой 3500C.

Температура в центре пламени газовой горелки – это не самая высокая температура огня, которая существует, в пламени метана на воздухе она достигает 1900°C, а при горении в кислороде — 2700°C. Еще более горячее пламя дают при сгорании в чистом кислороде водород (2800°C) и ацетилен (3000°C). Недаром пламя ацетиленовой горелки легко режет почти любой металл. Самую же высокую температуру, около 5000°C (она зафиксирована в Книге рекордов Гиннесса), дает при сгорании в кислороде легкокипящая жидкость — субнитрид углерода С4N2, а по некоторым сведениям, при горении его в атмосфере озона температура может доходить до 5700°C. С другой стороны, известно и так называемое холодное пламя. Сравнительно холодное пламя получается при окислении в определенных условиях сероуглерода и легких углеводородов; например, пропан дает холодное пламя при пониженном давлении и температуре от 260–320°C.

Огонь – это конечно хорошо, красиво и тепло, но он имеет свойство к самораспространению по затронутым им другим горючим материалам. Поэтому надо знать, как от него избавиться. Понятно, для того чтобы горение образовалось, должны быть соблюдены условия горения – это: горючее вещество, окислитель (кислород) и источник зажигания. Исходя из этого, потушить огонь можно тремя способами. В первом случае избавиться от топлива. Во втором – прекратить доступ воздуха, то есть кислорода. Третий способ – это когда ликвидируется жар, температура снижается ниже температуры горения, огонь затухает.

Таким образом, вода гасит горящие материалы, охлаждая их до температуры ниже точки горения, пена изолирует очаги огня от кислорода, газ вытесняет воздух, лишая огонь поддерживающего горение кислорода (как и порошок, который при нагревании выделяет негорючие газы).

Ну и в конце стоит разобраться с тем, почему огонь выглядит как капля и горит вверх. Такую форму и направление придают огню гравитация и конвекция. Сгораемый газ легче основной материи, он выталкивается вверх, как и нагретый воздух, тоже стремящийся подняться все выше, забирая с собой огонь. Но если такое пламя получается из-за гравитации, то что будет если гравитация отсутствует как в космосе. Ученые столкнулись со странным явлением. В условиях микрогравитации, пламя горит по-другому, оно образует маленькие шарики. Это явление было ожидаемым, поскольку в отличие от пламени на Земле, в невесомости кислород и топливо встречаются в тонком слое на поверхности сферы. Это простая схема, которая отличается от земного огня. Тем не менее, обнаружилась странность: ученые наблюдали продолжение горения огненных шариков даже после того, как по всем расчетам горение должно было прекратиться. При этом огонь перешел в так называемую холодную фазу – он горел очень слабо, настолько, что пламя невозможно было увидеть. Тем не менее, это было горение, и пламя могло мгновенно вспыхнуть с большой силой при контакте с топливом и кислородом.

Обычно видимый огонь горит при высокой температуре между 1227 и 1727 градусами Цельсия. Гептановые пузыри на МКС также ярко горели при этой температуре, но по мере исчерпания топлива и остывания, началось совсем другое горение - холодное. Оно проходит при относительно низкой температуре 227-527 градусов Цельсия и производят не сажу, CO2 и воду, а более токсичные моноксид углерода и формальдегид.

Похожие типы холодного пламени в лабораториях воспроизводились и на Земле, но в условиях гравитации сам по себе такой огонь неустойчив и всегда быстро затухает. На МКС, однако, холодное пламя может устойчиво гореть несколько минут. Это не очень приятное открытие, так как холодный огонь предоставляет собой повышенную опасность: он легче зажигается, в том числе самопроизвольно, его сложнее обнаружить и, к тому же, он выделяет больше токсичных веществ.

Химия пламени

Фото: А. Константинов. Изображение: «Химия и жизнь»

Первые попытки понять механизм горения связаны с именами англичанина Роберта Бойля, француза Антуана Лорана Лавуазье и русского Михаила Васильевича Ломоносова. Оказалось, что при горении вещество никуда не «исчезает», как наивно полагали когда-то, а превращается в другие вещества, в основном газообразные и потому невидимые. Лавуазье в 1774 году впервые показал, что при горении из воздуха уходит примерно пятая его часть. В течение XIX века ученые подробно исследовали физические и химические процессы, сопровождающие горение. Необходимость таких работ была вызвана прежде всего пожарами и взрывами в шахтах.

Но только в последней четверти ХХ века были выявлены основные химические реакции, сопровождающие горение, и по сей день в химии пламени осталось немало темных пятен. Их исследуют самыми современными методами во многих лабораториях. У этих исследований несколько целей. С одной стороны, надо оптимизировать процессы горения в топках ТЭЦ и в цилиндрах двигателей внутреннего сгорания, предотвратить взрывное горение (детонацию) при сжатии в цилиндре автомобиля воздушно-бензиновой смеси. С другой стороны, необходимо уменьшить количество вредных веществ, образующихся в процессе горения, и одновременно — искать более эффективные средства тушения огня.

Существуют два вида пламени. Топливо и окислитель (чаще всего кислород) могут принудительно или самопроизвольно подводиться к зоне горения порознь и смешиваться уже в пламени. А могут смешиваться заранее — такие смеси способны гореть или даже взрываться в отсутствие воздуха, как, например, пороха, пиротехнические смеси для фейерверков, ракетные топлива. Горение может происходить как с участием кислорода, поступающего в зону горения с воздухом, так и при помощи кислорода, заключенного в веществе-окислителе. Одно из таких веществ — бертолетова соль (хлорат калия KClO3); это вещество легко отдает кислород. Сильный окислитель — азотная кислота HNO3: в чистом виде она воспламеняет многие органические вещества. Нитраты, соли азотной кислоты (например, в виде удобрения — калийной или аммиачной селитры), легко воспламеняются, если смешаны с горючими веществами. Еще один мощный окислитель, тетраоксид азота N2O4 — компонент ракетных топлив. Кислород могут заменить и такие сильные окислители, как, например, хлор, в котором горят многие вещества, или фтор. Чистый фтор — один из самых сильных окислителей, в его струе горит вода.

Цепные реакции

Основы теории горения и распространения пламени были заложены в конце 20-х годов прошлого столетия. В результате этих исследований были открыты разветвленные цепные реакции. За это открытие отечественный физикохимик Николай Николаевич Семенов и английский исследователь Сирил Хиншельвуд были в 1956 году удостоены Нобелевской премии по химии. Более простые неразветвленные цепные реакции открыл еще в 1913 году немецкий химик Макс Боденштейн на примере реакции водорода с хлором. Суммарно реакция выражается простым уравнением H2 + Cl2 = 2HCl. На самом деле она идет с участием очень активных осколков молекул — так называемых свободных радикалов. Под действием света в ультрафиолетовой и синей областях спектра или при высокой температуре молекулы хлора распадаются на атомы, которые и начинают длинную (иногда до миллиона звеньев) цепочку превращений; каждое из этих превращений называется элементарной реакцией:

Cl + H2 → HCl + H,
H + Cl2 → HCl + Cl и т. д.

На каждой стадии (звене реакции) происходит исчезновение одного активного центра (атома водорода или хлора) и одновременно появляется новый активный центр, продолжающий цепь. Цепи обрываются, когда встречаются две активные частицы, например Cl + Cl → Cl2. Каждая цепь распространяется очень быстро, поэтому, если генерировать «первоначальные» активные частицы с высокой скоростью, реакция пойдет так быстро, что может привести к взрыву.

Н. Н. Семенов и Хиншельвуд обнаружили, что реакции горения паров фосфора и водорода идут иначе: малейшая искра или открытое пламя могут вызвать взрыв даже при комнатной температуре. Эти реакции — разветвленно-цепные: активные частицы в ходе реакции «размножаются», то есть при исчезновении одной активной частицы появляются две или три. Например, в смеси водорода и кислорода, которая может спокойно храниться сотни лет, если нет внешних воздействий, появление по той или иной причине активных атомов водорода запускает такой процесс:

Безопасная лампа Дэви изображена на испанской марке слева (фото с сайта colnect.com), а справа — почтовая марка, посвященная 100-летию со дня рождения Н. Н. Семенова (фото с сайта www.philately.ru)

Возможность взрыва смеси кислорода (или воздуха) со многими горючими газами — водородом, угарным газом, метаном, ацетиленом — зависит от условий, в основном от температуры, состава и давления смеси. Так, если в результате утечки бытового газа на кухне (он состоит в основном из метана) его содержание в воздухе превысит 5%, то смесь взорвется от пламени спички или зажигалки и даже от маленькой искры, проскочившей в выключателе при зажигании света. Взрыва не будет, если цепи обрываются быстрее, чем успевают разветвляться. Именно поэтому была безопасной лампа для шахтеров, которую английский химик Хэмфри Дэви разработал в 1816 году, ничего не зная о химии пламени. В этой лампе открытый огонь был отгорожен от внешней атмосферы (которая могла оказаться взрывоопасной) частой металлической сеткой. На поверхности металла активные частицы эффективно исчезают, превращаясь в стабильные молекулы, и потому не могут проникнуть во внешнюю среду.

Полный механизм разветвленно-цепных реакций очень сложен и может включать более сотни элементарных реакций. К разветвленно-цепным относятся многие реакции окисления и горения неорганических и органических соединений. Таковой же будет и реакция деления ядер тяжелых элементов, например плутония или урана, под воздействием нейтронов, которые выступают аналогами активных частиц в химических реакциях. Проникая в ядро тяжелого элемента, нейтроны вызывают его деление, что сопровождается выделением очень большой энергии; одновременно из ядра вылетают новые нейтроны, которые вызывают деление соседних ядер. Химические и ядерные разветвленно-цепные процессы описываются сходными математическими моделями.

Что надо для начала

Чтобы началось горение, нужно выполнить ряд условий. Прежде всего, температура горючего вещества должна превышать некое предельное значение, которое называется температурой воспламенения. Знаменитый роман Рэя Брэдбери «451 градус по Фаренгейту» назван так потому, что примерно при этой температуре (233°C) загорается бумага. Это «температура воспламенения», выше которой твердое топливо выделяет горючие пары или газообразные продукты разложения в количестве, достаточном для их устойчивого горения. Примерно такая же температура воспламенения и у сухой сосновой древесины.

Самодельные зажигалки времен Великой Отечественной (Одна сделана из патрона от авиационной пушки). Изображение: «Химия и жизнь»

Самодельные зажигалки времен Великой Отечественной (Одна сделана из патрона от авиационной пушки). Изображение: «Химия и жизнь»

Температура пламени зависит от природы горючего вещества и от условий горения. Так, температура в пламени метана на воздухе достигает 1900°C, а при горении в кислороде — 2700°C. Еще более горячее пламя дают при сгорании в чистом кислороде водород (2800°C) и ацетилен (3000°C). Недаром пламя ацетиленовой горелки легко режет почти любой металл. Самую же высокую температуру, около 5000°C (она зафиксирована в Книге рекордов Гиннесса), дает при сгорании в кислороде легкокипящая жидкость — субнитрид углерода С4N2 (это вещество имеет строение дицианоацетилена NC–C=C–CN). А по некоторым сведениям, при горении его в атмосфере озона температура может доходить до 5700°C. Если же эту жидкость поджечь на воздухе, она сгорит красным коптящим пламенем с зелено-фиолетовой каймой. С другой стороны, известны и холодные пламена. Так, например, горят при низких давлениях пары фосфора. Сравнительно холодное пламя получается и при окислении в определенных условиях сероуглерода и легких углеводородов; например, пропан дает холодное пламя при пониженном давлении и температуре от 260–320°C.

Только в последней четверти ХХ века стал проясняться механизм процессов, происходящих в пламени многих горючих веществ. Механизм этот очень сложен. Исходные молекулы обычно слишком велики, чтобы, реагируя с кислородом, непосредственно превратиться в продукты реакции. Так, например, горение октана, одного из компонентов бензина, выражается уравнением 2С8Н18 + 25О2 = 16СО2 + 18Н2О. Однако все 8 атомов углерода и 18 атомов водорода в молекуле октана никак не могут одновременно соединиться с 50 атомами кислорода: для этого должно разорваться множество химических связей и образоваться множество новых. Реакция горения происходит многостадийно — так, чтобы на каждой стадии разрывалось и образовывалось лишь небольшое число химических связей, и процесс состоит из множества последовательно протекающих элементарных реакций, совокупность которых и представляется наблюдателю как пламя. Изучать элементарные реакции сложно прежде всего потому, что концентрации реакционно-способных промежуточных частиц в пламени крайне малы.

Внутри пламени

Оптическое зондирование разных участков пламени с помощью лазеров позволило установить качественный и количественный состав присутствующих там активных частиц — осколков молекул горючего вещества. Оказалось, что даже в простой с виду реакции горения водорода в кислороде 2Н2 + О2 = 2Н2О происходит более 20 элементарных реакций с участием молекул О2, Н2, О3, Н2О2, Н2О, активных частиц Н, О, ОН, НО2. Вот, например, что написал об этой реакции английский химик Кеннет Бэйли в 1937 году: «Уравнение реакции соединения водорода с кислородом — первое уравнение, с которым знакомится большинство начинающих изучать химию. Реакция эта кажется им очень простой. Но даже профессиональные химики бывают несколько поражены, увидев книгу в сотню страниц под названием «Реакция кислорода с водородом», опубликованную Хиншельвудом и Уильямсоном в 1934 году». К этому можно добавить, что в 1948 году была опубликована значительно большая по объему монография А. Б. Налбандяна и В. В. Воеводского под названием «Механизм окисления и горения водорода».

Современные методы исследования позволили изучить отдельные стадии подобных процессов, измерить скорость, с которой различные активные частицы реагируют друг с другом и со стабильными молекулами при разных температурах. Зная механизм отдельных стадий процесса, можно «собрать» и весь процесс, то есть смоделировать пламя. Сложность такого моделирования заключается не только в изучении всего комплекса элементарных химических реакций, но и в необходимости учитывать процессы диффузии частиц, теплопереноса и конвекционных потоков в пламени (именно последние устраивают завораживающую игру языков горящего костра).

Откуда все берется

Основное топливо современной промышленности — углеводороды, начиная от простейшего, метана, и кончая тяжелыми углеводородами, которые содержатся в мазуте. Пламя даже простейшего углеводорода — метана может включать до ста элементарных реакций. При этом далеко не все из них изучены достаточно подробно. Когда горят тяжелые углеводороды, например те, что содержатся в парафине, их молекулы не могут достичь зоны горения, оставаясь целыми. Еще на подходе к пламени они из-за высокой температуры расщепляются на осколки. При этом от молекул обычно отщепляются группы, содержащие два атома углерода, например С8Н18 → С2Н5 + С6Н13. Активные частицы с нечетным числом атомов углерода могут отщеплять атомы водорода, образуя соединения с двойными С=С и тройными С≡С связями. Было обнаружено, что в пламени такие соединения могут вступать в реакции, которые не были ранее известны химикам, поскольку вне пламени они не идут, например С2Н2 + О → СН2 + СО, СН2 + О2 → СО2 + Н + Н.

Постепенная потеря водорода исходными молекулами приводит к увеличению в них доли углерода, пока не образуются частицы С2Н2, С2Н, С2. Зона сине-голубого пламени обусловлена свечением в этой зоне возбужденных частиц С2 и СН. Если доступ кислорода в зону горения ограничен, то эти частицы не окисляются, а собираются в агрегаты — полимеризуются по схеме С2Н + С2Н2 → С4Н2 + Н, С2Н + С4Н2 → С6Н2 + Н и т. д.

В результате образуются частицы сажи, состоящие почти исключительно из атомов углерода. Они имеют форму крошечных шариков диаметром до 0,1 микрометра, которые содержат примерно миллион атомов углерода. Такие частицы при высокой температуре дают хорошо светящееся пламя желтого цвета. В верхней части пламени свечи эти частицы сгорают, поэтому свеча не дымит. Если же происходит дальнейшее слипание этих аэрозольных частиц, то образуются более крупные частицы сажи. В результате пламя (например, горящей резины) дает черный дым. Такой дым появляется, если в исходном топливе повышена доля углерода относительно водорода. Примером могут служить скипидар — смесь углеводородов состава С10Н16 (CnH2n–4), бензол С6Н6 (CnH2n–6), другие горючие жидкости с недостатком водорода — все они при горении коптят. Коптящее и ярко светящее пламя дает горящий на воздухе ацетилен С2Н2 (CnH2n–2); когда-то такое пламя использовали в ацетиленовых фонарях, установленных на велосипедах и автомобилях, в шахтерских лампах. И наоборот: углеводороды с высоким содержанием водорода — метан СН4, этан С2Н6, пропан С3Н8, бутан С4Н10 (общая формула CnH2n+2) — горят при достаточном доступе воздуха почти бесцветным пламенем. Смесь пропана и бутана в виде жидкости под небольшим давлением находится в зажигалках, а также в баллонах, которые используют дачники и туристы; такие же баллоны установлены в автомобилях, работающих на газе. Сравнительно недавно было обнаружено, что в копоти часто присутствуют шарообразные молекулы, состоящие из 60 атомов углерода; их назвали фуллеренами, а открытие этой новой формы углерода было ознаменовано присуждением в 1996 году Нобелевской премии по химии.

Цветное пламя: проба на окрашивание пламени

Для химика пламя не только источник тепла, но и инструмент химического анализа. Давно известно, что некоторые химические соединения, введенные в пламя, придают ему характерную окраску. В этом можно убедиться, если в любое пламя внести кусочек поваренной соли.

Проволока для анализа веществ в пламени

Возьмите кусок нихромовой проволоки (например, из старого утюга) длиной 10 см и выпрямите. Для опыта понадобится еще стеклянная трубка из легкоплавкого стекла. Надо заплавить проволоку в стеклянную трубку при помощи газовой горелки. Потом на конце проволоки сделайте маленькую петельку, как показано на рисунке.

Можно поступить не совсем спортивно и заменить стеклянную трубку корковой пробкой из винной бутылки.

При подведении определенного количества воздуха пламя газовой горелки становиться голубым и не коптит. Отчетливо видны в нем две части. Внутренняя часть называется восстанавливающей. Она голубого цвета и имеет сравнительно низкую температуру. Внешняя часть бесцветная — окисляющая. Температура этой части пламени равно около 1300 °С.

Растворите в нескольких миллилитрах воды, налитых в пробирку щепотку хлори­стого натрия. Очищенную проволоку погрузите в раствор, а потом введите в окисляющую часть пламени.

Проба в окисляющей части пламени

Какой великолепный эффект! Пла­мя в одно мгновение меняет окраску на интенсивно желтую. А теперь проверьте, содержит ли натрии во­да, которую вы пьете (этот металл придает пламени желтый цвет). Ре­зультат анализа будет положительным. Можете проверить, содержат ли натрий другие вещества. Окажется, что натрий «пронырливый» металл, везде он есть, пламя всегда будет более или менее желтым.

Если вы уже знаете, как меняет окраску пламени натрий, проверьте «поведение» других металлов. Возьмите образцы солей кальция, стронция, бария, калия и меди. Лучше всего взять хлориды или нитраты. Если у вас их нет, возьмите другие соли, но помните, что сначала проволоку нужно очистить в пламени и соляной кислоте. После такой очистки опять опускайте проволоку в раствор анализируемого вещества, а затем вводите в окисляющую часть пламени.

При анализе твердых субстанций раскаленную проволоку опускают в анализируемое вещество, которое прилипает к ней и затем сплавляется в пламени горелки, образуя перл. Перл на мгновение опускают в соляную кислоту. Образующиеся при этом хлористоводородные соединения летучие и быстро испаряются с проволоки в пламени, окрашивая его в характерный цвет.

Вероятно вы удивитесь, когда начнете исследовать калий, так как цвет пламени будет такой же как в ходе анализа натрия, и лишь время от времени через желтое пламя будут проскакивать розовые отблески калия. Это потому, что натрий, содержащийся в воде, употребляемой для растворения образца, не позволяет калию показать себя в полной красоте. В пламени идет „борьба” между натрием и калием, в которой натрий побеждает. Если хотите, можете помочь победить калию. Наблюдайте через так называемое синее кобальтовое стекло. Это стекло представляет собой фильтр, который задерживает цвет натрия, пропуская цвет калия. Вы, наверное, огорчитесь, что в вашей лаборатории нет кобальтового стекла. Но не падайте духом, вместо него можно взять раствор метилового фиолетового. А если его тоже нет, растворите в воде несколько капель синих чернил. Если будете наблюдать пламя через этот раствор, увидите фиолетовую вспышку, свидетельствующую о наличии калия.

А теперь сопоставьте результаты работы:

Металл Цвет пламени

Медный факел

Зная, что некоторые металлы окра­шивают пламя, сделайте медный «факел». Это не­обыкновенно интересный опыт. Со­берите аппаратуру, показанную на рисунке.

Всыпьте в пробирку несколь­ко криеталликов какой-либо соли меди, например, CuSO4 (медный ку­порос), и добавьте до 1/3 высоты пробирки денатурат и несколько капель разбавленной соляной кислоты За­купорьте пробирку пробкой, через которую проходит трубка, изогнутая под прямым углом и суженая на конце. Поместите пробирку в химический стакан с горячей водой, денатурат начнет испаряться, увлекая с собой соль меди. Приставьте к выхо­ду трубки горящую спичку: пары денатурата зажгутся, а пламя при­обретет зелено-синий цвет. Эффект опыта необыкновенно красив, если его наблюдать в темной комнате.

А теперь модифицируйте опыт, взяв вместо соли меди ранее употре­блявшиеся химические соединения, окрашивающие пламя. А если у вас есть бура или борная кислота, про­верьте, как окрашивает пламя бор. Борную кислоту можно купите в ап­теке. И еще одно: не заливайте про­бирку более чем на 1/3 высоты. И ни в коем случае не нагревайте пробир­ку горелкой!

Цветные свечи

Чтобы получить свечи с разноцветным пламенем надо добавить в расплавленный парафин соль металла, окрашивающего пламя в той или иной цвет.

Синяя свеча. Покрасить парафин в синий цвет можно стеаратом меди. Эту соль получают смешивая растворы сульфата меди и хозяйственного мыла. Пламя свечи тоже будет синим, благодаря ионам меди.

Зеленая свеча. В качестве пигмента используется зеленый оксид хрома (III). Он получается при термическом разложении бихромата аммония (опыт с вулканом). Цвет пламени тоже будет зеленым.

Желтая свеча. Желтый хромат натрия окрасит парафин и пламя свечи в желтый цвет.

Красная свеча. Парафин подкрашивают любым красным пигментом, например гуашью. Чтобы пламя было красным надо добавитькакую-либо соль стронция или лития.

Читайте также: