Что тверже металл или алмаз
Бриллиантами люди интересовались еще с давних времен. И не странно, так как эти камни сражают своей красотой наповал: от прекрасных самоцветов нельзя отвести взгляд и хочется их носить просто постоянно.
Но помимо внешних качеств, многие обращают внимание на твердость алмаза. Эти камни обладают несравненными по качеству характеристиками, за счет чего минералы применяются во многих сферах жизни человека, начиная от ювелирного дела и заканчивая изготовлением космических кораблей.
Сегодня мы разберемся с тем, какой твердостью обладает алмаз, и бывают ли вещества или материалы тверже.
Почему алмаз имеет большую прочность чем графит
Для того чтобы разобраться в вопросе, следует копнуть немного глубже.
Алмаз – это минерал, кубической аллотропной формы углерода. При нормальных условиях материал метастабилен, другими словами, он может существовать неограниченно долго в своей твердой прозрачной форме. В вакууме или в инертном газе при повышенных температурах алмаз постепенно переходит в графит.
Итак, из определения следует, что по своей сути алмаз – это видоизмененный при определенных условиях графит. Что же происходит при воздействии вакуума или инертных газов на камень? Книги говорят, что возникают особые процессы в кристаллической решетке.
Тут надо немного углубиться в химию школьного курса. Четыре валентных электрона позволяют углероду, составной частью обоих описываемых материалов, образовывать связи с четырьмя другими атомами углерода. Это могут быть:
- четыре прочные связи;
- три особо прочных соединения и одна слабая связь.
Если связи соединяют атомы в монослои, по которым свободно движутся электроны слабых связей, слегка скрепляя эти слои между собой, то получается графит. Причем его свободные электроны поглощают свет любой частоты, делая графит непрозрачным.
В решетке алмаза электроны зафиксированы в одинаковых прочных связях. Поэтому алмаз получается твердым прозрачным диэлектриком.
При образовании прочных связей получается алмаз. Электроны камня поглощают свет только на частотах возбуждения межатомных связей. Эти частоты не попадают в видимую часть спектра, поэтому алмаз прозрачен.
Можно ли бриллиант разбить молотком
Существует вопрос: чем можно сломать алмаз и можно ли это сделать в принципе. Тут ответ никак не может быть совершенно однозначным, так как никто не знает, о каком «убиваемом» алмазе идет речь – например, о малюсеньком камне или огромной глыбе, и каким молоточком размахивают.
Давайте рассмотрим разные случаи. Например, у вас на столе лежит малюсенький хрупкий камешек, на который вы готовите покушение. Конечно, если вы со всех сил ударите по нему молоточком, то красавец расколется. Это произойдет по той причине, что у ограненного камня есть острые ребра, которые и являются самыми слабыми местами.
Если вы машите молотком для разделения алмазов от других минералов методом выдержит удар или нет, то лучше вам посоветовать более демократический способ отбора.
Теперь рассмотрим другой случай. Вы оказались в пещере много тысячелетней давности. Вы с фонарем в шлеме при полном обмундировании. И тут в глыбе породы вы увидели что-то непонятное огромных размеров. Это предположительно алмаз килограммов на 10. Если вы по нему стукните молотком, то ничего в жизни камня не изменится. Так как для этого красавца огромного телосложения и веса ваш удар будет, как укус комарика для буйвола.
Однако и это не все. Например, вы добыли из породы один огромный неправильной формы камень. Что можно с ним сделать? Правильно, огранить. Как это делается? Огранка самых дорогих и ценных минералов до сих пор производится частично вручную. Красавца отдают мастеру, который должен полностью исследовать самородок, отделить в нем пустоты, помутнения и разбить на отдельные части. Так вот, для анализа формы может уйти до нескольких лет работы. Дело в том, что если правильно ударить огромный алмаз, он красиво раскалывается на более мелкие идеальные по твердости и прочности собратья. Раз стукнул – и алмаз рассыпался.
Вот такие вот выводы. Поэтому если вы решили махать молотком над прекрасным камнем, то спешим вас предостеречь: они могут рассыпаться.
Можно ли бриллиант поцарапать
Если вы хотите отличить царапания бриллиант от других материалов при помощи метода, то это дело действенное, однако может привести к печальному результату.
Поясним все на простом примере. Представьте себе, что вы взяли в одну руку острое стекло, а в другую пластик. Проведите стеклом по пластику. Все мы понимаем, что след останется. Почему? Да потому что стекло по твердости намного выше обычной пластмассы. Теперь проведем опыт наоборот. Вы можете царапать пластиком стекло до изнеможения, но толку не будет, так как этот материал гораздо менее твердый.
Такая же самая ситуация и с бриллиантами. Если у вас в руке обычный качественный алмаз, то чем бы вы его не царапали, следы не должны остаться. Так как прочность алмаза считается самой высокой из всех известных видов драгоценных и поделочных камней. А вот настоящий бриллиант поцарапает все что угодно.
Теперь вернемся к вашей ситуации. Например, вместо алмаза вам подсунули в украшении хрусталь или фианит. Умные книги говорят, что твердость этих красавцев находится в диапазоне от 7,0 до 9,0. Если вы поцарапаете минерал бриллиантом, то след обязательно останется. Вы будете расстроены, и камень будет испорчен. Поэтому призываем вас не проходить камни сортировкой «варварскими» методами. Лучше обратиться к специалистам.
Сравниваем. Что крепче, алмаз или.
Теперь давайте немного образуемся и выясним, а существуют ли ювелирные и другие камни тверже алмаза?
. корунд?
Корунд – это минерал, состоящий из оксид алюминия (III), кристаллического глинозема. Самородок имеет огромное количество разновидностей, о которых было известно еще в Иерусалиме и Древнем Египте, откуда корунды попали в Индию, где и приобрели настоящую славу и свору поклонников.
Разновидности корунда:
- Рубин (устаревшее название «красный яхонт») – красный, бордовый, розовый, прозрачный. Рубиновая окраска камня возникает из-за присутствия хрома. Твердость 9.
- Наждак – темный, непрозрачный, сплошной мелкозернистый (смесь корунда с магнетитом, гематитом, кварцем и др.). По шкале Мооса наждак имеет твердость от 7 до 8 единиц в зависимости от количества содержания в нем корунда и других примесей.
- Сапфир (устаревшее наименование «синий яхонт») – небесный, синий, голубой, прозрачный. Окраску придает минералу титан. Твердость 9.
- Падпараджа (восточный топаз) – желтый, прозрачный самородок. Твердость 9 из 10 по шкале Мооса.
- Ориент-аметист (еще восточный аметист) – темно-розовый, фиолетовый, прозрачный красавец. Этот минерал достаточно твердый, но минералогической шкале Мооса получил 7-ку, что чуть меньше топаза .
- Ориент-изумруд (или восточный изумруд) – яркий зеленый прозрачный камешек. Об этом красавце поговорим позже.
- Лейкосапфир – бесцветный. Твердость этого камня по шкале Мооса составляет 9-ке. Благодаря такой высокой характеристике, а также блеску, самоцвет легко и удобно гранить и полировать.
Алмаз тверже корунда по шкале Мооса, так как по эта характеристика равна 9-ке.
. гранит?
Что такое гранитный камень, знает, наверно, практически любой более или менее образованный человек. Также многие спокойно представляют, что делают из гранита. Данный материал, известный людям с незапамятных времен, в наше время используется повсеместно: для изготовления столешниц, отделки фасадов зданий, создания скульптур и прочее. Одна из самых древних пород, рожденная в земной коре и образованная в виде скал, обладает многими замечательными качествами и свойствами.
Твердость алмаза в баллах принято считать равной 10 или 100, в зависимости от шкалы измерений. 10 – это для системы Мооса, а 100 – для шкалы Роквелла.
Прочность алмаза намного выше чем у гранита. Эта характеристика по Моосу для гранита составляет от 6 до 7 единиц.
. изумруд
Изумруд – это один из самых прекрасных зеленых ювелирных камней. В живой природе очень не часто удается отыскать полностью прозрачный экземпляр. Но такие находки ценятся достаточно высоко. В основном же в этих самоцветах присутствуют трещины, пузырьки и замутненные участки. Цвета изумрудов чаще всего представлены различными оттенками зеленого.
Твердость изумруда по Моосу составляет от 7,5 до 8 единиц. Поэтому если вы захотите алмазом поцарапать изумруд, то вам это удастся.
. железо?
Железо – хорошо обрабатываемый металл, который имеет яркий серебристо-белый цвет. Материал обозначается в химии символом Fe (лат. Ferrum). Железо считается одним из самых распространенных металлов в земной коре.
В чистом виде при нормальных условиях это твердое вещество. Оно обладает ярко выраженным металлическим блеском. Твердость по шкале Мооса равна четырем.
. золото?
Нет человека, который не восторгался бы красотой золота. Ярко-желтый металл стал известен людям несколько тысяч лет. Однако в природе золото многолико. Размер его частиц колеблется от микрон до десятков сантиметров, цвет, из-за примесей, не всегда желтый. Встречается несколько минералов, похожих на золото по внешнему виду. Не зря существует поговорка «не все золото, что блестит». Чтобы успешно находить золото, ориентироваться в его ценности, не путать с похожими минералами, нужно знать свойства золота, где и как оно встречается в природе.
Золото – это чрезмерно мягкий металл. Твердость желтой драгоценности составляет от 2,5…3,0 по 10-балльной шкале твердости (шкале Мооса).
В полевых условиях твердость проверяют, прежде всего, с помощью ножа. Его острием проводят по поверхности изучаемого минерала. Если нож оставляет царапину, значит твердость меньше 5.
Золото, имеющее твердость 2,5…3,0, не только легко царапается, но и при значительном усилии режется ножом. На нем можно оставить след даже сильно прикусив зубами. «На зуб» раньше пробовали золотые монеты. На поддельных монетах из меди сделать отметину зубами невозможно, а на золотой монете имея крепкие зубы отметку поставить можно. Проверка на твердость – это важный тест для отличия золота от похожих по цвету металлов или минералов.
. титан?
Титан – это химический элемент с порядковым номером таблицы 22. Или еще материал известен как легкий серебристо-белый металл. Титан сочетает в себе самые необычные характеристики: легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур. О как.
Титан значительно тверже алюминия и по этой характеристике приближается к некоторым термически обработанным легированным сталям. Твердость алмаза по шкале Мооса составляет 10, тогда как у титана этот показатель равен приблизительно 6.
. обсидиан?
Обсидиан известен со времен древнего человека. Орудия из вулканического стекла, как еще называют эту магматическую горную породу, ученые находят при раскопках на бывших стоянках древних поселений. Все дело в том, что у этого камня очень острый скол. Древние поселения майя делали из обсидиана копья, колья, а также различные украшения.
Современные ученые по историческим артефактам из обсидиана изучают миграционные пути и контакты древних поселений.
Обсидиан – это минерал, который образуется в результате быстрого охлаждения магматической породы. Это знакомый всем из школьного курса перлит, только с гораздо меньшим содержанием воды – всего 1%. Твердость камня составляет от 5 до 6 единиц, что приблизительно вполовину меньше, чем у алмаза.
. базальт?
Базальт – магматическая порода. Окраска темная: черная или темно-серая. Структура: плотное строение. Твердость по шкале Мооса от 5 до 7.
Образование базальтов происходит при излиянии и застывании лавы основного состава, как на поверхности континентов, так и в глубинах океанов. Базальты являются практически самой распространенной горной магматической породой на нашей планете, основная масса которых образуется именно в океанах, в срединно-океанических хребтах, формируя основание тектонических океанических плит земной коры.
Базальтовые заготовки практически не подвергаются вторичным процессам обработки после собственно образования, являясь типичной вулканической породой.
Что тверже и крепче алмаза: самое ли твердое вещество
Многие сегодня задаются вопросом: алмаз самое твердое вещество или нет и какое вещество близко по твердости алмазу? Ученые сегодня отмечают, что бриллиант уже давно не является самым твердым материалом. Натуральные алмазы имеют твердость около 150 гигапаскалей, но первое место в перечне самых твердых занят ультратвердый фуллерит с показателем от 150 до 300 ГПа.
Ультратвердыми минералами в науке называют все, что тверже алмаза, материалы мягче бриллианта, но тверже нитрида бора обозначают как сверхтвердые.
Фуллериты – это материалы, состоящие из фуллеренов, молекул углерода в виде сфер, образованных 60 атомами. Эта штука была синтезирована более двадцати лет назад, и за его открытие вручена Нобелевская премия.
Углеродные сферы в составе фуллерита могут быть по-разному упакованы, и твердость материала очень сильно зависит от того, как именно они связаны между собой.
Достоверных, и проверенных методов, позволяющих получать это перспективное вещество в промышленных масштабах, пока не существует. С практической точки зрения сверхтвердая форма углерода интересна в первую очередь специалистам по обработке металлов и других материалов, тут все просто, чем тверже режущий инструмент, тем дольше он служит и тем качественнее можно обрабатывать детали.
Т.е. получается, что уже алмаз не самый твердый из всех минералов. Да, наш прелестный камень уже обскакали.
Невозможность синтеза фуллерита сегодня в больших количествах обусловлена очень высоким давлением, которое необходимо применить для возбуждения реакции возникновения вещества. Образование трехмерного полимера начинается при давлениях от 13 ГПа или 130 тысяч атмосфер, и создать такое колоссальное давление в большом объеме современная техника пока не позволяет.
Итак, надеемся, что у вас теперь хватит образованности в сфере алмазов. Из сказанного очевидно, что алмаз – это эталон твердости, с которым сравнивают практически все материалы, начиная от камней и заканчивая такими металлами, как титан или железо. Независимо от того, что уже найдены материалы тверже алмазов, все равно этот камень на века стал частью науки и красоты.
Топ-25: самые прочные и твердые материалы, известные науке
Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!
25. Алмазы
Фото: pixabay
Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.
24. Ловчие сети паука вида Caerostris darwini
Фото: pixabay
В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!
23. Аэрографит
Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.
22. Палладиевое металлическое стекло
Фото: pixabay
Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.
21. Карбид вольфрама
Фото: pixabay
Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.
20. Карбид кремния
Фото: Tiia Monto
Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.
19. Кубический нитрид бора
Фото: wikimedia commons
Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.
18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)
Фото: Justsail
Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.
17. Титановые сплавы
Фото: Alchemist-hp (pse-mendelejew.de)
Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.
16. Сплав Liquidmetal
Фото: pixabay
Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).
15. Наноцеллюлоза
Фото: pixabay
Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.
14. Зубы улиток вида «морское блюдечко»
Фото: pixabay
Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно зубы морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.
13. Мартенситно-стареющая сталь
Фото: pixabay
Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.
Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.
11. Кевлар
Фото: wikimedia commons
Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.
СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.
9. Графен
Фото: pixabay
Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!
8. Бумага из углеродных нанотрубок
Фото: pixabay
Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят сталь в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.
7. Металлическая микрорешетка
Фото: pixabay
Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.
6. Углеродные нанотрубки
Фото: User Mstroeck / en.wikipedia
Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.
5. Аэрографен
Фото: wikimedia commons
Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.
4. Материал без названия, разработка Массачусетского технологического института (MIT)
Фото: pixabay
Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.
3. Карбин
Фото: Smokefoot
Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!
2. Нитрид бора вюрцитной модификации
Фото: pixabay
Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.
1. Лонсдейлит
Фото: pixabay
Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.
Какой самый твердый материал на Земле?
Алмаз оценивается по шкале твердости Мооса на 10 баллов, что говорит о том, что это самый твердый природный материал, когда он подвергается царапинам. Однако, по прогнозам, лонсдейлит, вещество, обнаруженное в метеоритах, будет еще более твердым, чем алмаз.
Спросите любого любителя науки: "какой самый твердый материал?" - и он, несомненно, ответит: "Алмаз".
На протяжении десятилетий люди использовали безупречную твердость алмаза для интенсивной резки. Кроме того, учитывая его способность красиво взаимодействовать со светом, бриллианты являются крайне желанным украшением для женщин. Но действительно ли алмаз - самый твердый материал на Земле?
Ну, почти… ученые обнаружили потенциального соперника, который, как полагают, даже тверже, чем алмаз.
Самое твердое вещество природного происхождения на нашей планете
Когда дело доходит до природных твердых веществ, алмаз является явным победителем. Благодаря своей компактной структуре его очень трудно превзойти по твердости. Теперь возникает вопрос… как мы измеряем твердость?
Измерение твердости
В материаловедении очень важна оценка твердости материала. Однако определить твердость не так-то просто. Таким образом, твердость можно измерить по-разному, в зависимости от контекста и применимости.
Шкала твердости Мооса
Одна из наиболее часто используемых шкал твердости - шкала твердости Мооса, разработанная немецким минералогом Фридрихом Моосом в девятнадцатом веке. По этой шкале твердость - это мера сопротивления, проявляемого одним материалом при царапании другим материалом. Шкала твердости Мооса варьируется от 0 до 10, где 10 означает самую твердую (наименее подверженную царапинам), а 0 - наименьшую твердость.
Шкала твердости минералов Мооса.
Алмаз получил 10 баллов по этой шкале, что ясно указывает на то, что это самый твердый натуральный материал, когда его подвергают царапинам. Чтобы понять, насколько хорош алмаз, рассмотрим сталь, которая известна своей твердостью и имеет только 4,5 балла по этой шкале!
Так вот, измерение твердости по стойкости вещества к царапинам одобрялось далеко не всеми. Таким образом, ученые начали искать альтернативный метод измерения твердости. Была разработана еще одна методика определения твердости, в которой для оценки твердости использовался индентор.
Тест твердости по Виккерсу
Один из самых известных тестов для определения твердости с использованием индентора - это тест твердости по Виккерсу. При этом методе испытания на твердость индентор в форме пирамиды прижимается к материалу, твердость которого необходимо оценить. На данный материал в течение определенного времени прилагается определенное усилие. После этого индентора измеряется степень вмятины на материале. Это делается путём измерения площади поверхности вмятины, нанесённой индентором на материал. Здесь снова было установлено, что алмаз является самым твердым природным материалом на Земле.
Что делает бриллиант таким твердым?
В этот момент вы можете спросить себя, что делает бриллиант таким твердым? Ответ кроется в молекулярной структуре этого блестящего элемента. Алмаз - это аллотроп углерода, состоящий из пяти атомов углерода, которые разделяют электроны друг с другом в структуре тетраэдрической решетки. Ковалентная связь между этими атомами углерода чрезвычайно прочна, и ее очень трудно разорвать при комнатной температуре.
Алмаз как тетраэдрическая структура углерода.
Из-за этой прочной ковалентной связи у алмазов нет свободных электронов, что делает их плохим проводником электричества, но отличным проводником тепла. Фактически, алмаз примерно в пять раз лучше по теплопроводности, чем медь. Благодаря своей фантастической теплопроводности алмазы часто присутствуют в электрических деталях, например, в радиаторах.
Алмазы не непобедимы.
Прочитав это, вы можете почувствовать, что бриллианты непобедимы, но на самом деле это не так. Алмаз становится уязвимым при очень высоких температурах. Когда вы нагреваете алмаз выше 800 °C, его химические и физические свойства больше не остаются неизменными. Нарушение характерной прочности алмаза. Они начинают химически реагировать с железом, что делает алмаз нежелательным для обработки стали. Характерная твердость алмаза нарушается. Они начинают химически реагировать с железом, что делает алмаз нежелательным для обработки стали.
Поэтому ученые и исследователи давно ищут сверхтвердый материал, обладающий лучшей химической стабильностью. В 2009 году исследователи, работавшие в сотрудничестве из Шанхайского университета Цзяо Тонг и Университета Невады, заявили, что нашли два материала, которые могут победить алмаз в его собственной игре!
Две предложенные потенциальные претендентки на самое твёрдое вещество были: Нитрид бора вюрцита (w-BN) и Лонсдейлит.
Вюрцит нитрид бора (w-BN)
Вюрцит нитрид бора (w-BN) имеет структуру, аналогичную структуре алмаза, но он состоит из атомов бора и азота, а также углерода. Вюрцит нитрид бора чрезвычайно редок и может быть обнаружен только после определенного типа извержения вулкана. Проведенное исследователями в 2009 году моделирование гексагональной структуры w-BN показало, что она на 18% тверже стали. Кроме того, w-BN химически более стабилен, чем алмаз при высоких температурах.
Лонсдейлит
Лонсдейлит состоит только из атомов углерода, как и алмаз, хотя и с другой структурой. И угадайте, что… лонсдейлит даже сильнее, чем w-BN! Интересно, что лонсдейлит - это космическое вещество, которое получается, когда богатый графитом метеорит ударяется о Землю. Моделирование вдавливания показало, что лонсдейлит на 58% прочнее алмаза, что делает лонсдейлит самым твердым веществом на Земле.
Подождите, есть загвоздка .
Однако в этих утверждениях о том, что w-BN и лонсдейлит сильнее алмаза, есть загвоздка. Эти утверждения основаны на программе моделирования, запущенной на компьютере, а не на физической проверке. Поскольку эти элементы чрезвычайно трудно найти, они еще не прошли физических испытаний для определения их твердости.
Тем не менее их моделирование предполагает, что эти более твердые, чем алмаз, материалы обладают хорошей термической и химической стабильностью; если мы сможем синтетически производить их в достаточно больших количествах, они могут оказаться переломными. Их можно было использовать как мощные фрезы, помещая их поверх других режущих инструментов. Кроме того, их стабильность при более высоких температурах сделала бы их полезными в космических полетах к Венере или Меркурию, которые имеют обжигающе высокие температуры.
Что ж, алмаз может теоретически потерять свою корону самого твердого материала, но он всегда останется королем драгоценных камней. Более того, утверждение о том, что лонсдейлит является самым твердым веществом, еще не подтверждено физически.
10+ самых твердых минералов в мире - По шкале Мооса
Твердость любого минерала определяется по их шкале Мооса, чем тяжелее минерал, тем выше его число Мооса. Шкала Мооса была разработана Фридрихом Моосом, немецким геологом и минералогом в 1812 году. Этот метод основан на способности одного минерала заметно царапать другие.
Хотя шкала Мооса не является точной и строго порядковой, она используется в геологии в основном для выявления различных минералов. Для проведения скрэтч-теста металлург использует склерометр или тернер-склерометр. Ниже приведен список 12 самых твердых минералов в мире.
10. Тальк
Твердость по Моосу - 1
Химическая формула - MgSi4O10 (OH) 2
Абсолютная твердость - 1
Тальк - это минерал, состоящий из гидратированного силиката магния. По шкале 10 самых твердых минералов тальк указан как 1 по шкале твердости по Моосу. Только цезий, рубидий с твердостью 0,2-0,3 и литий, натрий и калий с твердостью 0,5-0,6 мягче талька. Это распространенный метаморфический минерал в метаморфических поясах западных штатов США, западных Альп и в гималайском регионе.
9. Гипс
Твердость по Моосу - 2
Химическая формула -CaSo4 2H2O
Абсолютная твердость - 3
Гипс является сульфатным минералом, состоящим из дигидрата сульфата кальция. Это может быть использовано в качестве удобрения. Различные формы гипса основаны на древних скульптурах Месопотамии, Древнего Рима и Византийской империи. Орбитальные снимки с Марса разведывательного орбитального аппарата (MRO) указывают на существование гипсовых дюн в крайней северной области Марса. США, Бразилия, Индия входят в тройку стран с самыми большими запасами гипса в мире. Широко используется в почвенном кондиционере и тофу (соевый творог).
8. Кальцит
Твердость по Моосу - 3
Химическая формула - CaCO3
Абсолютная твердость - 9
Кальцит относится к карбонатной группе минералов и является наиболее стабильным полиморфом карбоната кальция. Кальцит является распространенным компонентом осадочных пород, большая часть которых образуется из мертвых морских организмов. Он имеет шкалу твердости по Моосу 3 и удельный вес 2,71. Одна из замечательных природных кальцитовых структур - пещера Снежная река в округе Линкольн, штат Нью-Мексико.
7. Флюорит
Твердость по Моосу - 4
Химическая формула - CaF2
Абсолютная твердость - 21
Флюорит или плавиковый шпат - это цветной минерал, и из-за его умеренной твердости он используется для изготовления украшений и других художественных работ. Флюорит также часто встречающийся минерал - Китай, Мексика, Южная Африка являются одними из крупнейших стран-производителей флюорита в мире. Его основное использование в оптике, где это используется в качестве материала окна. Оптические линзы также состоят из флюорита из-за его низкой дисперсии, вызывающей отсутствие или меньшую хроматическую аберрацию.
6. Апатит
Твердость по Моосу - 5
Химическая формула - Ca5 (PO4) 3 (OH-, CI-, F-)
Абсолютная твердость - 48
Апатит представляет собой группу фосфатных минералов, которые обычно известны как гидроксилапатит, фторапатит и хлорапатит. Это также один из немногих минералов, который производится и используется биологическими системами микроэкологии. Основное применение апатита - производство удобрений, поскольку он является хорошим источником фосфора. Образцы горных пород, собранные астронавтами во время программы «Аполлон», свидетельствуют о наличии следов апатита.
5. Ортоклаз полевого шпата
Твердость по Моосу - 6
Химическая формула - KAISi3O8
Абсолютная твердость - 72
Ортоклаз полевого шпата является важным минералом, который образует магматические породы. Ортоклаз является распространенным компонентом большинства гранитов и других вулканических пород. Это обычное сырье для изготовления стекол и некоторых керамических изделий, таких как фарфор, а также в качестве составляющей чистящего порошка.
4. Кварц
Твердость по Моосу - 7
Химическая формула - SiO2
Абсолютная твердость - 100
Кварц является вторым по распространенности минералом в земной коре только после полевого шпата. Есть много различных сортов кварца, найденных в Европе. Это важный компонент осадочных и метаморфических пород. Кристалл кварца обладает пьезоэлектрическими свойствами и широко используется в качестве кварцевого генератора. Кварцевые часы - знакомое устройство, использующее этот минерал.
3. Топаз
Твердость по Моосу -8
Химическая формула - AI2SiO4 (OH-, F-) 2
Абсолютная твердость - 200
Топаз является силикатным минералом алюминия и фтора, и его кристаллы в основном имеют форму пирамиды. Чистый топаз бесцветный и прозрачный, но обычно он окрашен примесями. Типичный топаз имеет желтый, бледно-серый, красновато-серый или сине-коричневый цвет. Большое количество топаза находится в Шри-Ланке, Германии, Норвегии, Нигерии, Австралии, Японии, Бразилии, Мексике и Соединенных Штатах.
2. Корунд
Твердость по Моосу - 9
Химическая формула - AI2O3
Абсолютная твердость - 400
Корунд - второй по твердости минерал в масштабе Мооса. Это кристаллическая форма оксида алюминия со следами железа, хрома, ванадия и титана. Чистый корунд прозрачен, но, с другой стороны, в присутствии примесей он может иметь разные цвета. Корунд разного цвета имеет разные названия, корунд красного цвета известен как рубин, а оранжево-розовый - падпарадша, а все остальные - сапфир.
1. Бриллиант
Твердость по Моосу - 10
Химическая формула - C
Абсолютная твердость - 1600
Алмаз является самым твердым известным природным минералом по шкале Мооса. Твердость алмаза зависит от его чистоты, а самый твердый алмаз может быть поцарапан только другими алмазами. Некоторые синие бриллианты являются естественными полупроводниками, некоторые - электрическими изоляторами, а остальные - электрическими проводниками.
Ежегодно добывается около 26000 кг алмазов, из которых 50% алмазов происходит из Центральной и Южной Африки. Многие недавние исследования показывают, что Алмаз больше не является самым твердым минералом на Земле и заменен следующим.
Вюрцит нитрид бора
На Земле существует очень небольшое количество нитрида бора вюрцита. Они либо найдены естественным путем, либо синтезированы вручную. Различные моделирования показали, что нитрид бора вюрцита может выдерживать на 18 процентов больше стресса, чем алмаз. Естественно, они производятся во время извержений вулканов из-за очень высоких температур и давления.
Лонсдейлит, также известный как шестиугольный алмаз, был назван в честь Кэтлин Лонсдейл, известного ирландского кристаллографа. Считается, что лонсдалеит на 58 процентов тверже алмаза. Лонсдейлит - это природный минерал, образующийся, когда метеориты, содержащие графит, ударяются о землю. Тепло и напряжение в результате удара превращают графит в алмаз, сохраняя при этом гексагональную кристаллическую решетку графита.
Список самых прочных материалов, известных человеку
Но прочность — это довольно широкое понятие, под которым скрывается множество свойств и допущений. Например, материал может быть прочным только в одном направлении, а в других хрупким. Поэтому наш список нельзя считать полностью объективным.
Стекловолокно
В 1932 году Рассел Слейтер создал новый прочный материал и использовал его в качестве теплоизоляции для зданий.
Стекловолокно имеет сопоставимые механические свойства, как полимеры и углеродное волокно. Несмотря на то, что стекловолокно не так прочно, как углеродное, оно намного дешевле и менее хрупко при использовании в различных композитах.
Стекло из микролегированного палладия
В 2011 году исследователи материалов из Калифорнийского технологического института совместно с лабораторией Беркли разработали новый тип металлического стекла с широким спектром свойств, которое намного прочнее стали.
Как следует из названия, это металлическое стекло изготовлено из палладия — металла с высоким коэффициентом жёсткости. Палладий снижает хрупкость стекла, но увеличивает его прочность.
Титановые сплавы
Такие сплавы чрезвычайно лёгкие и обладают высокой стойкостью к коррозии. Из-за этих свойств сплавы широко используются в кораблестроении.
При всех достоинствах титановых сплавов, они очень дорогие, а потому применение сильно ограничено в гражданском производстве. В основном материал используют в производстве военных судов и ледоколов.
Карбид вольфрама
Соединение карбида вольфрама состоит из равных частей атомов углерода и вольфрама. Он в основном используется для создания тяжёлых промышленных режущих инструментов и пуль большого калибра.
Лонсдейлит
Это природный минерал, образующийся при падении на Землю метеоритов, содержащих графит. Во время удара о поверхность вырабатывается тепло, которое превращает графит в алмаз под высоким давлением. При таком превращении сохраняется гексагональная кристаллическая решётка графита.
Лонсдейлит был назван в честь прославленного кристаллографа, родом из Ирландии, Кэтлина Лонсдейла. В прессе часто сообщалось, что лонсдейлит на 58% твёрже алмаза. Но это оказалось мифом. По шкале Мооса твёрдость минерала составляет 7–8 единиц.
Мартенситностареющая сталь
Это особая разновидность сверхвысокопрочных сталей, прочность которых определяется интерметаллическими соединениями, а не углеродом. Такие стали известны своей прочностью и твёрдостью, не теряя пластичности.
Одним из основных элементов, используемых в мартенситностареющей стали, является 25-процентная массовая доля никеля. Его лучшее соотношение веса и прочности, чем у большинства других сталей, позволяет широко использовать мартенсит в ракетах и обшивках ракет.
Вектран
Производится только японской корпорацией «Kuraray», а представляет собой химически стабильный полиэстер с высокой прочностью и термостойкостью.
В основном используются для закрепления электрических кабелей, канатов, а также в качестве одного из композитных материалов для высококлассных велосипедных шин. Есть и недостаток. Имея высокую прочность, материал легко трескается.
Кевлар
Впервые был использован в 1970-х годах не в военной технике, а в качестве замены стали в гоночных шинах. Материал получил широкое применение в промышленности, так как он в 5 раз прочнее стали.
Сейчас кевлар широко применяется в производстве велосипедных шин, парусов для гоночных яхт, пуленепробиваемых жилетов. Получил широкое применение в аэрокосмической отрасли.
Паучий шёлк
Эти произведения искусства паука выступают одним из самых твёрдых материалов, встречающихся в природе.
Прочность паучьего шёлка зависит от вида и от ряда других внешних факторов, таких как температура и влажность, во время тестирования. Но при подходящих условиях эта нить в 10 раз прочнее кевлара на растяжение.
Это интересно: Если паучья нить была бы длиной 40 000 километров, что равно длине окружности экватора, она бы весила около 500 граммов.
Карбид кремния
На фото: Минерал муссанит, который является природной разновидностью карбида кремния.
Этот материал составляет основу брони многих боевых танков. Он обладает высокой твердостью и прочностью, а также очень устойчив к радиации и химическим соединениям.
Patella vulgata
Этот вид морских улиток, широко известный как «европейский блюдец», в основном встречается в Западной Европе. Их зубы — один из самых прочных материалов, обнаруженных в живой природе.
Исследование 2015 года, опубликованное в журнале «Royal Society Journal», показало, что зуб европейского моллюска может быть прочнее, чем паучий шёлк, который официально является самым прочным природным материалом на Земле.
Вюрцит борная нанотрубка
Вюрцит нитрит бора — одно из самых редких веществ в мире. Они либо обнаруживаются естественным путём, либо синтезируются вручную. Материал назвали в честь прославленного французского химика Шарля Вюрца.
Различные симуляции показали, что борные нанотрубки из вюрцита могут выдерживать на 18% большее напряжение, чем алмаз. В природе они образуются во время извержений вулканов, под воздействием высоких температур и давления.
Buckypaper
Уникальный материал был создан американскими и бразильскими учёными. Сделан он из углеродных нанотрубок. Считается, что этот материал примерно в 50 000 раз тоньше, чем средний человеческий волос, и в 500 раз прочнее стали.
Ещё одна интересная характеристика Buckypaper в том, что она может рассеивать тепло, как латунь или сталь, и проводить электричество, как медь или кремний.
Зилон (Zylon)
Зилон специально разработан американским независимым институтом «SRI International» как особая разновидность термореактивного жидкокристаллического полиоксазола. Он в 1,6 раза прочнее, чем кевлар.
Zylon используется в ряде областей, где требуется очень высокая прочность и отличная термическая стабильность. Теннисные ракетки, сноуборды — вот некоторые из его известных применений.
Углеродное волокно
Диаметр таких волокон равен 5–10 микрометров и состоят они в основном из атомов углерода. У таких волокон есть ряд преимуществ перед сталью и сплавами.
У этих волокон высокая жёсткость, высокая прочность на разрыв, малый вес и высокая химическая стойкость. Эти свойства сделали углеродное волокно очень популярным в аэрокосмической, военной отраслях. Широко используют их в производстве спортивного снаряжения.
Волокна из сверхвысокомолекулярного полиэтилена (Dyneema)
Dyneema — это прочное и сверхлёгкое полиэтиленовое волокно, которое в основном используется в качестве композитных пластин для создания бронированных автомобилей. Оно легче воды, а останавливает пули и в 15 лучше стали.
Также используется для изготовления альпинистского снаряжения, рыболовных верёвок, тетивы для лука. Он имеет высокий предел текучести 2,4 ГПа и низкий удельный вес 0,97 г/см³.
Алмаз
Такие свойства алмаза человек стал применять в промышленности, в качестве изоляторов и полупроводников. А алмазная крошка просто незаменима при резке высокотвёрдых материалов.
Углеродные нанотрубки
Углеродные нанотрубки, как алмаз и графит, являются производным аллотропов углерода в цилиндрической наноструктуре. Исключительная прочность и меньший вес являются причиной его ценности для электронной промышленности и нанотехнологий.
Кроме того, благодаря своей превосходной теплопроводности, электрическим и механическим свойствам углеродные нанотрубки являются основой многих отраслей промышленности.
Графен
Графен, пожалуй, самый прочный материал, известный людям. В нём один слой углерода, расположенный в треугольной решётке. Является основным структурным элементом древесного угля, графита и углеродных нанотрубок.
Хотя графен производится в небольших количествах уже более века, первое изолированное открытие материала было сделано К. Новоселовым и А. Геймом в 2004 году. Оба за свой вклад в развитие науки получили Нобелевскую премию в области физики.
Подведём итог
Подытоживая подборку уникальных материалов, отметим, что прочность любого материала измеряется его пределом прочности на разрыв, то есть сопротивлением любого материала перед разрушением под постоянным давлением. Сейчас в большинстве случаев прочность измеряют методом конечных элементов, который является самым эффективным.
Читайте также: