Что такое металлическое стекло

Обновлено: 22.01.2025

Некристаллический металл или сплав, обычно получаемый переохлаждением расплавленного сплава посредством осаждения из газовой фазы (например, тепловое испарение) или жидкой фазы (например, электрохимическое или химическое осаждение) или внешними методами воздействия (например ионной имплантацией).

(Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО "Профессионал", НПО "Мир и семья"; Санкт-Петербург, 2003 г.)

Смотреть что такое "Металлическое стекло" в других словарях:

металлическое стекло — Некристаллический металл или сплав, обычно получаемый переохлаждением расплавленного сплава посредством осаждения из газовой фазы (например, тепловое испарение) или жидкой фазы (например, электрохимическое или химическое осаждение) или внешними… … Справочник технического переводчика

МЕТАЛЛИЧЕСКОЕ СТЕКЛО — смотри Аморфный металл … Металлургический словарь

стекло — Прозрачный хрупкий материал, получаемый при остывании стекломассы [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Разновидности стекла Стекло – твердотельное состояние аморфных веществ. Термин также… … Справочник технического переводчика

Горячее металлическое защитное покрытие строительных конструкций — – защитное покрытие, получаемое погружением защищаемой металлической конструкции или ее элемента в расплав защитного металла. [СТ СЭВ 4419 83] Рубрика термина: Покрытия Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги … Энциклопедия терминов, определений и пояснений строительных материалов

Покрытие горячее металлическое защитное — – защитное покрытие, получаемое погружением защищаемой строительных конструкций металлической конструкции или ее элемента в расплав защитного металла. [СТ СЭВ 4419 83] Рубрика термина: Защита от коррозии Рубрики энциклопедии: Абразивное… … Энциклопедия терминов, определений и пояснений строительных материалов

Покрытие защитное горячее металлическое — – защитное покрытие, получаемое погружением стальных изделий (арматуры, закладных деталей) в расплав за­щитного металла. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г … Энциклопедия терминов, определений и пояснений строительных материалов

Аморфный металл — металлическое стекло сильно переохлаждённый металл; при охлаждении число центров и скорость роста кристаллов равны нулю и жидкий металл, загустевая, превращается в стекло, не претерпевая кристаллизации. Сложность получения аморфного металла… … Энциклопедический словарь по металлургии

АМОРФНЫЙ МЕТАЛЛ — металлическое стекло сильно переохлажденный металл; при охлаждении число центров и скорость роста кристаллов равны нулю и жидкий металл, загустевая, превращается в стекло, не претерпевая кристаллизации. Сложность получения аморфного металла… … Металлургический словарь

Аморфный твердый — Amorphous solid Аморфный твердый. Твердый материал, его структура не имеет кристаллической периодичности, то есть структура составляющих атомов или молекул не повторяется периодически в трех измерениях. См. также Metallic glass Металлическое… … Словарь металлургических терминов

Metallic glass — Metallic glass. См. Металлическое стекло. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003 г.) … Словарь металлургических терминов

Инженеры создали твёрдое и упругое металлическое стекло

image


Полученное при помощи просвечивающего электронного микроскопа изображение разных уровней кристаллизованности аморфного металла

Инженеры из Университета Южной Калифорнии получили новый вид металлического стекла, отличающийся повышенной упругостью. Материал сочетает в себе, кажется, несочетаемые свойства – твёрдость, прочность и эластичность. Материал, получивший технологическое название SAM2X5-630, обладает наивысшей ударной прочностью из всех известных металлических стёкол.

Металлические стёкла, или аморфные металлы — класс металлических твердых тел с аморфной структурой. В отличие от металлов с их кристаллической структурой, таковая у аморфных металлов аналогична атомной структуре переохлаждённых расплавов.

Слева прыгает шарик из нового металлического стекла, справа – из обычной стали

Материал способен выдерживать сильные удары, при этом он не крошится и не ломается, а возвращает первоначальную форму. Потенциал его применения практически безграничен – начиная от свёрл и бронежилетов и заканчивая имплантатами для укрепления костей и защитой космических спутников.

Обычно аморфные металлы получают нагреванием до 630 °C, а затем очень быстрым (порядка градуса в секунду) охлаждением. Материал SAM2X5-630 был получен нагреванием порошкообразного состава на основе железа (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4).

Уникальные свойства металла происходят из удачной находки сочетания температуры нагревания и скорости охлаждения – именно такие условия, которые испытал полученный состав, приводят к образованию локальных очагов слабо выраженной кристаллической структуры. Другие условия нагрева или охлаждения приводят к получению полностью аморфных металлов со случайным расположением атомов.

«У него почти нет внутренней структуры, и в этом он похож на стекло, но при этом встречаются регионы с кристаллизацией,- говорит Вероника Эльясон [Veronica Eliasson], ассистент-профессор из Инженерной школы им.Витерби при университете, и ведущий автор работы. – Мы пока понятия не имеем, почему небольшое количество кристаллизировавшихся участков в металлических стёклах приводят к таким сильным различиям в реакциях на удар».

Динамический предел упругости Гюгонио (максимальное воздействие, которое материал выдерживает без необратимой деформации), был определён для SAM2X5-630 в районе 12 ГПа. У нержавеющей стали этот показатель равен 0,2 ГПа, у карбида вольфрама (используемого для создания твёрдых инструментов и сердечников бронебойных пуль) – 4,5 ГПа, у алмазов – до 60 ГПа.

Изучение аморфных металлов началось в 1960 году в Калифорнийском технологическом институте – группой учёных было получено первое металлическое стекло Au75Si25. С тех пор было получено множество подобных материалов с интересными свойствами, однако пока область их практического применения нельзя назвать широкой из-за их высокой стоимости.

Например, полученный недавно в Японии Ti40Cu36Pd14Zr10 — неканцерогенный, в три раза прочнее титана, мало изнашивается, при трении не образует порошок, а по модулю продольной упругости практически совпадает с человеческими костями – в потенциале его можно будет использовать как прекрасную искусственную замену суставов.

Металлические стекла

Металлические стекла (аморфные сплавы, стекловидные метал­лы, метглассы) — металлические сплавы в стеклообразном состоянии, образующиеся при сверхбыстром охлаждении металлического рас­плава, когда быстрым охлаждением предотвращена кристаллизация (скорость охлаждения < 10 6 К/с).

Металлические стекла — метастабильные системы, которые кристаллизуются при нагревании до температуры ~ 1/2 tпл. Нагрев, когда подвижность атомов возрастает, постепенно приводит аморф­ный сплав через ряд метастабильных состояний в стабильное кри­сталлическое состояние. Многие металлические стекла испытывают структурную релаксацию уже при температуре чуть выше комнатной. Наложение деформирующего напряжения усиливает диффузионную подвижность и связанную с ней структурную перестройку сплавов.

Состав металлических стекол чаще всего выражается форму­лой М80Х20, где М — переходные (Cr, Mn, Fe, Co, Ni и др.) или благо­родные металлы, а X — поливалентные неметаллы (В, С, N, Si, P, Ge и др.), являющиеся стеклообразующими элементами.

Металлические стекла отличаются от кристаллических сплавов отсутствием таких дефектов структуры, как вакансии, дислокации, границы зерен, и уникальной химической однородностью: отсутству­ет ликвация, весь сплав однофазен.

Особенности строения металлических стекол обусловливают отсутствие характерной для кристаллов анизотропии свойств, высо­кую прочность, коррозионную стойкость и магнитную проницае­мость, малые потери на перемагничивание.

Физико-химические свойства металлических стекол значитель­но отличаются от свойств литых сплавов. Характерными особенно­стями потребительских свойств металлических стекол являются высо­кая прочность в сочетании с большой пластичностью и высокой коррозионной стойко­стью. Некоторые металлические стекла — ферромагнетики с очень низкой коэрцитивной силой и высокой магнитной проницаемостью (например, Fe80B20), а для других характерно очень слабое поглоще­ние звука (сплавы редкоземельных металлов с переходными металла­ми). Наиболее широкое применение металлические стекла нашли бла­годаря магнитным и коррозионным свойствам.

Магнитно-мягкие металлические стекла изготавливают на ос­нове Fe, Co, Ni с добавками 15. 20 % аморфообразующих элементов B, С, Si, P. Например, Fe81Si3, 5B13, 5C2 имеют высокое значение маг­нитной индукции (1,6 Тл) и низкое значение коэрцитивной силы (32. 35 мА/см). Аморфный сплав Co66Fe4(Mo, Si, В)30 имеет сравни­тельно небольшое значение магнитной индукции (0,55 Тл), но высо­кие механические свойства (900. 1000 HV).

Высоким сопротивлением коррозии обладают только стабиль­ные аморфные сплавы. Так, для изготовления коррозионно-стойккх деталей используют металлические стекла на основе железа и никеля, содержащие не менее 3. 5 % хрома и некоторые другие элементы. Критическая концентрация хрома, обеспечивающая стабильность аморфного сплава, определяется соотношением между легирующими элементами сплава и активностью коррозионной среды. Сопротивление металлических стекол коррозии снижают процессы, усиливающие химическую неоднородность, а именно:

· появление флуктуации химического состава; разделение исходной аморфной фазы на две другие аморфные фазы или фазы с другим химическим составом;

· переход аморфной фазы в двух- или многофазную смесь кри­сталлов разного химического состава;

· образование кристаллической фазы того же химического со­става, что и окружающая матрица.

Экспертное мнение: Будущее металлических стекол

Сегодня мы расскажем Вам о будущем металлических стекол. Для этого мы обратились к нашему ведущему ученому, международному эксперту в области объемных металлических стекол, доктору технических наук, профессору Университета Тохоку / Япония, главному научному сотруднику, заведующему лабораторией Института исследования перспективных материалов и руководителю проекта Метастабильные двухфазные металлические материалы с высокой удельной прочностью в НИТУ «МИСиС» — Дмитрию Валентиновичу Лузгину.

Данный проект не имеет аналогов как в России, так и за рубежом, учитывая обширный характер исследований, диапазон исследованных свойств и типы использованных материалов. Компетенцию ученого подтверждают научные статьи в таких журналах, как Nature, Nanoscale, Acta Materialia, Advanced Functional Materials, Scientific Reports, Applied Physics Letters, а также рецензирование в журналах Nature Communications, Acta Materialia, Applied Physics Letters, Journal of Materials Research, Materials Science and Engineering, Journal of Non-crystalline Solids, Journal of Materials Science.

Вас ждет увлекательный научный рассказ о стали и сплавах! В своем экспертном мнении Дмитрий Валентинович рассуждает о будущем металлических стекол, их применении, способах улучшения их механических свойств и перспективах применения в конкретных областях.


Промышленные металлические сплавы затвердевают формируя кристаллическую структуру даже при высоких скоростях охлаждения. Получение аморфных/стекловидных металлических сплавов (или металлических стекол), в том числе и чистых металлов, требует ультравысоких скоростей охлаждения, например, при напылении тонких пленок на охлажденную подложку из газообразной фазы [2]. Распыление чистых металлов в наноразмерные капли приводит не только к высоким скоростям охлаждения, но и малой вероятности появления критического зародыша кристаллической фазы в нанообъеме [3].

Сплавы с более высокой склонностью к стеклованию, именуемой стеклообразующей способностью, как правило, эвтектического состава, получают с 60-х годов прошлого века быстрым охлаждением расплава со скоростями порядка 1 МK/с на вращающийся медный диск или при сжатии капли расплава между двумя металлическими плоскостями [4]. В таком случае металлические сплавы непрерывно переходят при охлаждении в стекловидное состояние и претерпевают обратное превращение при последующем нагреве с достаточно высокой скоростью нагрева.

В 70х годах прошлого века были получены первые макроскопические отливки аморфных палладиевых сплавов с размером порядка 1 мм в каждом из 3х пространственных измерений, названные впоследствии объемными металлическими стеклами [5]. Более массивные образцы были получены в 80х после обработки расплава флюсом, которая позволила подавить гетерогенное зарождение кристаллов [6], но ввиду исключительной дороговизны основного компонента палладия долгое время не представляли особого интереса для ученых и инженеров.

В 90х объемные металлические стекла (ОМС) [7] с размером > 1 мм в каждом из 3х пространственных измерений (Рис. 1) удалось получить на базе широко распространенных металлов: магния, титана, меди, железа и т.д. в двойных, тройных, четверных и многокомпонентных сплавах.


Статистический анализ имеющейся информации по ОМС показал рост их стеклообразующей способности от двойных к тройным и четверным сплавам. Также при анализе базы данных из 95 тройных сплавов с известной стеклообразующей способностью в виде критического диаметра ОМС (сплавы, обработанные флюсом, не учитывались) была обнаружена статистическая закономерность в распределении составов ОМС (Рис. 2) [8]. Локальные максимумы критического диаметра расположились вблизи составов A70B20C10, A65B25C10, A65B20C15, A56B32C12, A55B28C17, A44B43C13 и A44B38C18, а локальные минимумы вблизи составов A75B20C5, A75B15C10, A60B35C5, A55B35C10, A55B30C15, A50B25C25, A48B32C20 и A47B46C7. Это свидетельствует о закономерностях в составах ОМС и неслучайности атомных соотношений. Сплав A50B25C25 соответствует соединению A2BC, A60B35C5 соединению A3(B+C)2, а A75B20C5 и A75B15C10 близки к псевдо-двойному соединению A3(B+C).


Рис. 2. Поверхность критического диаметра (максимальный диаметр аморфной отливки), построенная методом сглаживания произвольного набора данных тройных сплавов (95 точек из литературных источников).

Aтомная структура стекол демонстрирующая отсутствие дальнего порядка в расположении атомов (Рис. 3) определяют их свойства, в частности механические. По величине прочности и удельной прочности они значительно превосходят соответствующие кристаллические сплавы из-за невозможности использования механизмов аккомодационной деформации дислокационного или двойникового типа. Условный предел текучести ОМС достигает ~2 GPa для ОМС на основе Cu, Ti и Zr, ~3 GPa на основе Ni, ~4 GPa на основе Fe, ~5 GPa на основе Fe и Co, а также 6 GРa для кобальтовых сплавов. Структура металлического стекла также обеспечивает упругую деформацию до 2 %, что в сочетании с высоким пределом текучести обуславливает большие значения запасенной энергии упругой деформации (показатели σy2/E и σy2/ρЕ, где σy, ρ и Е – предел текучести, плотность и модуль Юнга, соответственно). Следует отметить, что недавние исследования указывают наличие атомных кластеров в ОМС [9].


Рис. 3. Изображение просвечивающей электронной микроскопии высокого разрешения и картины дифракции от выбранной области субмикроскопического размера (SAED) и наноразмера (NBD). Заметно отсутствие дальнего порядка в расположении атомов. Размер областей рассеяния показан кругами условно. (В России изучением структуры ОМС занимаются, в частности, А.С. Аронин и Г.Е. Абросимова).

ОМС обладают не только высокой прочностью, твердостью, износостойкостью и большими значениями упругой деформации до начала пластической деформации, но и высоким сопротивлением коррозии, включая самопроизвольную пассивацию в некоторых растворах. Высокая твердость, износостойкость, качество поверхности ОМС, а также текучесть при нагреве определяет их применение в микромашинах в качестве механизмов передач (шестеренок), компонентов высокоточных механических систем. ОМС на основе железа и кобальта с намагниченностью насыщения до 1.5 T имеют рекордно низкие значения коэрцитивной силы менее 1 А/м и активно используются как магнитомягкие материалы. Следует отметить, что в России металлическими стеклами на основе железа и кобальта занимались такие ученые как А.М. Глезер, С.Д. Калошкин и многие другие.

Явление стеклования, наблюдаемое при переходе из жидкости в стекло и расстекловывания при нагреве, является одной из самых важных не до конца решенных проблем физики твердого тела. А именно, являются ли аморфная и жидкая фазы одной и той же фазой, только наблюдаемой при разных температурах, или же имеет место фазовый переход из жидкого состояния в аморфное и обратно, и если это так, то какого рода этот фазовый переход? Некоторые успехи достигнуты с использованием компьютерного моделирования, но полной ясности еще нет.

Долгое время было неясно откуда возникает такое свойство переохлажденной металлической жидкости как «хрупкость»: сильное отклонение температурной зависимости ее вязкости от закона Аррениуса, в то время как вязкость равновесной жидкости выше температуры ликвидуса (Tl) следует данному закону. Автором с коллегами методом рентгеновской дифракции «in-situ» в синхротронном излучении не было показано активное образование в атомной структуре сплава Pd42.5Cu30Ni7.5P20 вблизи температуры стеклования кластеров металлов ковалентно связанных с Р, что коррелировало с температурной зависимостью вязкости жидкости [10] при охлаждении расплава, как схематически показано на рис. 4. Заметьте, что вязкость жидкости при охлаждении до Tg меняется на 10 порядков величины.


Рис. 4. Соотношение площади под пиком функции радиального распределения (ФРР) образованным атомными парами типа Ni,Cu-P к площади пика образованным другими атомными парами (P1/P2) иллюстрирует быстрые структурные изменения вблизи Tg, и их отсутствие ниже Tg и выше Tl. По правой оси ординат отложена вязкость в логарифмической шкале. По оси абсцисс отложена обратная температура нормализованная через Tg: ниже примерно 0.7 равновесная жидкость (малые структурные изменения по температуре), до Tg/Т=1 переохлажденная жидкость (сильные изменения), а выше стекло.

ОМС прекрасно и однородно деформируются пластически при нагреве в область переохлажденной жидкости до кристаллизации (выше Tg, но ниже Tx – температуры кристаллизации переохлажденной жидкости [11,12]), и могут быть использованы как модели для штампов (Рис. 5).

Традиционные способы обработки металлов давлением при невысокой стоимости компонентов сплавов часто требует дорогостоящих этапов обработки исходного блока для получения конечного продукта. Это приводит к большому количеству отходов материала. В случае ОМС с помощью быстрого нагрева в область переохлажденной жидкости можно получить изделие с высоким качеством поверхности в одну стадию как при сверхпластичной формовке. Но ОМС ввиду отсутствия границ зерен будут предпочтительнее для микрообъектов чем сверхпластичные сплавы ввиду исключительно высокого качества поверхности.


Тем не менее, одним из главных препятствий на пути более широкого применения стеклообразных сплавов является их ограниченная пластичность при комнатной температуре [13]. Многие ОМС разрушаются до начала макропластической деформации при образовании одной полосы сдвига.

Это происходят из-за разупрочнения образца в локальных полосах сдвиговой деформации (полосы толщиной 10-20 нм, в которой материал начинает течь под действием высоких локальных напряжений) и дальнейшей локализации деформации в этих полосах в отличие от кристаллических сплавов, в которых деформационное упрочнение приводит к более однородной деформации в множественных полосах скольжения. Однако, если зарождается несколько полос сдвига с попеременной локализацией деформации (Рис. 6), то до определенного момента может иметь место макроскопически однородная деформация образца, которая является предпочтительной для получения более пластичных ОМС [14]. В связи с этим изучение процесса зарождения и распространения полос сдвига в ОМС представляет большой интерес. В результате совершенствования составов были получены рекордно высокие значения вязкости разрушения порядка 100 MPa√m для ОМС Zr61Ti2Cu25Al12 [15] и Pd79Ag3.5P6Si9.5Ge2 [16], а также сплавы доэвтектических составов не охрупчивающиеся при структурной релаксации [17]. Недавно предложенный метод циклической обработки в жидком азоте из-за разности коэффициентов термического расширения атомных кластеров с высокой и низкой плотностью приводит к «омолаживанию» металлического стекла (переводу его в повышенное энергетическое состояние) и повышению его пластичности [18]. Метод выдержки при криогенной температуре был использован для модифицирования магнитных свойств сплавов на основе железа [19].


Рис. 6. Полосы сдвига на боковой поверхности образца (сверху) после разрушения. Поверхность разрушения в нижнем левом углу.

На сегодняшний день двухфазные материалы (композиционного типа) получают всё большее распространение, так как они способны сочетать в себе, в оптимальном соотношении, требуемый комплекс эксплуатационных свойств. ОМС обладают уникально высокими показателями прочности, но, как правило, отсутствием пластичности, особенно на растяжение. Кристаллические сплавы обладают высокими показателями пластичности, а полимерные материалы, также обладают малой плотностью. Поэтому создание нового класса легких и прочных двухфазных материалов на основе металлического стекла и кристалла (или полимера) помогает решить задачу, связанную с улучшением механических конструкционных материалов, т.е. получить материал с уникально высоким показателем удельной прочности и пластичности. Легкие металлические двухфазные материалы типа металлическое стекло/кристалл сочетающие прочность объемных металлических стекловидных сплавов на основе Ti или Mg, и высокую пластичность кристаллических фаз разрабатываются в НИТУ «МИСиС» в рамках проекта 5-100 на кафедре Металловедения Цветных Металлов в сотрудничестве с Центром Композиционных Материалов [20] (Рис. 7).


Рис. 7. Изображение просвечивающей электронной микроскопии высокого разрешения (две области) и картины дифракции от выбранной области субмикроскопического размера (видны яркие пятна от кристаллической фазы и гало от аморфной).

Перспективным материалом являются недавно полученные при сотрудничестве с кафедрой МЦМ наноструктурированные металлические стекла (Рис. 8), которые могут быть использованы как материалы для медицины (высокая коррозионная стойкость и хорошая адгезия клеток) и для катализа (развитая поверхность) [21].



Рис. 8. Поверхность наноструктурированного металлического стекла Zr-Pd (СЭМ) как вставка в спектр рентгеновского излучения полученный от образца.

Недавно было показано, что однородные аморфные оксиды, формирующиеся на поверхности ОМС Ni-Nb, имеют аморфную структуру без дефектов в виде границ зерен присущих кристаллам, по которым может проходить утечка электрического тока. Они демонстрируют полупроводниковые свойства, и их проводимость меняется от электронной к дырочной после отжига [22]. Данный материал соответствует диоду Шоттки с весьма низким обратным током, проводимостью которого можно управлять отжигом в кислороде (Рис. 9).


Рис. 9. Воль-амперная характеристика натурального аморфного оксида на поверхности ОМС Ni-Nb (синяя кривая) и оксида, выросшего при отжиге при 300 С (красная кривая).

В заключение следует отметить, что металлические стекла после полувековой истории до сих пор представляют широкий интерес для исследования их необычных свойств и структуры, а двухфазные материалы типа стекло-кристалл очень перспективны для практического применения в качестве высокопрочных конструкционных материалов в тех областях, где несколько повышенная стоимость материала не имеет большого значения. Конечно, не стоит ожидать, что ОМС и двухфазные материалы даже при удешевлении составов заменят собой конструкционные стали или алюминиевые сплавы в строительстве и тяжелом машиностроении. Однако, они и двухфазные материалы типа стекло-кристалл, уже находят все более широкое применение в определенных областях, где они превосходят конкурентов: ортопедические винты в медицине (биосовместимость), микромашины (формуемость, износостойкость), спортинвентарь (гибкость, прочность, большая величина запасенной упругой энергии (Рис. 10)), датчики давления (гибкость без остаточной деформации), микроштампы (формуемость, износостойкость) и т. д. Эти материалы могут привести к изобретению революционных технологий, потенциально вытесняя традиционные обработки металлов для инновационных областей применения.


Рис. 10 Этот пример иллюстрирует высокую способность ОМС запасать энергию упругой деформации при падении слитка с некоторой высоты в трубке на наковальню.

Аморфные металлы


Аморфные металлы (металлические стёкла) — класс металлических твердых тел с аморфной структурой, характеризующейся отсутствием дальнего порядка и наличием ближнего порядка в расположении атомов. В отличие от металлов с кристаллической структурой, аморфные металлы характеризуются фазовой однородностью, их атомная структура аналогична атомной структуре переохлаждённых расплавов.

Содержание

История

Ещё в 1940-х годах было известно, что металлические плёнки, получаемые методом вакуумного низкотемпературного напыления, не имеют кристаллического строения. Однако начало изучению аморфных металлов было положено в 1960 году, когда в Калифорнийском технологическом институте группой под руководством профессора Дювеза (англ. Pol Duwez ) было получено металлическое стекло Au75Si25 [1] . Большой научный интерес к теме стал проявляться с 1970 года, первоначально в США и Японии, а вскоре — в Европе, СССР и КНР.

Классификация

Аморфные сплавы подразделяются на 2 основных типа: металл-металлоид и металл-металл.

При аморфизации методом закалки из жидкого состояния могут быть получены сплавы, содержащие следующие элементы:

  • Для типа металл-металлоид: B, C, Si, Al, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ge, As, Zr, Nb, Mo, Rh, Pd, Ag, Sn, Te, Hf, Ta, W, Ir, Pt, Au, Tl, La.
  • Для типа металл-металл: Be, Mg, Al, Ca, Ti, V, Fe, Co, Ni, Cu, Zn, Ga, Sr, Y, Zr, Nb, Rh, Pd, Ag, Sb, Hf, Ta, Re, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho, Er, Lu, Th, U.

Свойства

По некоторым свойствам ряд аморфных металлов значительно отличаются от кристаллических того же состава. В частности, некоторые из них отличаются высокой прочностью и вязкостью, коррозионной стойкостью, высокой магнитной проницаемостью.

Механические свойства

Ряд металлических стёкол отличается очень высокой прочностью и твёрдостью. В аморфных сплавах на основе элементов подгруппы железа (Fe, Co, Ni) твёрдость HV может превышать 1000 ГН/м 2 , прочность — 4 ГН/м 2 . Вместе с этим металлические стёкла обладают очень высокой вязкостью разрушения: например, энергия разрыва Fe80P13C7 составляет 110 кДж/м 2 , тогда как для стали X-200 значение этого параметра 17 кДж/м 2 .

Электрические свойства

Сопротивление аморфных металлов составляет, как правило, около 100—300 мкОм·см, что значительно выше сопротивления кристаллических металлов. Кроме того, сопротивление разных металлических стёкол в определённых температурных диапазонах характеризуется слабой зависимостью от температуры, а иногда даже убывает с увеличением температуры. При анализе особенностей сопротивления аморфных металлов выделяют 3 группы: простой металл — простой металл, переходный металл — металлоид, переходный металл — переходный металл.

Металлические стёкла группы простой металл — простой металл отличаются низким удельным сопротивлением (менее 100 мкОм·см). С ростом температуры сопротивление разных материалов данной группы может как возрастать, так и убывать.

Сопротивление материалов группы переходный металл — металлоид лежит в диапазоне 100—200 мкОм·см. Температурный коэффициент сопротивления поначалу положительный, а когда сопротивление достигает ~150 мкОм·см, становится отрицательным. Минимальное значение сопротивления при температурах 10—20 К.

Сопротивление материалов группы переходный металл — переходный металл превышает 200 мкОм·см. При этом с увеличением температуры сопротивление уменьшается.

Некоторые аморфные сплавы проявляют свойство сверхпроводимости, сохраняя при этом хорошую пластичность.

Получение

Существует множество способов получения металлических стёкол.

  1. Осаждение газообразного металла
    • Вакуумное напыление
    • Распыление
    • Химические реакции в газовой фазе
  2. Затвердевание жидкого металла
    • Закалка из жидкого состояния
  3. Нарушение кристаллической структуры твёрдого металла
    • Облучение частицами
    • Воздействие ударной волной
    • Ионная имплантация
  4. Электролитическое осаждение из растворов

Закалка из жидкого состояния

Закалка из жидкого состояния является основным способом получения металлических стёкол. Этот метод заключается в сверхбыстром охлаждении расплава, в результате которого он переходит в твёрдое состояние, избежав кристаллизации — структура материала остаётся практически такой же, как в жидком состоянии. Он включает в себя несколько методов, которые позволяют получать аморфные металлы в формах порошка, тонкой проволоки, тонкой ленты, пластинок. Также были разработаны сплавы с малой критической скоростью охлаждения, что позволило создавать объёмные металлические стёкла.

Для получения пластинок массой до нескольких сотен миллиграмм, капля расплава с большой скоростью выстреливается на охлаждаемую медную плиту, скорость охлаждения при этом достигает 10 9 °C/с. Для получения тонких лент шириной от десятых долей до десятков миллиметров расплав выдавливается на быстро вращающуюся охлаждающую поверхность. Для получения проволок толщиной от единиц до сотен микрон применяются разные методы. В первом расплав протягивается в трубке через охлаждающий водный раствор, скорость охлаждения при этом составляет 10 4 —10 5 °C/с. Во втором методе струя расплава попадает в охлаждающую жидкость, которая находится на внутренней стороне вращающегося барабана, где удерживается за счёт центробежной силы.

Применение

Несмотря на хорошие механические свойства, металлические стёкла не используются в качестве ответственных деталей конструкций по причине их высокой стоимости и технологических сложностей. Перспективным направлением является применение коррозионностойких аморфных сплавов в различных отраслях. В оборонной промышленности при производстве защитных бронированных ограждений, используются прослойки из аморфных сплавов на основе алюминия для погашения энергии пробивающего снаряда за счет высокой вязкостью разрушения таких прослоек.

Благодаря своим магнитным свойствам аморфные металлы используются при производстве магнитных экранов, считывающих головок аудио- и видеомагнитофонов, устройств записи и хранения информации в компьютерной технике, трансформаторов и других устройств.

Низкая зависимость сопротивления некоторых аморфных металлов от температуры позволяет использовать их в качестве эталонных резисторов.

Читайте также: