Cr металл или неметалл

Обновлено: 22.01.2025

Химические вещества можно разделить на две группы: простые и сложные.

Простые вещества состоят из атомов одного элемента (О2, P4).

Сложные вещества состоят из атомов двух и более элементов (CaO, H3PO4).

Простые вещества можно разделить на металлы и неметаллы.

Металлы – это простые вещества, в которых атомы соединены между собой металлической химической связью. Металлы стремятся отдавать электроны и характеризуются металлическими свойствами (металлический блеск, высокая электро- и теплопроводность, пластичность и др.).

Неметаллы – это простые вещества, в которых атомы соединены ковалентными (или межмолекулярными) связями. Неметаллы стремятся принимать или притягивать электроны. Неметаллические свойства – это способность принимать или притягивать электроны.

Все элементы в Периодической системе химических элементов (ПСХЭ) расположены либо в главной подгруппе, либо в побочной. В различных формах короткопериодной ПСХЭ главные и побочные подгруппы расположены по-разному. Есть простой способ, который позволит вам быстро и надежно определять, к какой подгруппе относится элемент. Дело в том, что все элементы второго периода расположены в главной подгруппе. Те элементы, которые расположены в ячейке точно под элементами второго периода (справа или слева), относятся к главной подгруппе. Остальные — к побочной.

Например , в таблице Менделеева, которая используется на ЕГЭ по химии, элемент номер 31, галлий, расположен в ячейке справа, точно под соответствующим ему элементом второго периода, бором. Следовательно, галлий относится к главной подгруппе. А вот скандий, элемент номер 21, расположен в ячейке слева. Следовательно, скандий относится к побочной подгруппе.

Неметаллы расположены в главных подгруппах, в правом верхнем угле ПСХЭ. К металлам относятся все элементы побочных подгрупп и элементы главных подгрупп, расположенные в левой нижней части ПСХЭ. Разделяют металлы и неметаллы обычно, проводя условную линию от бериллия до астата. На рисунке показано точное разделение на металлы и неметаллы. Закрашены цветом неметаллы.


Основные классы сложных веществ — это оксиды, гидроксиды, соли.


Оксиды — это сложные вещества, которые состоят из атомов двух элементов, один из которых кислород, имеющий степень окисления -2.

В зависимости от второго элемента оксиды проявляют разные химические свойства. Некоторым оксидам соответствуют гидроксиды (солеобразующие оксиды), а некоторым нет (несолеобразующие).

Солеобразующие оксиды делят на основные, амфотерные и кислотные.

Основные оксиды — это оксиды, которые проявляют характерные основные свойства. К ним относят оксиды, образованные атомами металлов со степенью окисления +1 и +2 . Например, оксид лития Li2O, оксид железа (II) FeO.

Амфотерные оксиды — это оксиды, которые проявляют и основные, и кислотные свойства. Это оксиды металлов со степенью окисления +3 и +4 , а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO .

Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N2O и SiO .

Встречаются и оксиды, похожие на соли, т.е. солеобразные (двойные).

Двойные оксиды — это некоторые оксиды, образованные элементом с разными степенями окисления. Например , магнетит (магнитный железняк) FeO·Fe2O3.

Алгоритм определения типа оксида: сначала определяем, какой элемент образует оксид – металл или неметалл . Если это металл, то определяем степень окисления, затем определяем тип оксида. Если это неметалл, то оксид кислотный (если это не исключение).

Гидроксиды — это сложные вещества, в составе которых есть группа Э-O-H. К гидроксидам относятся основания, амфотерные гидроксиды, и кислородсодержащие кислоты.

Солеобразующим оксидам соответствуют гидроксиды:

основному оксиду соответствует гидроксид основание ,

кислотному оксиду соответствует гидроксид кислота ,

амфотерному оксиду соответствует амфотерный гидроксид .

Например , оксид хрома (II) CrO — основный, ему соответствует гидроксид основание. Формулу гидроксида легко получить, просто добавив к металлу гидроксидную группу OH: Cr(OH)2.

Оксид хрома (VI) — кислотный, ему соответствует гидроксид кислота H2CrO4, и кислотный остаток хромат-ион CrO4 2- .

Если все индексы кратны 2, то мы делим все индексы на 2.

Например : N2O5 + H2O → H2N2O6, делим на 2, получаем HNO3. Так получаем мета-формулу кислоты. Если мы добавим еще одну молекулу воды, то получим орто-формулу кислоты.

Например : оксид P2O5, мета-форма: HPO3. Добавляем воду, орто-форма: H3PO4. Орто-форма устойчива у фосфора и мышьяка.

Оксид хрома (III) — Cr2O3 — амфотерный, ему соответствует амфотерный гидроксид, который может выступать и как основание, и как кислота: Cr(OH)3 = HCrO2, кислотный остаток хромит: CrO2 — .

Взаимосвязь оксидов и гидроксидов:

Основания (основные гидроксиды) — это сложные вещества, которые при диссоциации в водных растворах в качестве анионов (отрицательных ионов) образуют только гидроксид-ионы OH — .

Основания можно разделить на растворимые в воде ( щелочи ), нерастворимые в воде, и разлагающиеся в воде .


К разлагающимся в воде (неустойчивым) основаниям относят гидроксид аммония, гидроксид серебра (I), гидроксид меди (I). В водном растворе такие соединения практически необратимо распадаются:

2AgOH → Ag2O + H2O

2CuOH → Cu2O + H2O

Основания с одной группой ОН – однокислотные (например, NaOH ) , с двумя – двухкислотные (Ca(OH)2) и с тремя – трехкислотные (Fe(OH)3) .


Кислоты – это сложные вещества, которые при диссоциации в водных растворах образуют в качестве катионов только ионы гидроксония H3O + (H + ). Кислоты состоят из водорода H + и кислотного остатка.

По числу атомов водорода, которые можно заместить на металлы: одноосновные (HNO3), двухосновные (H2SO4), трехосновные (H3PO4) и т.д.


По содержанию атомов кислорода кислоты бывают бескислородные ( например , соляная кислота HCl) и кислородсодержащие ( например , серная кислота H2SO4).


Кислоты также можно разделить на сильные и слабые.

Сильные кислоты. К ним относятся:

  • Бескислородные кислоты: HCl, HBr, HI . Остальные бескислородные кислоты, как правило, слабые.
  • Некоторые высшие кислородсодержащие кислоты: H2SO4, HNO3, HClO4 и др.

Слабые кислоты . К ним относятся:

Определить, сильная кислота перед вами, или слабая, позволяет простой прием. Мы вычитаем из числа атомов O в кислоте число атомов H. Если получаем число 2 или 3, то кислота сильная. Если 1 или 0 — то кислота слабая.

Например : HClO: 1-1 = 0, следовательно, кислота слабая.

Соли – сложные вещества, состоящие из катиона металла (или металлоподобных катионов, например, иона аммония NH4 + ) и аниона кислотного остатка. Также солями называют вещества, которые могут быть получены при взаимодействии кислот и оснований с выделением воды.

Если рассматривать соли, как продукты взаимодействия кислоты и основания, то соли делят на средние , кислые и основные .

Средние соли – продукты полного замещения катионов водорода в кислоте на катионы металла ( например , Na2CO3, K3PO4).

Кислые соли – продукты неполного замещения катионов водорода в кислоте на катионы металлов ( например , NaHCO3, K2HPO4).

Основные соли – продукты неполного замещения гидроксогрупп основания на анионы кислотных остатков кислоты ( например , малахит (CuOH)2CO3).

По числу катионов и анионов соли разделяют на:

Простые соли – состоящие из катиона одного типа и аниона одного типа ( например , хлорид кальция CaCl2).

Двойные соли – это соли, состоящие из двух или более разных катионов и аниона одного типа ( например , алюмокалиевые квасцы – KAl(SO4)2).

Смешанные соли – это соли, состоящие из катиона одного типа и двух или более анионов разного типа ( например , хлорид-гипохлорит кальция Ca(OCl)Cl).

По структурным особенностям выделяют также гидратные соли и комплексные соли.

Гидратные соли (кристаллогидраты) – это такие соли, в состав которых входят молекулы кристаллизационной воды ( например , декагидрат сульфата натрия Na2SO4·10 H2O).

Комплексные соли – это соли, содержащие комплексный катион или комплексный анион (K3[Fe(CN)6], [Cu(NH3)4]Cl2).


Помимо основных классов неорганических соединений, существуют и другие.

Например , бинарные соединения элементов с водородом.

Водородные соединения – это сложные вещества, состоящие из двух элементов, один из которых водород. Водород образует солеобразные гидриды и летучие водородные соединения.

Солеобразные гидриды ЭНх – это соединения металлов IA, IIA групп и алюминия с водородом. Степень окисления водорода равна -1. Например , гидрид натрия NaH.

Летучие водородные соединения НхЭ – это соединения неметаллов с водородом, в которых степень окисления водорода равна +1. Например , аммиак NH3, фосфин PH3.


Тренировочный тест «Классификация неорганических веществ» 10 вопросов, при каждом прохождении новые.

Cr металл или неметалл

1. Химический элемент (Сr), твёрдый металл серо-стального цвета (используется при изготовлении твёрдых сплавов и для покрытия металлических изделий).

(лат. Chromium), химический элемент VI группы периодической системы. Назван от греч. chrōma — цвет, краска (из-за яркой окраски соединений). Голубовато-серебристый металл; плотность 7,19 г/см 3 , tпл 1890°C. На воздухе не окисляется. Главные минералы — хромшпинелиды. Хром — обязательный компонент нержавеющих, кислотоупорных, жаростойких сталей и большого числа других сплавов (нихромы, хромали, стеллит). Применяется для хромирования. Соединения хрома — окислители, неорганические пигменты, дубители.

Энциклопедический словарь . 2009 .

Полезное

Смотреть что такое "хром" в других словарях:

хром — хром, а … Русский орфографический словарь

хром — хром/ … Морфемно-орфографический словарь

ХРОМ — (от греч. chroma цвет, краска). Металл сероватого цвета, добываемый из хромовой руды. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ХРОМ металл сероватого цвета; в чистом виде х. не употребляется; соединения же с … Словарь иностранных слов русского языка

ХРОМ — см. ХРОМ (Сг). Соединения хрома встречаются в сточных водах многих промышленных предприятий, производящих хромовые соли, ацетилен, дубильные вещества, анилин, линолеум, бумагу, краски, пестициды, пластмассы и др. В воде встречаются трехвалентные… … Болезни рыб: Справочник

хром — ХРОМ, а, муж. 1. Химический элемент, твёрдый светло серый блестящий металл. 2. Род жёлтой краски (спец.). | прил. хромистый, ая, ое (к 1 знач.) и хромовый, ая, ое. Хромистая сталь. Хромовая руда. II. ХРОМ, а, муж. Сорт мягкой тонкой кожи. | прил … Толковый словарь Ожегова

хром — а, м. chrome m. [krom] <новолат. chromium <лат. chroma <гр. краска. 1. Химический элемент твердый серебристый металл, употребляемый при изготовлении твердых сплаво и для покрытия металлических изделий. БАС 1. Металл, открытый Вокеленом,… … Исторический словарь галлицизмов русского языка

ХРОМ — ХРОМ, Chromium (от греч. chroma краска), I симв. Сг, хим. элемент с ат. весом 52,01 (изо ! топы 50, 52, 53, 54); порядковое число 24, за ! нимает место в четной подгруппе VІ группы j таблицы Менделеева. Соединения X. часто i встречаются в природе … Большая медицинская энциклопедия

ХРОМ — (лат. Chromium) Cr, химический элемент VI группы Периодической системы Менделеева, атомный номер 24, атомная масса 51,9961. Название от греч. chroma цвет, краска (из за яркой окраски Соединения). Голубовато серебристый металл; плотность 7,19… … Большой Энциклопедический словарь

ХРОМ 1 — ХРОМ 1, а, м. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

ХРОМ 2 — ХРОМ 2, а, м. Сорт мягкой тонкой кожи. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Chromium crystals and 1cm3 cube.jpg


Твёрдый металл голубовато-белого цвета

Хром / Chromium (Cr), 24

1,66 (шкала Полинга)

Хром — элемент побочной подгруппы шестой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 24. Обозначается символом Cr (лат. Chromium ). Простое вещество хром (CAS-номер: 7440-47-3) — твёрдый металл голубовато-белого цвета.

Содержание

История

В 1766 году в окрестностях Екатеринбурга был обнаружен минерал, который получил название «сибирский красный свинец», PbCrO4. Современное название — крокоит. В 1797 французский химик Л. Н. Воклен выделил из него новый тугоплавкий металл (скорее всего Воклен получил карбид хрома).

Происхождение названия

Название элемент получил от греч. χρῶμα — цвет, краска — из-за разнообразия окраски своих соединений.

Нахождение в природе

Хром является довольно распространённым элементом (0,02 масс. долей, %). Основные соединения хрома — хромистый железняк (хромит) FeO·Cr2O3. Вторым по значимости минералом является крокоит PbCrO4.

Месторождения

Самые большие месторождения хрома находятся в ЮАР (1 место в мире), Казахстане, России, Зимбабве, Мадагаскаре. Также есть месторождения на территории Турции, Индии, Армении [2] , Бразилии, на Филиппинах [3] .

Главные месторождения хромовых руд в РФ известны на Урале (Донские и Сарановское).

Разведанные запасы в Казахстане составляют свыше 350 миллионов тонн (2 место в мире) [3] .

Геохимия и минералогия

Среднее содержание хрома в различных изверженных породах резко непостоянно. В ультраосновных породах (перидотитах) оно достигает 2 кг/т, в основных породах (базальтах и др.) — 200 г/т, а в гранитах десятки г/т. Кларк хрома в земной коре 83 г/т. Он является типичным литофильным элементом и почти весь заключен в минералах типа хромшпинелидов. Хром вместе с железом, титаном, никелем, ванадием и марганцем составляют одно геохимическое семейство.

Различают три основных минерала хрома: магнохромит (Mn, Fe)Cr2O4, хромпикотит (Mg, Fe)(Cr, Al)2O4 и алюмохромит (Fe, Mg)(Cr, Al)2O4. По внешнему виду они неразличимы и их неточно называют «хромиты». Состав их изменчив:

    18—62 %, 1—18 %, 5—16 %, 0,2 — 0,4 (до 33 %), 2 — 30 %,
  • примеси TiO2 до 2 %,
  • ZnO до 5 %, до 1 %; присутствуют также Co, Ni и др.

Собственно хромит, то есть FeCr2O4 сравнительно редок. Помимо различных хромитов, хром входит в состав ряда других минералов — хромовой слюды (фуксита), хромового хлорита, хромвезувиана, хромдиопсида, хромтурмалина, хромового граната (уваровита) и др., которые нередко сопровождают руды, но сами промышленного значения не имеют. В экзогенных условиях хром, как и железо, мигрирует в виде взвесей и может накапливаться в глинах. Наиболее подвижной формой являются хроматы.

Получение

Хром встречается в природе в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом):

Феррохром применяют для производства легированных сталей.

Чтобы получить чистый хром, реакцию ведут следующим образом:

1) сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе:

2) растворяют хромат натрия и отделяют его от оксида железа;

3) переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат;

4) получают чистый оксид хрома восстановлением дихромата натрия углём:

5) с помощью алюминотермии получают металлический хром:

6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты. При этом на катодах совершаются в основном 3 процесса:

  • восстановление шестивалентного хрома до трехвалентного с переходом его в раствор;
  • разряд ионов водорода с выделением газообразного водорода;
  • разряд ионов, содержащих шестивалентный хром, с осаждением металлического хрома;

Физические свойства

В свободном виде — голубовато-белый металл с кубической объемно-центрированной решеткой, а = 0,28845 нм. При температуре 39 °C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля).

Хром имеет твердость по шкале Мооса 5. [4] Очень чистый хром достаточно хорошо поддаётся механической обработке.

Химические свойства

Характерные степени окисления

Для хрома характерны степени окисления +2, +3 и +6. (см. табл.) Практически все соединения хрома окрашены [5] .

Степень окисления Оксид Гидроксид Характер Преобладающие формы в растворах Примечания
+2 CrO (чёрный) Не существует Основный Cr 2+ (соли голубого цвета) Очень сильный восстановитель
+3 Cr2O3(зелёный) Cr(OH)3 Амфотерный Cr 3+ (зеленые или лиловые соли)
[Cr(OH)4] - (зелёный)
+4 CrO2 не существует Несолеобразующий - Встречается редко, малохарактерна
+6 CrO3(красный) H2CrO4
H2Cr2O7
Кислотный CrO4 2- (хроматы, желтые)
Cr2O7 2- (дихроматы, оранжевые)
Переход зависит от рН среды. Сильнейший окислитель, гигроскопичен, очень ядовит.



Простое вещество

Устойчив на воздухе за счёт пассивирования. По этой же причине не реагирует с серной и азотной кислотами. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr2O3, обладающего амфотерными свойствами.

Соединения Cr(+2)

Степени окисления +2 соответствует основный оксид CrO (чёрный). Соли Cr 2+ (растворы голубого цвета) получаются при восстановлении солей Cr 3+ или дихроматов цинком в кислой среде («водородом в момент выделения»):

2Cr^>" />

Все эти соли Cr 2+ — сильные восстановители вплоть до того, что при стоянии вытесняют водород из воды [6] . Кислородом воздуха, особенно в кислой среде, Cr 2+ окисляется, в результате чего голубой раствор быстро зеленеет.

Коричневый или желтый гидроксид Cr(OH)2 осаждается при добавлении щелочей к растворам солей хрома(II).

Синтезированы дигалогениды хрома CrF2, CrCl2, CrBr2 и CrI2

Соединения Cr(+3)

Степени окисления +3 соответствует амфотерный оксид Cr2O3 и гидроксид Cr(OH)3 (оба — зелёного цвета). Это — наиболее устойчивая степень окисления хрома. Соединения хрома в этой степени окисления имеют цвет от грязно-лилового (ион [Cr(H2O)6] 3+ до зелёного (в координационной сфере присутствуют анионы).

Cr 3+ склонен к образованию двойных сульфатов вида MICr(SO4)2·12H2O (квасцов)

Гидроксид хрома (III) получают, действуя аммиаком на растворы солей хрома (III):

" />

Можно использовать растворы щелочей, но в их избытке образуется растворимый гидроксокомплекс:

" />

Сплавляя Cr2O3 со щелочами получают хромиты:

Непрокаленный оксид хрома(III) растворяется в щелочных растворах и в кислотах:

При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):

То же самое происходит при сплавлении оксида хрома (III) со щелочью и окислителями, или со щелочью на воздухе (рассплав при этом приобретает жёлтую окраску):

Соединения хрома (+4)

При осторожном разложении оксида хрома(VI) CrO3 в гидротермальных условиях получают оксид хрома(IV) CrO2, который является ферромагнетиком и обладает металлической проводимостью.

Среди тетрагалогенидов хрома устойчив CrF4, тетрахлорид хрома CrCl4 существует только в парах.

Соединения хрома (+6)

Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO3 и целый ряд кислот, между которыми существует равновесие. Простейшие из них — хромовая H2CrO4 и двухромовая H2Cr2O7. Они образуют два ряда солей: желтые хроматы и оранжевые дихроматы соответственно.

Оксид хрома (VI) CrO3 образуется при взаимодействии концентрированной серной кислоты с растворами дихроматов. Типичный кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовую H2CrO4, хромат K2CrO4:

+ H_2O>" />

До высокой степени полимеризации, как это происходит у вольфрама и молибдена, не доходит, так как полихромовая кислота распадается на оксид хрома(VI) и воду:

Растворимость хроматов примерно соответствует растворимости сульфатов. В частности, желтый хромат бария BaCrO4 выпадает при добавлении солей бария как к растворам хроматов, так и к растворам дихроматов:

\rightarrow BaCrO_4\downarrow>" />
+ H_2O \rightarrow 2BaCrO_4\downarrow + 2H^+>" />

Образование кроваво-красного малорастворимого хромата серебра используют для обнаружения серебра в сплавах при помощи пробирной кислоты.

Известны пентафторид хрома CrF5 и малоустойчивый гексафторид хрома CrF6. Также получены летучие оксигалогениды хрома CrO2F2 и CrO2Cl2 (хромилхлорид).

Соединения хрома(VI) — сильные окислители, например:

Добавление к дихроматам перекиси водорода, серной кислоты и органического растворителя (эфира) приводит к образованию синего пероксида хрома CrO5L (L — молекула растворителя), который экстрагируется в органический слой; данная реакция используется как аналитическая.

Применение

Хром — важный компонент во многих легированных сталях (в частности, нержавеющих), а также и в ряде других сплавов. Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование). Хром применяется для производства сплавов: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности.

Биологическая роль и физиологическое действие

Хром — один из биогенных элементов, постоянно входит в состав тканей растений и животных. У животных хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов. Снижение содержания хрома в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови.

В чистом виде хром довольно токсичен, металлическая пыль хрома раздражает ткани лёгких. Соединения хрома(III) вызывают дерматиты. Соединения хрома(VI) приводят к разным заболеваниям человека, в том числе и онкологическим. ПДК хрома(VI) в атмосферном воздухе 0,0015 мг/м³.

Интересные факты

  • Пиколинат хрома входит в состав средств для похудения. [источник не указан 284 дня]
  • Основанный на реальных событиях фильм «Эрин Брокович» режиссёра Стивена Содерберга рассказывает о крупном судебном процессе, связанном с загрязнением окружающей среды шестивалентным хромом, в результате которого у многих людей развились серьёзные заболевания. [7]

См. также

Примечания

  1. Редкол.:Зефиров Н. С. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Большая Российская энциклопедия, 1999. — Т. 5. — С. 308.
  2. ↑статья «Минеральные ресурсы». Энциклопедия «Кругосвет». Архивировано из первоисточника 21 августа 2011.
  3. 12ХРОМ | Онлайн Энциклопедия Кругосвет
  4. Поваренных А. С. Твердость минералов. — АН УССР, 1963. — С. 197-208. — 304 с.
  5. ↑ Реми Г. Курс неорганической химии. Т. 2. М., Мир, 1966. С. 142-180
  6. ↑ Некрасов Б. В. Курс общей химии. М:, ГНХТИ, 1952, С. 334
  7. ↑Официальный сайт Эрин Брокович, страница, посвящённая фильму

Ссылки

  • Химические элементы
  • Соединения хрома
  • Металлы
  • Хром

Wikimedia Foundation . 2010 .

хром — а; м. [от греч. chrōma цвет, краска] 1. Химический элемент (Сr), твёрдый металл серо стального цвета (используется при изготовлении твёрдых сплавов и для покрытия металлических изделий). 2. Мягкая тонкая кожа, выдубленная солями этого металла.… … Энциклопедический словарь

Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в Периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов

Кодификатор ЕГЭ. Раздел 1.2.3. Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в Периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов.

У атомов переходных элементов (меди, цинка, хрома и железа) происходит заполнение энергетического d-подуровня.

Рассмотрим строение электронной оболочки этих элементов. У атомов цинка и железа заполнение электронной оболочки происходит согласно энергетическому ряду орбиталей (подуровней), который рассмотрен в статье Строение атома. Электронная конфигурация атома железа:

+26Fe [Ar]3d 6 4s 2 [Ar] 4s

У атома цинка на происходит полное заполнение 3d-подуровня:

+30Zn [Ar]3d 10 4s 2 [Ar] 4s

У атомов хрома и меди наблюдается « проскок» или « провал» электрона, когда один электрон переходит с более энергетически выгодного 4s-подуровня на менее выгодный 3d-подуровень. Этот переход обусловлен тем, что в результате образуются более устойчивые электронные конфигурации (3d 5 у атома хрома и 3d 10 у атома меди). Дело в том, что энергетически более выгодно, когда d-орбиталь заполнена наполовину или полностью.

Мы используем, конечно же, реальную электронную конфигурацию меди и хрома, теоретическая будет неверной.

Обратите внимание! У всех 3d-элементов внешним энергетическим уровнем считается четвертый уровень и 4s-подуровень. При образовании катионов атомы металлов отдают электроны с внешнего энергетического уровня.

Атом Электронная конфигурация Характерные валентности Число электронов на внешнем энергетическом уровне Характерные степени окисления
Хром [Ar]3d 5 4s 1 II, III. VI 1 +2, +3, +6
Железо [Ar]3d 6 4s 2 II, III. VI 2 +2, +3, +6
Медь [Ar]3d 10 4s 1 I, II 1 +1, +2
Цинк [Ar]3d 10 4s 2 II 2 +2

Рассмотрим характеристики хрома, железа, меди и цинка:

Свойства соединений железа, меди, цинка и хрома.

Для хрома характерны степени окисления +2, +3 и +6. Оксид и гидроксид хрома (II) (CrO и Cr(OH)2) проявляют основные свойства. Степени окисления +3 соответствуют амфотерные оксид и гидроксид: Cr2O3 и Cr(OH)3 соответственно. Соединения хрома +6 проявляют сильные кислотные свойства: оксид CrO3 и сразу две сильных кислоты: хромовая H2CrO4 и дихромовая H2Cr2O7. Соединения хрома (II) проявляют сильные восстановительные свойства, соединения хрома (VI) проявляют только сильные окислительные свойства.

Характерные степени окисления железа : +2 и +3. Оксид и гидроксид железа (II) — основные (FeO и Fe(OH)2), а соединения железа (III) проявляют амфотерные свойства (Cr2O3 и Cr(OH)3 соответственно) с преобладанием основных. Соединения железа (II) проявляют также восстановительные свойства.

Для меди характерны степени окисления +1 и +2. Оксид меди (I) CuO и гидроксид меди (I) CuOH — основные. Оксид и гидроксид меди (II) проявляют амфотерные свойства с преобладанием основных: CuO и Cu(OH)2.

Характерная степень окисления цинка +2. Соединения цинка (II) проявляют амфотерные свойства: ZnO и Zn(OH)2.

Хром

хром

Хром — элемент побочной подгруппы 6-й группы 4-го периода периодической системы химических элементов Д. И. Менделеева с атомным номером 24. Обозначается символом Cr (лат. Chromium ). Простое вещество хром — твёрдый металл голубовато-белого цвета. Хром иногда относят к чёрным металлам.

Название, символ, номерХром / Chromium (Cr), 24
Атомная масса
(молярная масса)
51,9961(6) а. е. м. (г/моль)
Электронная конфигурация[Ar] 3d 5 4s 1
Радиус атома130 пм
Ковалентный радиус118 пм
Радиус иона(+6e)52 (+3e)63 пм
Электроотрицательность1,66 (шкала Полинга)
Электродный потенциал−0,74
Степени окисления6, 3, 2, 0
Энергия ионизации
(первый электрон)
652,4 (6,76) кДж/моль (эВ)
Плотность (при н. у.)7,19 г/см³
Температура плавления2130 K
Температура кипения2945 K
Уд. теплота плавления21 кДж/моль
Уд. теплота испарения342 кДж/моль
Молярная теплоёмкость23,3 Дж/(K·моль)
Молярный объём7,23 см³/моль
Структура решёткикубическая
объёмноцентрированая
Параметры решётки2,885 Å
Температура Дебая460 K
Теплопроводность(300 K) 93,9 Вт/(м·К)
Номер CAS 7440-47-3

хромированная машина

  • 1 История
    • 1.1 Происхождение названия
    • 1.2 История
    • 2.1 Месторождения
    • 5.1 Изотопы
    • 6.1 Характерные степени окисления
    • 6.2 Простое вещество
    • 6.3 Соединения Cr(+2)
    • 6.4 Соединения Cr(+3)
    • 6.5 Соединения хрома (+4)
    • 6.6 Соединения хрома (+6)

    Происхождение названия

    История

    Открыт на Среднем Урале, в Березовском золоторудном месторождении. Впервые упоминается в труде М. В. Ломоносова «Первые основания металлургии» (1763 год), как красная свинцовая руда, PbCrO4. Современное название — крокоит. В 1797 году французский химик Л. Н. Воклен выделил из него новый тугоплавкий металл (скорее всего, Воклен получил карбид хрома).

    Хром является довольно распространённым элементом в земной коре (0,012 % по массе). Основные соединения хрома — хромистый железняк (хромит) FeO·Cr2O3. Вторым по значимости минералом является крокоит PbCrO4.

    Самые большие месторождения хрома находятся в ЮАР (1-е место в мире), Казахстане, России, Зимбабве, Мадагаскаре. Также есть месторождения на территории Турции, Индии, Армении, Бразилии, на Филиппинах.

    Разведанные запасы в Казахстане составляют свыше 350 миллионов тонн (2-е место в мире).

    Различают три основных минерала хрома: магнохромит (Mg, Fe)Cr2O4, хромпикотит (Mg, Fe)(Cr, Al)2O4 и алюмохромит (Fe, Mg)(Cr, Al)2O4. По внешнему виду они неразличимы, и их неточно называют «хромиты». Состав их изменчив:

    • Cr2O3 18—62 %,
    • FeO 1—18 %,
    • MgO 5—16 %,
    • Al2O3 0,2 — 0,4 (до 33 %),
    • Fe2O3 2 — 30 %,
    • примеси TiO2 до 2 %,
    • V2O5 до 0,2 %,
    • ZnO до 5 %,
    • MnO до 1 %; присутствуют также Co, Ni и др.

    Собственно, хромит, то есть FeCr2O4 сравнительно редок. Помимо различных хромитов, хром входит в состав ряда других минералов — хромовой слюды (фуксита), хромового хлорита, хромвезувиана, хромдиопсида, хромтурмалина, хромового граната (уваровита) и др., которые нередко сопровождают руды, но сами промышленного значения не имеют. В экзогенных условиях хром, как и железо, мигрирует в виде взвесей и может накапливаться в глинах. Наиболее подвижной формой являются хроматы.

    Fe(CrO2)2 + 4C → Fe + 2Cr + 4CO

    4Fe(CrO2)2 + 8Na2CO3 + 7O2 → 8Na2CrO4 + 2Fe2O3 + 8CO2

    Na2Cr27 + 2C → Cr2O3 + Na2CO3 + CO

    Cr2O3 + 2Al → Al2O3 + 2Cr + 130kcal

    В свободном виде — голубовато-белый металл с кубической объёмноцентрированной решёткой, a = 0,28845 нм. Ниже температуры 38 °C является антиферромагнетиком, выше переходит в парамагнитное состояние (точка Нееля).

    Хром имеет твёрдость по шкале Мооса 5, один из самых твёрдых чистых металлов (уступает только иридию, бериллию, вольфраму и урану). Очень чистый хром достаточно хорошо поддаётся механической обработке.

    Изотопы

    Природный хром состоит из четырех стабильных изотопов ( 50 Cr (изотопная распространённость 4,345 %), 52 Cr (83.789 %), 53 Cr (9.501 %), 54 Cr (2.365 %)).

    Для хрома характерны степени окисления +2, +3 и +6 (см. табл.). Практически все соединения хрома окрашены.

    КислотныйCrO4 2− (хроматы, желтые)

    цвета хрома

    Синтезированы соединения хрома с бором (бориды Cr2B, CrB, Cr3B4, CrB2, CrB4 и Cr5B3), с углеродом (карбиды Cr23C6, Cr7C3 и Cr3C2), c кремнием (силициды Cr3Si, Cr5Si3 и CrSi) и азотом (нитриды CrN и Cr2N).

    Все эти соли Cr 2+ — сильные восстановители вплоть до того, что при стоянии вытесняют водород из воды. Кислородом воздуха, особенно в кислой среде, Cr 2+ окисляется, в результате чего голубой раствор быстро зеленеет.

    Коричневый или жёлтый гидроксид Cr(OH)2 осаждается при добавлении щелочей к растворам солей хрома(II).

    Степени окисления +3 соответствует амфотерный оксид Cr2O3 и гидроксид Cr(OH)3 (оба — зелёного цвета). Это — наиболее устойчивая степень окисления хрома. Соединения хрома в этой степени окисления имеют цвет от грязно-лилового (в водных растворах ион Cr 3+ существует в виде аквакомплексов [Cr(H2O)6] 3+ ) до зелёного (в координационной сфере присутствуют анионы).

    Cr 3+ склонен к образованию двойных сульфатов вида M I Cr(SO4)2·12H2O (квасцов)

    Сплавляя Cr2O3 со щелочами, получают хромиты:

    То же самое происходит при сплавлении оксида хрома (III) со щелочью и окислителями, или со щелочью на воздухе (расплав при этом приобретает жёлтую окраску):

    Оксид хрома (VI) CrO3 образуется при взаимодействии концентрированной серной кислоты с растворами дихроматов. Типичный кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовую H2CrO4, дихромовую H2Cr2O7 и другие изополикислоты с общей формулой H2CrnO3n+1. Увеличение степени полимеризации происходит с уменьшением рН, то есть увеличением кислотности:

    Но если к оранжевому раствору K2Cr2O7 прилить раствор щёлочи, как окраска вновь переходит в жёлтую, так как снова образуется хромат K2CrO4:

    Растворимость хроматов примерно соответствует растворимости сульфатов. В частности, жёлтый хромат бария BaCrO4 выпадает при добавлении солей бария как к растворам хроматов, так и к растворам дихроматов:

    Добавление к дихроматам перекиси водорода, серной кислоты и органического растворителя (эфира) приводит к образованию синего монопероксида хрома(VI) CrO5 (CrO(O2)2), который экстрагируется в органический слой; данная реакция используется как аналитическая.

    Хром — важный компонент во многих легированных сталях (в частности, нержавеющих), а также и в ряде других сплавов. Добавка хрома существенно повышает твердость и коррозийную стойкость сплавов.

    Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование).

    Хром применяется для производства сплавов: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности.

    хромированные детали

    В чистом виде хром довольно токсичен, металлическая пыль хрома раздражает ткани лёгких. Соединения хрома(III) вызывают дерматиты.

    хром окись

    Соединения хрома в степени окисления +6 особо токсичны. Практически вся хромовая руда обрабатывается через преобразование в дихромат натрия. В 1985 году было произведено примерно 136 000 тонн шестивалентного хрома. Другими источниками шестивалентного хрома являются триоксид хрома и различные соли — хроматы и дихроматы. Шестивалентный хром используется при производстве нержавеющих сталей, текстильных красок, консервантов для дерева, при хромировании и пр.

    Шестивалентный хром является признанным канцерогеном при вдыхании. На многих рабочих местах сотрудники подвержены воздействию шестивалентного хрома, например, при гальваническом хромировании или сварке нержавеющих сталей. В Европейском союзе использование шестивалентного хрома существенно ограничено директивой RoHS.

    Шестивалентный хром транспортируется в клетки человеческого организма с помощью сульфатного транспортного механизма благодаря своей близости к сульфатам по структуре и заряду. Трёхвалентный хром, более часто встречающийся, не транспортируется в клетки.

    Внутри клетки Cr(VI) восстанавливается до метастабильного пятивалентного хрома (Cr(V)), затем до трехвалентного хрома (Cr(III)). Трехвалентный хром, присоединяясь к протеинам, создает гаптены, которые включают иммунную реакцию. После их появления чувствительность к хрому не пропадает. В этом случае даже контакт с текстильными изделиями, окрашенными хромсодержащими красками или с кожей, обработанной хромом, может вызвать раздражение кожи. Витамин C и другие агенты реагируют с хроматами и образуют Cr(III) внутри клетки.

    Продукты шестивалентного хрома являются генотоксичными канцерогенами. Хроническое вдыхание соединений шестивалентного хрома увеличивает риск заболеваний носоглотки, риск рака лёгких. (Лёгкие особенно уязвимы из-за большого количества мелких капилляров). Видимо, механизм генотоксичности запускается пяти- и трёхвалентным хромом.

    В США предельно допустимая концентрация шестивалентного хрома в воздухе составляет 5 мкг/м³ (0,005 мг/м³). В России предельно допустимая концентрация хрома (VI) существенно ниже — 1,5 мкг/м³ (0,0015 мг/м³).

    Одним из общепризнанных методов избежания шестивалентного хрома является переход от технологий гальванического хромирования к газотермическому и вакуумному напылению.

    Основанный на реальных событиях фильм «Эрин Брокович» режиссёра Стивена Содерберга рассказывает о крупном судебном процессе, связанном с загрязнением окружающей среды шестивалентным хромом, в результате которого у многих людей развились серьёзные заболевания.

    Фото соединений хрома:

    хром окись пигментная


    Хром окись пигментная

    паста ГОИ


    Паста ГОИ (содержит Окись хрома)

    Хром хлористый

    Хром хлористый


    Хром (III) хлорид



    Калий двуххромовокислый (бихромат) - Хромпик)

    Калий хромовокислый


    Калий хромовокислый (калий хромат)



    Хромовой ангидрид (Хрома (VI) окись

    Хром (III) окись

    Хром азотнокислый

    хромокалиевые квасцы

    хромокалиевые квасцы


    Хромокалиевые квасцы

    Соединения двухвалентного хрома.

    Оксид хрома (II) CrO
    Гидроксид хрома (II) Cr(OH)2
    Фторид хрома (II) CrF2
    Хлорид хрома (II) CrCl2
    Бромид хрома (II) CrBr2
    Йодид хрома (II) CrI2
    Сульфид хрома (II) CrS
    Сульфат хрома (II) CrSO4

    Соединения трехвалентного хрома.

    Оксид хрома (III) Cr2O3
    Гидроксид хрома (III) Cr(OH)3
    Фторид хрома (III) CrF3
    Хлорид хрома (III) CrCl3
    Бромид хрома (III) CrBr3
    Иодид хрома (III) CrI3
    Оксифторид хрома (III) CrOF
    Сульфид хрома (III) Cr2S3
    Сульфат хрома (III) Cr2(SO4)3
    Ортофосфат хрома (III) CrPO4

    Соединения четырехвалентного хрома.

    Оксид хрома (IV) CrO2
    Фторид хрома (IV) CrF4
    Хлорид хрома (IV) CrCl4

    Читайте также: