Что такое сверхпроводимость металлов
В преддверии большого репортажа о лаборатории «Сверхпроводящие метаматериалы», который мы готовим по результатам общего голосования, мы продолжаем рассказывать о сверхпроводимости.
Неделю назад мы опубликовали статью Алексея Башарина о неизлучающем «анаполе», после которой началась самая настоящая научная дискуссия с участием автора статьи. Статья собрала более ста комментариев, поступило много предложений относительно формата изложенного материала в публикации. Мы учли все пожелания и попросили ведущего ученого К.Б. Ефетова написать для нас экспертное мнение в научно-популярном формате по высокотемпературной сверхпроводимости, за открытие высокотемпературной сверхпроводимости купратов была вручена нобелевская премия около 30 лет назад.
Константин Борисович Ефетов является Научным руководителем проекта «Коллективные явления в квантовой материи» НИТУ «МИСиС» в рамках гранта для поддержки научных исследований программы ТОП 5-100. К.Б. Ефетов – выдающийся рецензент «Американского Физического Общества”, Директор Института теоретической физики III Рурского университета Бохума в Германии, почетный член Американского физического общества, ведущий исследователь трех проектов, финансируемых Немецким министерством научных исследований, автор более 170 публикаций, обладатель французской премии Блеза Паскаля учреждённой французским правительством и Исследовательской Премии Landau-Weizman, учреждённой Институтом Вейцмана в Израиле. Константин Ефетов — “выдающийся рецензент американского Физического Общества”. Эта Премия даётся за заметный вклад в рецензировании статей в таких журналах как Physical Review Letters, Physical Review, Reviews of Modern Physics и других.
Позже сверхпроводимость была обнаружена во многих металлах, но микроскопическая теория этого загадочного явления была построена только в 1957 году американскими физиками Бардином, Купером и Шриффером (Bardeen, Cooper, Schrieffer), которые получили за эту работу Нобелевскую премию в 1972 году.
Стоит упомянуть, что правильная феноменологическая теория сверхпроводимости была предложена советскими физиками Гинзбургом и Ландау уже в 1950 году. Интересные явления в сверхпроводниках были предсказаны с помощью теории Гинзбурга-Ландау Алексеем Абрикосовым, все трое также являются лауреатами Нобелевской премии. Важно отметить, что в течение многих лет Абрикосов был заведующим Кафедрой Теоретической Физики в МИСиС. Сейчас эта кафедра называется “Кафедрой Теоретической Физики и Квантовых Технологий”, где я и работаю в рамках проекта «Toп5-100».
То, что для объяснения сверхпроводимости потребовалось 46 лет, не случайно. Это явление было открыто еще до создания квантовой механики и никак не могло быть объяснено на основе классической механики Ньютона и классической электродинамики Максвелла. В основе теории сверхпроводимости лежит понятие конденсации Бозе-Эйнштейна. Согласно этой концепции, частицы с целочисленным квантовым спином (бозоны) должны образовывать состояние, в котором все частицы когерентны (конденсат) или, иными словами, чувствуют друг друга по всему объему системы. Движение этого конденсата как целого и приводит к тому, что он не тормозится различными примесями или неоднородностями в металле, приводя к нулевому сопротивлению.
Казалось бы, вот оно и объяснение сверхпроводимости? Но это не так.
Электрический ток в металлах возникает вследствие движения электронов, а это — элементарные частицы со спином одна вторая. Но частицы с полуцелым спином (фермионы) не образуют конденсат, а других движущихся частиц в металлах нет. Каким же образом можно получить конденсат? Оказывается, два электрона с противоположными спинами могут образовывать пары, которые обладают нулевым полным спином, и эти пары уже являются бозонами и могут образовать Бозе-конденсат. Такие пары электронов называются куперовскими парами (их-то и придумал один из создателей теории сверхпроводимости Купер), и их конденсация и приводит к явлению сверхпроводимости. Но это еще не все. Нетрудно представить, что для спаривания электронов необходимо их притяжение друг к другу. Но хорошо известно из классической электродинамики, что две одинаково заряженные частицы отталкиваются, а не притягиваются.
Нашелся выход и из этого противоречия. Оказывается, притяжение между электронами может происходить путем обмена фононами — квантовыми колебаниями решетки атомов металла, и этот факт уже позволил закончить построение теории сверхпроводимости. Теперь легко понять, почему прошло 46 лет между открытием явления сверхпроводимости и его объяснением. Каждый шаг в построении теории был революционным, и этих шагов было много. И это все было сделано для объяснения явления, которое можно наблюдать в небольшой лаборатории, для этого не требуются мощные ускорители или полеты в космос.
А теперь представим, что можно было бы сделать проволоку из сверхпроводящего материала. В этом случае энергия не терялась бы при передаче на любые расстояния, и почему бы такое не попробовать?
К сожалению, в этом деле есть одно «но»: как мы уже упомянули, сверхпроводимость возникает при очень низких температурах, такую сверхпроводящую проволоку нужно было бы охлаждать жидким гелием. В то же время, само по себе охлаждение гелия требует очень больших энергетических (и, соответственно, денежных) затрат, и использование сверхпроводящих проволок оказалось бы значительно дороже стоимости энергетических потерь. Нетрудно понять, что значительные усилия в дальнейшем исследовании свойств сверхпроводников были потрачены на изучение возможности получения сверхпроводимости при более высоких температурах. В идеале, конечно, хотелось бы получить сверхпроводимость при «комнатной» температуре в 300 К (27 С). Но и сверхпроводники с температурой перехода выше точки сжижения азота (77 К) были бы очень кстати, так как получение жидкого азота гораздо дешевле, чем производства жидкого гелия.
Однако, многочисленные попытки получить сверхпроводники со столь высокой температурой не приводили к успеху вплоть до середины восьмидесятых годов. Более того, теоретические оценки давали для моделей, основанных на электрон-фононном механизме спаривания электронов, температуры перехода, не превышающие 25 К, что было недостаточно для промышленных применений.
Как гром среди ясного неба, пришло в 1986 году известие, что швейцарские ученые Беднорц и Мюллер открыли сверхпроводимость при гораздо более высоких температурах, за что уже в 1987 получили Нобелевскую премию. Материалы, которые они изучали, представляют собой окись меди и имеют слоистую структуру. Обычно для них используется слово «купраты». При комнатных температурах купраты являются плохими металлами с низкой проводимостью. По-видимому, это и является причиной того, что их не рассматривали в качестве серьезных кандидатов для создания высокотемпературных сверхпроводников.
На сегодняшний день температуры сверхпроводящих переходов в купратах достигают 140 К (-137 С). Это все еще значительно ниже комнатных температур, но уже значительно выше температуры кипения азота. Последнее обстоятельство уже привело к практическим применениям высокотемпературных сверхпроводников на практике. Уже имеются фирмы, которые производят проволоки, покрытые обычными металлами с «начинкой из купратов».
Тем не менее, вопрос о создании сверхпроводников при комнатных температурах остался до сих пор нерешенным. Простой перебор различных химических соединений не выглядит многообещающим способом получения сверхпроводимости при комнатных температурах, так как число возможных соединений огромно. Гораздо более разумно было бы сначала понять, почему температура перехода в купратах настолько превосходит соответствующие температуры в «обычных» металлах.
Является ли обмен фононами главной причиной спаривания электронов в купратах, как это происходит в обычных металлах?
Чтобы ответить на этот вопрос, огромное число как теоретиков, так и экспериментаторов взялись за изучение механизма образования сверхпроводимости в купратах. На сегодняшний день, большинство ученых считает, что фононный механизм спаривания электронов маловероятен. Число предложений выдвинутых к настоящему времени велико и все их трудно перечислить. Естественно, все они обещают высокую температуру сверхпроводящего перехода. Но что нужно делать для того, чтобы выбрать один единственный механизм, который бы однозначно объяснил происхождение сверхпроводимости, и действие которого можно было бы улучшить уже нацелено проверяя и изменяя химические соединения?
Конечно, точное вычисление температуры перехода для каждого из купратных соединений и для всех предложенных механизмов, и дальнейшее сравнение с экспериментальными данными могло бы помочь выбрать «правильный» механизм. К сожалению, этот метод использования «грубой физической силы» практически невозможен, так как на это не хватит никаких мощностей существующих на Земле компьютеров.
Как всегда, лучше подумать, этим занимаются теоретики во всем мире и, в частности, группа в НИТУ «МИСиС», которой я руковожу. Основная идея состоит в том, что разумная модель для сверхпроводимости должна объяснять не только сверхпроводимость, но и ряд других явлений в купратах. Таких явлений в купратах очень много. Например, несколько лет назад было обнаружено существование модуляции электронного заряда. Значит, правильная теория должна объяснять и это явление, что значительно сужает число кандидатов на роль механизма спаривания электронов. Работая над проблемой высокотемпературной сверхпроводимости, мы стартуем с модели электронов, взаимодействующих посредством обмена флуктуациями намагниченности. Такое предположение можно обосновывать тем, что купраты при допировании атомами кислорода претерпевают переход антиферромагнетик-нормальный металл. Сверхпроводимость может появляться только в металлическом состоянии, но близость к антиферромагнетику делает предположение об обмене антиферромагнитными флуктуациями вполне вероятным.
Разнообразие состояний купратов — Предсказываемые состояние купратов в зависимости от Т-температуры и а-концетрации дополнительных носителей (допирование). AF- антиферромагнетик, SC- сверхпроводник, PG – псевдощелевое состояние, по многим косвенным признакам похожее на сверхпроводящее, однако с ненулевым сопротивлением. Из работы K.B. Efetov, H. Meier, C. Pepin, Nat. Phys. 9, 442 (2013)
Нам уже удалось объяснить с помощью этого предположения несколько важных явлений в купратах, но приходится все время следить за новыми экспериментальными данными, которые позволяют корректировать или уточнять получаемые теоретические результаты. Нам кажется, что мы на верном пути, а наша работа поможет разобраться с явлениями, наблюдаемыми в купратах. После этого уже можно будет думать и о том, в каком направлении работать, чтобы увеличить температуру перехода. Благодаря тесному сотрудничеству с исследователями из разных стран эта задача не выглядит неразрешимой.
Адский холод, левитация и плазма: прошлое, настоящее и будущее сверхпроводимости
Сверхпроводимость – открытие с незавидной судьбой по сравнению с другими научными прорывами XX века. Результаты последних быстро нашли путь из теоретической в прикладную науку, а затем – в повседневную жизнь. Сверхпроводимость же постоянно требует от учёных достигать и преодолевать какие-то пределы: температурные, химические, материальные. И даже спустя более чем 100 лет после открытия этого явления, мы все ещё боремся с теми же преградами, которые стояли перед учёными в начале прошлого века. Мы — это и Toshiba тоже, и нам есть что рассказать о нашем вкладе в изучение и приручение сверхпроводимости.
Что такое сверхпроводимость и как мы о ней узнали?
Представьте, что вам надо проехать на машине через очень плохую грунтовую дорогу. В тёплое время года, особенно после дождя, она превращается в болото. Колеса вязнут в грязи, скользят, буксуют, машину водит из стороны в сторону. Ваша скорость падает. Зато осенью при первых заморозках грязь твердеет, и вы проезжаете по дороге с ветерком, как будто по шоссе. Вот также и электроны, составляющие электрический ток, проходят через металлы при изменении температуры. Когда вещество нагрето, составляющие его атомные структуры сильно колеблются, затрудняя движение электронов. Атомы выхватывают из потока электроны и рассеивают их. Лишь немногие проходят из точки «А» в точку «Б». Так создается сопротивление.
Однако если металл охлаждать до абсолютного нуля (–273 °С), внутренние колебания вещества («тепловой шум») в нём уменьшаются, и электроны проходят через него без трений, то есть сопротивление падает до нуля. Именно это и называется сверхпроводимостью. Как всё это работает с научной точки зрения, описано в многочисленных статьях в специальных и научно-популярных изданиях, например, в N+1 (с весёлыми картинками).
Голландский физик Хейке Каммерлинг-Оннес в 1911 году об этом явлении ещё не знал, хотя уже был в курсе, что электрическое сопротивление металла снижается при охлаждении. Чтобы проверить, как далеко можно зайти в играх с холодом, металлом и электричеством, голландец использовал ртуть. Именно этот металл в те времена подвергался лучшей очистке от примесей, мешающих движению электронов.
При понижении температуры до 4,15 кельвинов, то есть до –269 °C, сопротивление в ртути полностью исчезло. Правда, Каммерлинг-Оннес в это не поверил, и, проявляя свойственную ученому осторожность, записал в дневнике, что сопротивление «практически исчезло». На самом деле оно полностью отсутствовало, просто измерительные приборы тогда к этому были не готовы, как и сам исследователь.
Впоследствии Каммерлинг-Оннес проверил на сверхпроводимость много металлов и установил, что таким свойством обладают свинец и олово. Также он нашел первый сверхпроводящий сплав, который состоял из ртути, золота и олова. За свои эксперименты с критически низкой температурой ученый получил прозвище «Абсолютный нуль». Но поддерживать это высокое звание было непросто — для экспериментов требовался дефицитный по тем временам жидкий гелий, что не позволило Каммерлингу-Оннесу открыть второе фундаментальное свойство проводников.
Эффект Мейснера: мог ли летать гроб пророка
В средневековой Европе был распространен такой миф: в Мекке, в одном из дворцов парит в воздухе железный (по другим представлениям — медный) гроб с телом пророка Мухаммеда, не поддерживаемый ничем, кроме мощных магнитов. Паломники со всего исламского мира приходят туда, чтобы увидеть это зрелище, и в религиозном экстазе выкалывают себе глаза, потому что верят, будто ничего чудеснее в жизни уже не увидят.
Паломник пал на колени перед левитирующим гробом на фрагменте Каталонского атласа XIV века. Источник: Wikimedia Commons
В действительности погребён пророк был не в Мекке, а в Медине; гроб был сделан из дерева, хотя и богато украшен; никаких магнитов тоже замечено не было, что было проверено в XIX веке. Тогда же было доказано, что ферромагнитное тело в поле постоянных магнитов не может сохранять устойчивое равновесие.
Тем не менее, если бы средневековые хронисты пережили выдуманный миф на один век, то они могли бы получить в распоряжение мощный козырь. В 1933 году немецкие физики Вальтер Мейснер и Роберт Оксенфельд решили проверить, как распределяется магнитное поле вокруг сверхпроводника. И вновь было сделано неожиданное открытие: сверхпроводник, охлажденный до критической температуры, вытолкнул из своего объема внешнее постоянное магнитное поле. Как выяснилось, проходящие через сверхпроводник токи создают своё магнитное поле в тонком поверхностном слое вещества. В сверхпроводящем состоянии сила этого поля равна действующему на него внешнему магнитному полю.
Если бы гроб пророка был создан из магнитов и помещён в пещеру, состоящую из охлажденных до критических температур сверхпроводников, то, возможно, он действительно парил бы в воздухе, как это описывали средневековые европейцы. Во всяком случае, в небольших масштабах и с менее сакральными участниками такой эксперимент уже много раз проводился.
Вот так мог левитировать гроб пророка, если бы при его погребении были учтены все условия эффекта Мейснера. Источник: YouTube-канал Empiric School
Открытие эффекта Мейснера также помогло нам понять, что не все сверхпроводники одинаковы. Помимо немногочисленных чистых металлов, сверхпроводимость возникает и у сплавов. Однако если у чистых веществ эффект Мейснера проявляется полностью (сверхпроводники I рода), то у сплавов — частично, ведь они не однородны (сверхпроводники II рода). В них магнитное поле выталкивается не полностью, а заполняет пространство вдоль идущих через проводник сверхтоков. Именно с их открытия началось практическое применение сверхпроводников в виде магнитов.
Тесла бы гордился: как Toshiba создала самый мощный в мире сверхпроводящий магнит
В погоне за снижением критической температуры к 1960-м годам человечество открыло много сверхпроводников второго вида, которые уже можно было использовать в промышленных целях и масштабах. Первой логичной задачей на этом пути стало создание сверхпроводящих магнитов, которые должны были заменить изобретенные еще в XIX веке электромагниты, основанные на использовании обычных металлов.
Сверхпроводящий магнит позволял создавать гораздо более устойчивые и мощные поля при более эффективном использовании электричества. В 1962 году были разработаны первые сверхпроводящие провода из ниобия и титана, и в том же году был создан первый крупный сверхпроводящий магнит. Его сконструировали специалисты General Electric. Мощность генерируемых им полей достигала 10 тесла. Для сравнения: большинство больничных магнитно-резонансных томографов сегодня генерируют поле с индукцией от 1 до 10 Тл.
Правда, несмотря на очевидный научно-технический успех, первый сверхпроводящий электромагнит оказался совершенно убыточным. Вместо предусмотренных контрактом с Bell Laboratories 75 тыс. долл., детище General Electric обошлось в 200 тыс. долл. Тем не менее, в гонку за индуктивностью полей в 1970-е гг. вступили многие инновационные компании, в том числе и Toshiba.
Основной задачей тогда было понять, насколько сильное поле может создать сверхпроводящий магнит, потому что чем выше эта величина, тем быстрее теряется сверхпроводимость. Именно тогда Toshiba совместно с Университетом Тохоку создала новый мощнейший в мире на тот момент сверхпроводящий магнит. Он генерировал поле с индукцией 12 Тл. В университете Тохоку его использовали в материаловедении.
Однако обычные электромагниты все еще были способны превзойти своих «потомков» в генерации электромагнитных полей. К концу 1970-х старое поколение этих устройств могло создать поле с индукцией до 23,4 Тл, тогда как сверхпроводящие магниты — только 17,5 Тл.
В 1983 году инженеры Toshiba на базе своей прежней разработки создали гибридный электромагнит: обычный резистивный электромагнит был помещён внутрь сверхпроводящего магнита, и скрещивание их полей дало индукцию величиной 31 Тл в 1986 году.
Когда стало ясно, что мы можем достичь очень высокой мощности электромагнитных полей, встал вопрос, а как использовать то, что мы уже имеем? В 1980-е Toshiba, как и многие другие компании, решила коммерциализировать технологию на «медицинском полигоне».
Лучи добра: как сверхпроводники Тошибы помогают лечить онкологические заболевания
В 1980-е стало ясно, что магнитно-резонансная томография, использующая электромагнитные поля сверхпроводников, может давать намного более четкую диагностику, чем недавно разработанная технология компьютерной томографии и более старые рентгеновские лучи. Это осознали и в Toshiba. С тех пор компания стала поставщиком сверхпроводящих магнитов производителям медицинского оборудования и остаётся им до сегодняшнего дня.
Один из первых сверхпроводниковых магнитов Toshiba, разработанный для аппаратов МРТ. Источник: Toshiba
Однако современные медицинские установки становятся гибридными: они не только диагностируют, но и лечат, как, к примеру, аппараты терапии с использованием тяжелых частиц.
Их суть в том, что они генерируют лучи с ускоренным движением тяжелых частиц, которые направляются на опухоли в человеческом теле. Чтобы точно направлять пучки таких частиц, необходимо мощное магнитное поле. Раньше такие машины уже использовались, но они не могли контролировать путь генерируемых частиц, из-за чего пациентам постоянно приходилось менять положение, чтобы подставлять пораженные участки тела под излучение, что непросто для больных онкологическими заболеваниями.
Тогда инженеры Toshiba внедрили в гентри — подвижную кольцевую часть излучателя, похожую на портал, — сверхпроводящие магниты, которые были способны быстро менять силу магнитных полей. Это позволило более прицельно направлять лучи, а движение гентри позволило пациентам сохранять покой во время терапии.
Аппарат терапии тяжелыми частицами. Во вращающемся гентри — сверхпроводниковый электромагнит Toshiba. Источник: Toshiba
Что в будущем: топ-3 перспективных применений сверхпроводников
Помимо медицины, сверхпроводники сегодня используются в науке, энергетике, транспорте. Каковы их перспективы в ближайшем будущем?
Провода на высокотемпературных сверхпроводниках
С самых первых лет открытия сверхпроводимости человечество задумывалось о том, как передавать ток с помощью сверхпроводников. Обычные воздушные высоковольтные линии занимают много пространства, а также теряют 6-10% передаваемой энергии.
Сначала не подходили, собственно, сверхпроводящие металлы, чьи химические свойства не позволяли сделать из них провода. Затем с открытием сверхпроводников II рода встал вопрос об их охлаждении, для которого требовался дорогой гелий. Только в 1986 году была открыта высокотемпературная сверхпроводимость, то есть были найдены сверхпроводники с критической температурой выше 30 кельвинов. Это позволило использовать для охлаждения более дешёвый азот, однако теперь встал вопрос о том, как поддерживать высокопроводящее состояние, то есть низкую (высокую) температуру на очень больших отрезках.
Сейчас в России, Китае, Японии, Южной Корее, Европе и США есть проекты по созданию сверхпроводящих кабелей длиной от одного до десяти километров. Успеха добились российские инженеры — в прошлом году завершились испытания самой протяженной сверхпроводящей кабельной линии постоянного тока. Опытный образец на основе сверхпроводника Bi2Sr2Ca2Cu3O10+x длиной 2,5 км с критической температурой –165 °С планируется ввести в эксплуатацию в 2020 году соединит две подстанции в Санкт-Петербурге.
Высокоскоростной транспорт
Способность сверхпроводников создавать мощное и устойчивое магнитное поле нашла применение в транспорте. В начале 1970-х был создан первый прототип поезда на магнитной подушке (германский Transrapid 02), а в 1984 году первый коммерческий маглев (от словосочетания «магнитная левитация») начал курсировать между терминалом аэропорта Бирмингема и железнодорожной станцией города (проработал до 1995-го).
Суть технологии проста: состав удерживается над дорожным полотном силой электромагнитного поля. Она же толкает состав вперед — включение одинаковых по полюсам магнитов отталкивает состав от дороги, а разных — притягивает. Быстрое попеременное включение таких магнитов создает постоянный зазор между полотном со сверхпроводящими электромагнитами и поездом. Благодаря отсутствию трения маглевы способны разгоняться до 500-600 км/ч.
Однако несмотря на относительную простоту технологии, она не получила широкого распространения. Дело в том, что она слишком дорогая. Скажем, шанхайский маглев-аэроэкспресс (в коммерческой эксплуатации с 2004-го года) приносит ежегодный убыток в 93 млн долл.
Поэтому более перспективным применение электромагнитных полей сверхпроводников может быть в дорогостоящих космических проектах. Тот же принцип магнитной левитации предполагается использовать для вывода в космос грузовых кораблей. К примеру, разработчики проекта Startram (ориентировочная стоимость 20 млрд долл.), заявляют, что снизят стоимость отправки одного килограмма космических грузов до 40 долл., построив разгонный туннель, направленный на околоземную орбиту (против нынешних 2500 долл. у SpaceX на Falcon-9).
Разгонный тоннель в проекте Startram. Источник: Сайт проекта Startram
Термоядерные реакторы
Еще одна перспективная область применения сверхпроводниковых магнитов — термоядерные реакторы. Они нужны для создания так называемой магнитной ловушки, для удержания вырабатываемой реактором плазмы. Заряженные частицы вращаются вокруг силовых линий магнитного поля. По сути, намагниченная плазма становится диамагнетиком, который стремится покинуть магнитное поле. Соответственно, если окружить плазму сверхпроводниковыми магнитами, генерирующими мощные поля, плазма будет удерживаться в заданном объеме и не сможет разрушить стенки реактора.
Именно такая технология используется для строительства термоядерного реактора ИТЕР во Франции. В этом проекте принимает участие и Россия, причем именно она была ответственна за поставку во Францию сверхпроводящих кабелей для создания того самого электромагнитного поля, «укрощающего» плазму. Как предполагается, опробованы магниты будут во время первого запуска реактора в 2025 году.
Когда же потеплеет?
Несмотря на более чем вековую историю сверхпроводимости главная мечта всех физиков и инженеров — комнатная температура сверхпроводимости, которая позволит использовать сверхпроводники максимально широко в быту, — пока не достигнута. Последний рекорд в этой области поставлен совсем недавно, в мае 2019 года: международная группа учёных экспериментировала с экзотическим соединением — гидридом лантана (LaH10). Получить этот материал очень сложно. Для этого нужна высокая температура и большое давление, отчего вырабатываемые образцы гидрида лантана микроскопически малы. Тем не менее, ученым удалось проверить, как этот материал взаимодействует с магнитным полем. При температуре –23 °С он вытолкнул магнитное поле, чем доказал свою сверхпроводимость. Пока что это самый теплый сверхпроводник, который мы знаем. Однако работа по поиску более тёплых сверхпроводников не останавливается, она продолжается. И как только будут достигнуты новые успехи в этой сфере, мы сразу сообщим.
Новый поворот и секреты сверхпроводимости
Скирмионы возникают в результате коллективного поведения множества электронов, но ведут себя как отдельные частицы.
Последние три года электроны «устраивали» физикам игры.
Игра началась в 2018 году, когда лаборатория Пабло Харильо-Эрреро объявила о находке десятилетия: когда исследователи сложили один слой атомов углерода поверх другого, применили «волшебный» поворот на 1,1 градуса между ними, а затем охладили атомные пластины почти до абсолютного нуля, тогда образец стал идеальным проводником электронов.
Как частицы сговорились безупречно скользить через листы графена? Калейдоскопический «муар», создаваемый углом наклона, казался значительным результатом, но никто не был в этом уверен. Чтобы выяснить это, исследователи начали складывать и скручивать (поворачивать) любой материал, который попадался им в руки.
Сначала электроны подыгрывали. Череда экспериментов показала, что во множестве плоских материалов низкие температуры вызывают резкое падение электрического сопротивления. Казалось, что уже лучше понимаются условия, необходимые для идеальной проводимости, а, значит, и был близок тот манящий шаг навстречу революции в электронике.
«Было ощущение, что сверхпроводимость просто повсюду, — сказал Мэтью Янковиц, физик, специалист по вопросам конденсированной среды из Вашингтонского университета, — независимо от того, на какую систему смотреть».
Но электроны вдруг «надели маску ложной скромности». По мере того, как исследователи изучали образцы более тщательно, случаи сверхпроводимости исчезли. В некоторых материалах сопротивление фактически не снижалось до нуля. В различных исследуемых образцах были противоречивые результаты. Только в исходном двухслойном графене электроны действительно перемещались без «сопротивления» в большинстве случаев.
«У нас был целый «зоопарк» из разных скрученных материалов, и скрученный двухслойный графен был единственным сверхпроводником», — сказал Янковиц.
Затем, за последний месяц в двух статьях, опубликованных в журналах «Nature» и «Science», был описан еще один сверхпроводник, трехслойный графеновый «сэндвич» с двумя ровными наружными, «хлебными», листами и листом-начинкой, повернутым на 1,56 градуса.
Безошибочная способность переносить электроны скрученного трехслойного графена подтверждает, что система из двух пластин не была случайностью. «Он был первым из семейства муаровых сверхпроводников, — сказал Харильо-Эрреро, физик из Массачусетского технологического института, который также руководил одним из новых экспериментов, а это второй член этого семейства».
Самуэль Веласко / Quanta Magazine; Источник: любезно предоставлено Пабло Харильо-Эрреро
Сэндвич-суперпроводник
Когда сотовые решетки из листов графена сложены под небольшим углом друг к другу, они естественным образом формируют муаровый узор. В сверхпроводящем трехслойном графене верхний и нижний листы выровнены, а средний лист повернут на 1,56 градуса.
Важно отметить, что этот второй «брат» помог пролить свет на основной механизм, который может быть причиной сверхпроводимости этих материалов.
Спустя несколько месяцев после открытия 2018 года одна группа теоретиков начала ломать голову над механизмом, который сделал двухслойный графен сверхпроводником. Они подозревали, что одна конкретная геометрическая черта может позволить электронам закручиваться в экзотические водовороты, которые ведут себя совершенно новым образом. Этот механизм, который не похож ни на одну из (немногих) известных схем, отвечающих за сверхпроводимость, мог бы объяснить успех сверхпроводимости двухслойного графена, а также неудачи других материалов. Он также спрогнозировал, что трехслойный «брат» графена также будет сверхпроводником.
Но это оставалось лишь теорией, по крайней мере, до тех пор, пока лаборатории не смогли ее проверить. «Из того, что нам известно сейчас, это направление кажется захватывающим», — сказал Эслам Халаф, исследователь из Гарвардского университета, который помогал разрабатывать модель. «Не каждый день появляется новый способ получения сверхпроводимости».
Три чуда
В беспорядочном мире, где трение изобилует, а частицы никогда не остаются неподвижными, такое совершенное явление, как сверхпроводимость, не имеет права на существование. Тем не менее, обычные металлы, такие как ртуть, регулярно проявляют себя при низких температурах, как случайно обнаружила Хайке Камерлинг-Оннес в начале 20 века.
Секрет в том, что вблизи абсолютного нуля колебания в атомной решетке металла разбивают свободные электроны на пары. Эти пары взаимодействуют так, как отдельные электроны не могут взаимодействовать, образуя единую квантово-механическую «сверхтекучую среду», которая течет через материал без единого столкновения электронов с атомом (которые генерируют тепло и сопротивление). Первоначальная теория сверхпроводимости, разработанная еще в 1957 году, описывала ее как утончённый электронный «танец», который могут нарушить все, кроме самых идеальных сред. «Это своего рода чудо, что они вообще соединяются, потому что электроны очень сильно отталкивают друг друга», — сказал Ашвин Вишванат, физик-теоретик из Гарварда.
В 1986 году исследователи заметили электроны, совершившие второе чудо, на этот раз в семействе соединений меди, известных как купраты. Материалы каким-то образом могли сохранять сверхпроводимость на десятки градусов выше температуры, которая чаще разделяет обычные электронные пары. Казалось, действует новый механизм, который, вероятно, связан в основном с самими электронами, а не с их атомным каркасом.
Команда Ашвина Вишваната придумала способ понять сверхпроводимость в графене, изучив его геометрическую структуру. Предоставлено Ашвином Вишванатом
Но после десятилетий интенсивного изучения исследователи до сих пор не уверены, как именно электроны в купратах управляют их сверхпроводящими способностями. Прогнозирование поведения электронных конгломератов включает в себя расчет грубой силы воздействия каждой частицы на каждую другую частицу — расчет, сложность которого возрастает по экспоненте с увеличением количества электронов. Чтобы понять даже крохотную частичку сверхпроводника, теоретикам необходимо понять поведение роя электронов, исчисляемого триллионами. Текущее моделирование может обрабатывать около десятка.
Экспериментаторы сейчас не в лучшем положении. Они могут выращивать новые кристаллы, меняя один атом на другой, проверять их свойства. Но материал не раскрывает, что делают электроны внутри. И исследователи не знают, как будет вести себя материал, до тех пор, пока они не изготовят его. «Никто не мог сказать, что я собирался сделать этот новый [купрат], — сказал Янковиц, — и предсказать, какой будет [температура, при которой он становится сверхпроводником]. Сейчас это до ужаса сложная задача».
Уникальные свойства скрученного двухслойного графена сделали его более прозрачным, чем купраты. Вместо того, чтобы создавать совершенно новое вещество, экспериментаторы могли изменять свойства графена всего лишь с помощью электрического поля, что сделало его, по мнению многих исследователей, «игровой площадкой» для сверхпроводимости.
«Это захватывающая задача и замечательная особенность скрученного двухслойного графена», — сказал Субир Сачдев, физик, специалист по вопросам конденсированной среды из Гарварда. «Это дает совершенно новый набор инструментов для исследования движения электронов».
Он также предлагал теоретическое руководство. Под магическим углом, равным 1,1 градусу, сотовые решетки графена соединяются таким образом, что обычно быстрые электроны двигаются медленно — физики описывают этот материал как «плоские полосы». Инертные электроны проводят больше времени вместе, что дает им возможность организоваться.
Но руководство было расплывчатым. Электроны в материалах с плоскими полосами могут общаться разными способами, и образование сверхпроводящих пар — лишь один из них. Исследователи сложили много атомных пластин под магическими углами, сглаживающими полосы, но сверхпроводящая молния не захотела быть пойманной в бутылку.
Казалось, они упускают что-то важное.
Вихревые скирмионы
В марте 2018 года, вскоре после открытия сверхпроводимости в скрученном графене, Вишванат и его коллеги попытались демистифицировать магический угол и понять, что может удерживать электроны вместе.
Написать теорию, полностью отражающую движение непослушных электронов в двухслойном графене, было невозможно, поэтому теоретики начали с представления частиц, которые вели себя немного лучше. Они рассматривали гексагональную решетку графена как две подрешетки треугольников. Когда электроны перемещаются от атома к атому, они обычно «прыгают» к атому на противоположной сетке. Иногда бунтарь перескакивает на атом в той же сетке.
Сетка графена
Атомы углерода графена образуют плоскую гексагональную сетку. Исследователи делят эту сетку на две треугольные сетки, чтобы лучше моделировать движение электронов.
Вишванат и компания настаивали на том, что электроны всегда меняли сетку. Этот выбор сделал математически более чистым разделение гексагональной сетки на треугольные. А в двухслойном графене, с его двумя слоями, обнаружилась одна неясная особенность, которая в конечном итоге стала важной: электроны, будучи ограниченными таким образом, начали двигаться, как если бы они находились под влиянием магнитного поля. В частности, электроны в одной подрешетке, по-видимому, ощущали положительное магнитное поле, а электроны другой подрешетки — отрицательное. Теоретики этого не совсем осознавали, но ключ к новой теории сверхпроводимости лежал прямо на поверхности.
Когда в августе 2018 года была применена теория для получения магического угла 1,1 градуса в двухслойном графене, Вишванат и его коллеги начали наращивать количество слоев графена. Теория, которая изначально была разработана для двух слоев, применилась к новым структурам намного лучше, чем ожидалось. Они обнаружили, что могут вычислить магический угол для каждой последующей графеновой стопки с помощью простых соотношений, которые казались недоступными для увеличивающейся сложности более массивных систем.
«В физике конденсированного состояния вы особенно замечаете, что делаете что-то очень близкое к физической или даже практической реальности, но время от времени вы видите этот самый идеальный мир, который незримо скрывается позади», — сказал Вишванат.
По мере того, как группа проводила дальнейшие исследования, добавляя более реалистичные детали к теории, сверхпроводимость появилась, но совершенно по-новому. Возможно, образовывались не пары электронов, а потоки электронов, известные как скирмионы. Поскольку двухслойный графен состоит из двух слоев, он имеет четыре подрешетки, но эти подрешетки с одинаковым магнитным зарядом действуют как одна. Эффективные магнитные поля заставляют электроны, посещающие атомы в одной сетке, стремиться делать поверхность шероховатой, в то время как электроны на другой сетке стремятся делать её гладкой. Эта конфигурация может заблокировать электроны на месте, так что система ведет себя как изолятор. (Любопытно, что эксперименты с купратами и скрученным двухслойным графеном предполагают, что оба материала действуют как изоляторы непосредственно перед тем, как они становятся сверхпроводниками).
Но если вы нарушите баланс дополнительным зарядом, электроны на каждой подрешетке могут принять коллективный вихревой узор — скирмион — где вращающийся электрон в эпицентре бури делает поверхность шероховатой (либо сглаживает её), а его соседи сглаживаются спиралевидно.
Электроны в скрученном многослойном графене могут образовывать вихревые скирмионы — составные элементы, которые действуют как одна частица. Исследователи полагают, что скирмионы на противоположных треугольных подрешетках графена могут объединяться в пары, образуя базовую единицу, необходимую для сверхпроводимости.
Хотя тысячи электронов могут войти в скирмион графена, вихрь действует так, будто это одна частица с зарядом одного электрона. Возможно, вы ожидаете, что отрицательные скирмионы должны отталкиваться друг от друга, но квантово-механические правила, определяющие, как электроны «прыгают» между двумя подрешетками, на самом деле притягивают скирмионы на противоположных сетках вместе. Другими словами, они образуют пары электроноподобных зарядов — фундаментальное требование для сверхпроводимости.
Ключом к истории о скирмионах является поворотная симметрия на 180 градусов, которая определяет перенос электронов между треугольными подрешетками. Прямоугольник обладает такой же симметрией. Она есть и у шестиугольника, и у прямоугольной или шестиугольной решетки. Но складывание и скручивание листов чего угодно, кроме графена, ломает этот уклад. Наконец, Вишванат и его коллеги смогли объяснить, почему «зоопарк» скрученных решеток не смог стать сверхпроводником.
«Это был момент, когда все сошлось», — сказал Халаф.
Теория и графен
Харильо-Эрреро уже думал, что что-то хорошее может выйти из трёх слоёв. Электроны в материалах с плоскими полосами движутся достаточно медленно, чтобы частицы могли работать вместе, но сверхпроводимость может быть усилена за счет «диспергирующих» полос, по которым пары перемещаются легче. Для скрученного двухслойного графена характерно первое. Последнее утверждение характерно для однослойного графена. Объединение их вместе может дать нам лучшее из обоих миров.
Затем последовал прогноз группы Вишваната, что 1,5 градуса — это магический угол для создания сверхпроводящих скирмионов в трех слоях графена.
Помня об этих аргументах, лаборатория Харильо-Эрреро, а также лаборатория Филипа Кима в Гарварде приступили к созданию трехслойных стопок графеновых листов. Обе лаборатории увидели все, что предсказывали теоретики, и даже больше.
Лаборатория Пабло Харильо-Эрреро
Лаборатория Филипа Кима.
Источник фотографий: Брайс Викмарк; Элиза Гриннелл / Harvard SEAS
Если двухслойный графен является площадкой для сверхпроводимости, то трехслойный графен тогда настоящий праздник и фестиваль. Экспериментаторы могут не только точно настроить количество электронов в решетках, они также могут произвольно перемещать электроны между слоями с помощью второго электрического поля. Благодаря такой гибкости исследователи могут искать сверхпроводящие зоны наилучшего восприятия, заставляя электроны чувствовать, будто они движутся через двухслойную систему, однослойную систему или любое количество гибридных систем.
Используя эту беспрецедентную возможность настройки, лаборатории подтвердили, что, в отличие от других скрученных материалов, трехслойный графен проходит все испытания на сверхпроводимость. Они также обнаружили несколько косвенных указаний на то, что сверхпроводимость возникает необычным образом.
Во-первых, электроны очень хорошо взаимодействуют. В обычных сверхпроводниках, где кластеры атомов объединяют свободные электроны в пару, только 1 электрон из 100 000 присоединяется к сверхпроводящей сверхтекучей жидкости. В купратах участвует примерно 1 из 30 свободных электронов. Но в трехслойной системе, по оценкам исследователей, участвует каждый десятый.
Элементы в сверхпроводящих парах — будь то электроны или скирмионы — также находятся довольно близко друг к другу. Концы электронных пар в сверхохлажденном алюминии разнесены на расстояние, в 10 000 раз превышающее среднее расстояние между электронами, что напомиает суп из длинных спагетти. А в трехслойном графене сверхпроводящие пары сбиваются в кучу, как макароны, причем элементы находятся одинаково близко как к “напарнику”, так и к “соседям”.
Учитывая, насколько сложно узнать все происходящее внутри материала на субатомном уровне, еще слишком рано утверждать, что скирмионы обеспечивают сверхпроводимость в многослойном графене. Но для Халафа странное поведение, которое наблюдали Харильо-Эрреро и Ким, сходится с электронными вихрями.
В отличие от стандартных электронных пар, пары скирмионов плотно связываются для получения высокоэффективной сверхпроводимости. Составные объекты также крупны и близко расположенны.
А в стандартных металлах электроны, попадая в состояние, предполагающее выбор из множества возможных действий, приводят к сильной сверхпроводимости. Но когда исследователи предоставили такую свободу электронам в трехслойной системе, сверхпроводимость исчезла. По словам Халафа, это может объясняться тем, что возросшая свобода позволяет скирмионам разваливаться на части.
«Я не думаю, что можно однозначно считать этот сверхпроводник нетрадиционым», — отметил Кори Дин, физик в области конденсированного состояния вещества из Колумбийского университета. Но он добавил, что необычная реакция на возросшую свободу «определенно указывает в обратном направлении».
Если вращательная симметрия, которую выявили Вишванат и его коллеги, действительно имеет решающее значение для сверхпроводимости многослойного графена, материаловеды однажды смогут использовать этот факт, чтобы сориентироваться в поле из многих миллиардов возможных материалов и найти решетку, которая сможет удерживать электроны вместе в теплый день.
Заряды в скрученном графене слишком тонко распределены по гигантским муаровым ячейкам для сверхпроводимости при высоких температурах, но связь, удерживающая их вместе — будь то скирмионы или что-то еще — кажется прочной. Исследователи надеются, что дальнейшее изучение скрученного графена и теорий, объясняющих его необычные свойства, позволит объяснить его надежную сверхпроводимость и указать путь к решетке, которая может поглощать больше тепла.
“Если вы получите такой же эффект в масштабе атомов, то это будет действительно применимо”, — сказал Сачдев. (я это опустила, обобщила)
Сверхпроводимость, явление, открытие, теория и применение
Сверхпроводимость, явление, открытие, теория, применение и температура сверхпроводимости.
Сверхпроводимость – свойство некоторых материалов обладать абсолютно нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (т.н. критической температуры).
Описание. Явление сверхпроводимости:
Сверхпроводимостью обладают металлы и их сплавы, полупроводники, а также керамические материалы и иные вещества. Существуют даже сверхпроводящие сплавы и материалы, у которых один из элементов или все элементы , входящих в его состав, могут и не быть сверхпроводниками. Например, сероводород , сплавы ртути с золотом и оловом.
Сверхпроводящее состояние в материале возникает не постепенно, а скачкообразно – при достижении температуры ниже критической. Выше этой температуры металл, сплав или иной материал находится в нормальном состоянии, а ниже ее – в сверхпроводящем. Для некоторых веществ переход в сверхпроводящее состояние становится возможным при определенных внешних условиях, например, по достижении определенного значения давления.
Сверхпроводимость как явление сопровождается несколькими эффектами. Определяющее значение имеют два из них: исчезновение электрического сопротивления и выталкивание магнитного потока (поля) из его объема. Поэтому важнейшее значение приобретает не только критический ток, но и критическое магнитное поле – определенное значение напряженности магнитного поля, по достижении которого сверхпроводник теряет свойство сверхпроводимости.
Явление сверхпроводимости может быть продемонстрировано на практике. Если взять проводник, закольцевать его, сделав замкнутый электрический контур, охладить его до температуры ниже критической и подвести к нему электрический ток, а после чего убрать источник электрического тока, то электрический ток в таком проводнике будет существовать неограниченно долгое время.
В настоящее время получены сверхпроводники, обладающие свойством сверхпроводимости при комнатной температуре .
Открытие сверхпроводимости:
Явление сверхпроводимости впервые открыл в 1911 г. голландский физик Хейке Камерлинг-Оннес, исследуя зависимость электрического сопротивления металлов от температуры.
Сверхнизкими температурами он начал интересоваться ещё в 1893 г., когда он создал криогенную лабораторию.
В 1908 г. ему удалось получить жидкий гелий.
Охлаждая с его помощью металлическую ртуть, он с удивлением обнаружил, что при температуре, близкой к абсолютному нулю (4,15 К), электрическое сопротивление (р) ртути скачком падает до нуля.
В 1912 году были обнаружены ещё два металла, переходящие в сверхпроводящее состояние при низких температурах: свинец и олово.
Впоследствии были открыты и другие сверхпроводники.
Природа, объяснение и теория сверхпроводимости:
Следует отметить, что полностью удовлетворительная теория сверхпроводимости в настоящее время отсутствует.
В 1957 г. Дж. Бардин, Л. Купер и Дж. Шриффер предложили так называемую теорию БКШ (Бардина – Купера – Шриффера).
Электрический ток представляет собой движение электронов. В обычном проводнике электроны двигаются поодиночке и самостоятельно преодолевают различные препятствия на своём пути. При этом в ходе движения они сталкиваются друг с другом и с кристаллической решеткой, теряя при этом свою энергию. Таким образом, в проводнике из-за различных препятствий возникает электрическое сопротивление.
Электроны в обычных условиях имеет спин, принимающим значение -1/2 или +1/2. Но при определенных условиях (при понижении температуры ниже критической) они образуют пары. Электроны с противоположными значениями спина притягиваются друг к другу. Эти образованные пары также называют куперовской парой. Эта пара имеет нулевой спин и удвоенный заряд электрона. Поскольку суммарный спин этой пары равен нулю, то она обладает свойствами бозона. Бозоны образуют конденсат Бозе-Эйнштейна , к которому присоединяются все свободные бозоны, и находятся в одном квантовом состоянии. Они становятся единым целым, способным двигаться без столкновения с решеткой и оставшимися электронами, то есть без потерь энергии, без электрического сопротивления. Так возникает эффект сверхпроводимости.
Однако данная теория не способна объяснить сверхпроводимость при высоких температурах (высокотемпературную сверхпроводимость).
Классификация, типы и виды сверхпроводников:
По критической температуре сверхпроводники разделяются на низкотемпературные, если критическая температура ниже 77 K (-196 о С), и высокотемпературные.
Температурой разделения является температура кипения азота, которая составляет 77,4 K (-195,75 °C).
Данное деление имеет практическое значение. В первом случае охлаждение производится жидким или газообразным гелием, а во втором случае – более дешевым жидким или газообразным азотом.
По отклику сверхпроводников на магнитное поле они бывают сверхпроводниками I рода и сверхпроводниками II рода.
Сверхпроводники I рода по достижению единственного определенного значения напряженности магнитного поля (т.н. критического магнитного поля, Hc) теряют свою сверхпроводимость. До этого значения магнитное поле огибает сверхпроводник, а свыше его – проникает внутрь и проводник теряет свою сверхпроводимость.
У сверхпроводников II рода имеется два критических значения магнитного поля Hc1 и Hc2. При приложении магнитного поля первого критического значения Hc1 происходит частичное проникновение магнитного поля в тело сверхпроводника, однако сверхпроводимость сохраняется. Выше второго значения критического поля Hc2, сверхпроводимость разрушается полностью. В магнитных полях от первого до второго критического значения в сверхпроводнике существует вихревая структура магнитного поля.
По материалу сверхпроводники подразделяются чистые элементы, сплавы, керамику, сверхпроводники на основе железа, органические сверхпроводники и прочие.
Температура сверхпроводимости металлов, сплавов и прочих материалов:
Материалы | Критическая температура, К | Критические поля (при 0 К), Гс (Э*) | |
Сверхпроводники 1-го рода | Hc | ||
Родий | 0,000325 | 0,049 | |
Магний | 0,0005 | —** | |
Вольфрам | 0,012 | 1* | |
Гафний | 0,37 | —** | |
Титан | 0,39 | 60 | |
Рутений | 0,47 | 46* | |
Кадмий | 0,52 | 28 | |
Цирконий | 0,55 | 65* | |
Осмий | 0,71 | 46,6* | |
Уран | 0,8 | —** | |
Цинк | 0,85 | 53 | |
Галлий | 1,08 | 59 | |
Алюминий | 1,2 | 100* | |
Рений | 1,7 | 188* | |
Двухслойный графен | ~ 1,7 | 500 | |
Сплав Аu-Bi | 1,84 | —** | |
Таллий | 2,37 | 180 | |
Индий | 3,41 | 280 | |
Олово | 3,72 | 305 | |
Ртуть | 4,15 | 411 | |
Тантал | 4,5 | 830* | |
Ванадий | 4,89 | 1340* | |
Свинец | 7,1999 | 803 | |
Технеций | 11,2 | —** | |
H2S ( сероводород ) | 203 при давлении 150 ГПа | 720 000 | |
Сверхпроводники 2-го рода | Hc1 | Hc2 | |
Ниобий | 9,25 | 1735 | 4040 |
Nb3Sn | 18,1 | – | 220 000 |
Nb3Ge | 23,2 | – | 400 000 |
Pb1Mo5,1S6 | 14,4 | – | 600 000 |
YBa2Cu3O7 | 93 | 1000*** | 1 000 000*** |
HgBa2Ca2Cu3O8+x | 135 | —** | —** |
Примечание к таблице:
* для материалов, помеченных * значение критического поля указано в Э (эрстед), для остальных в Гс (гаусс).
*** Экстраполировано к абсолютному нулю.
Свойства сверхпроводников. Эффекты сверхпроводимости:
1. Нулевое электрическое сопротивление.
Строго говоря, сопротивление сверхпроводников равно нулю только для постоянного электрического тока. Сопротивление у сверхпроводников при прохождении через них переменного тока отлично от ноля и возрастает с повышением температуры.
2. Критическая температура сверхпроводников.
3. Критическое магнитное поле сверхпроводников.
Это значение магнитного поля, выше которого сверхпроводник теряет свойство сверхпроводимости и переходит в обычном состояние, характерное для обычного проводника.
Значение критического магнитного поля различается в зависимости от материала сверхпроводника и может составлять от нескольких десятков гаусс до нескольких сотен тысяч гаусс. В таблице значений сверхпроводимости материалов указывается критическое магнитное поле при температуре абсолютного нуля (0 К).
Критическое магнитное и критическая температура взаимосвязаны между собой. При повышении температуры сверхпроводника критическое магнитное поле уменьшается. При температуре перехода из сверхпроводящего состояния в нормальное состояние критическое магнитное поле равно нулю, а при абсолютном нуле оно максимально.
Зависимость величины критического поля от температуры с хорошей точностью описывается выражением:
Нс(Т) = Нсо · (1 – T 2 / Tc 2 )
где Нс(Т) – критическое магнитное поле при заданной температуре, Нсо – критическое поле при нулевой температуре, Т – заданная температура, Тс – критическая температура.
Для сверхпроводников II рода указываются два значения магнитного поля. Также нетрудно заметить, какие гигантские поля способны выдерживать сверхпроводники второго рода без разрушения сверхпроводимости.
4. Критический ток в сверхпроводниках.
Это значение максимального постоянного тока, который может выдерживать сверхпроводник без потери сверхпроводящего состояния. При превышении этого значения сверхпроводник теряет свойство сверхпроводимости.
Как и критическое магнитное поле, критический ток обратно пропорционально зависит от температуры, уменьшаясь при ее увеличении.
5. Выталкивание магнитного поля сверхпроводником из своего объёма.
Это явление было названо эффектом Мейснера по имени первооткрывателя.
Эффект Мейснера означает полное вытеснение магнитного поля из объёма проводника при его переходе в сверхпроводящее состояние. Внутри сверхпроводника намагниченность равна нулю. Впервые явление наблюдалось в 1933 году немецкими физиками В. Мейснером и Р. Оксенфельдом.
Однако не у всех сверхпроводников наблюдается полный эффект Мейснера. Вещества, проявляющие полный эффект Мейснера, называются сверхпроводниками первого рода, а частичный – сверхпроводниками второго рода. Для сверхпроводников второго рода магнитное поле в интервале значений Hc1 – Hc2 проникает и действует в виде вихрей Абрикосова. Однако стоит отметить, что в низких магнитных полях (ниже значения Hc и Hc1 ) полным эффектом Мейснера обладают все типы сверхпроводников.
Отсутствие магнитного поля в объеме сверхпроводника означает, что электрический ток протекает только в поверхностном слое сверхпроводника.
6. Глубина проникновения.
Это расстояние, на которое магнитный поток проникает в сверхпроводник. Обычно данную величину называют лондоновской глубиной проникновения (в честь братьев Лондон).
Глубина проникновения оказывается функцией температуры, прямо пропорционально ей и различна в разных материалах.
Исходя из действия эффекта Мейснера магнитное поле выталкивается из сверхпроводника токами, циркулирующими в его поверхностном слое, толщина которого приблизительно равна глубине проникновения. Эти токи создают магнитное поле, которым компенсируется поле, приложенное извне, не позволяя ему проникнуть внутрь.
При достижении магнитным полем критического значения оно полностью проникает через глубину проникновения и захватывает весь сверхпроводник.
7. Длина когерентности.
Это расстояние, на котором электроны взаимодействуют друг с другом, создавая сверхпроводящее состояние. Электроны в пределах длины когерентности движутся согласованно – когерентно (как бы «в ногу»).
8. Удельная теплоемкость.
Данная величина показывает количество теплоты, необходимое для того, чтобы повысить температуру 1 грамма вещества на 1 К.
Удельная теплоемкость сверхпроводника резко (скачкообразно) возрастает вблизи температуры перехода в сверхпроводящее состояние, и довольно быстро (скачкообразно) уменьшается с понижением температуры. Иными словами, в области перехода для повышения температуры вещества в сверхпроводящем состоянии требуется больше теплоты, чем в нормальном состоянии, а при очень низких температурах – наоборот.
Применение сверхпроводимости:
– для получения сильных магнитных полей. Поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Для получения сильных магнитных полей используются сверхпроводники II рода, т.к. значение критического магнитного поля Нс2 для них значительно велико,
– в электрических кабелях и линиях электропередач (ЛЭП). Так, один тонкий электрический кабель из сверхпроводника способен передать электрический ток, для передачи которого обычный проводник должен иметь значительные размеры (диаметр),
– в мощных генераторах тока и электродвигателях ,
– в измерительных приборах,
Читайте также: