Что такое инертный металл

Обновлено: 05.01.2025

БЛАГОРОДНЫЕ МЕТАЛЛЫ, группа инертных металлов, встречающихся в природе обычно в чистом виде, а не в виде соединений или руд. Эта группа включает СЕРЕБРО, ЗОЛОТО, ПЛАТИНУ, ОСМИЙ, ИРИДИЙ. ПАЛЛАДИЙ, РОДИЙ и РУТЕНИЙ. Однако МЕДЬ иногда тоже встречается в природе в чистом виде, но ее не включают в данную группу, тогда как РТУТЬ, встречающуюся и в чистом виде, и в рудах (таких как КИНОВАРЬ), часто включают. Таким образом, благородные металлы - достаточно свободная группа. Золото и платина - драгоценные металлы, используемые в ювелирном деле благодаря их редкости, блеску, коррозийной стойкости, хорошей ковкости и пластичности. Осмий - самый тяжелый из всех подобных металлов. В сплаве с иридием, называемым осмидием, он применяется для покрытия перьев чернильных ручек. Платина и палладий используются в промышленности в качестве КАТАЛИЗАТОРОВ. см. также НЕБЛАГОРОДНЫЕ МЕТАЛЛЫ .

Научно-технический энциклопедический словарь .

Смотреть что такое "БЛАГОРОДНЫЕ МЕТАЛЛЫ" в других словарях:

БЛАГОРОДНЫЕ МЕТАЛЛЫ — (драгоценные металлы), химические элементы: золото Au, серебро Ag, платина Pt и платиновые металлы. Имеют высокую химическую стойкость, красивый внешний вид в изделиях (отсюда название); Au и Ag валютные металлы. Благородные металлы встречаются в … Современная энциклопедия

Благородные металлы — (драгоценные металлы), химические элементы: золото Au, серебро Ag, платина Pt и платиновые металлы. Имеют высокую химическую стойкость, красивый внешний вид в изделиях (отсюда название); Au и Ag валютные металлы. Благородные металлы встречаются в … Иллюстрированный энциклопедический словарь

БЛАГОРОДНЫЕ МЕТАЛЛЫ — (precious metals) Металлы: серебро, золото и платина. сравни: неблагородные металлы (base metals). Бизнес. Толковый словарь. М.: ИНФРА М , Издательство Весь Мир . Грэхэм Бетс, Барри Брайндли, С. Уильямс и др. Общая редакция: д.э.н. Осадчая И.М..… … Словарь бизнес-терминов

БЛАГОРОДНЫЕ МЕТАЛЛЫ — золото, серебро, платина и металлы платиновой группы (рутений, родий, палладий, осмий, иридий). Обладают химической стойкостью, тугоплавкостью (кроме Au и Ag), красивым внешним видом в изделиях (отсюда название) … Большой Энциклопедический словарь

БЛАГОРОДНЫЕ МЕТАЛЛЫ — золото, серебро, платина, палладий, иридий, родий, рутений и осмий, получившие название главным образом благодаря высокой химической стойкости и красивому внешнему виду в ювелирных изделиях. Кроме того, золото, серебро и платина обладают высокой… … Большая политехническая энциклопедия

Благородные металлы — Данные в этой статье приведены по состоянию на конец 80 х годов XX века. Вы можете помочь, обновив информацию в статье … Википедия

благородные металлы — золото, серебро, платина и металлы платиновой группы (рутений, родий, палладий, осмий, иридий). Обладают химической стойкостью, тугоплавкостью (кроме Au и Ag), красивым внешним видом в изделиях (отсюда название). * * * БЛАГОРОДНЫЕ МЕТАЛЛЫ… … Энциклопедический словарь

благородные металлы — золото, серебро, платина и палладий. Эти металлы ценятся за их внутреннюю стоимость, обеспечивающую мировые валюты, а также за их промышленное применение. Фундаментальные понятия предложения и спроса являются важными факторами, влияющими на цены … Финансово-инвестиционный толковый словарь

благородные металлы — taurieji metalai statusas T sritis chemija apibrėžtis Au, Ag, Pt ir jos grupės metalai. atitikmenys: angl. noble metals; precious metals rus. благородные металлы; драгоценные металлы ryšiai: sinonimas – brangieji metalai … Chemijos terminų aiškinamasis žodynas

благородные металлы — taurieji metalai statusas T sritis ekologija ir aplinkotyra apibrėžtis Cheminiam poveikiui labai atsparūs metalai: auksas, platina, iridis, osmis, sidabras, paladis, rodis, rutenis. Auksas, sidabras ir platina nesioksiduoja ore; iridis, rutenis… … Ekologijos terminų aiškinamasis žodynas

Благородные металлы

золото, серебро, платина и металлы платиновой группы (иридий, осмий, палладий, родий, рутений), получившие своё название главным образом благодаря высокой химической стойкости и красивому внешнему виду в изделиях. Кроме того, Золото, Серебро и Платина обладают высокой пластичностью, а металлы платиновой группы — тугоплавкостью. Эти достоинства отдельных Б. м. сочетаются в их сплавах, широко применяемых в технике. Золото и серебро известны человечеству несколько тысячелетий; об этом свидетельствуют изделия, найденные в древних захоронениях, и примитивные горные выработки, сохранившиеся до наших дней. Основными центрами добычи Б. м. в древности были Верхний Египет, Нубия, Испания, Колхида (Кавказ); имеются сведения о добыче Б. м. на Американском континенте (Центральная и Южная Америка) и в Азии (Индия, Алтай, Казахстан, Китай). На территории России золото добывали уже во 2—3-м тыс. до н. э. (т. н. чудские работы). Из россыпей Б. м. извлекали промывкой песков на щитах, поверх которых укладывали шкуры животных с подстриженной шерстью (для улавливания крупинок золота), а также при помощи примитивных желобов, лотков и ковшей. Б. м. из руд добывали нагреванием породы до растрескивания с последующими дроблением глыб в каменных ступах, и стиранием жерновами и промывкой. Разделение по крупности проводили на ситах. Из техники того времени интересны способ разделения сплавов золота и серебра кислотами, выделение золота и серебра из свинцового сплава купеляцией (См. Купеляция) (Древний Египет), извлечение золота амальгамированием ртутью или с помощью жировой поверхности (Древняя Греция). Купеляцию осуществляли в глиняных тиглях, куда добавляли свинец, соль, олово и отруби.

В 11—6 вв. до н. э. золото добывали в Испании в долинах рек Тахо, Дуэро, Миньо и Гуадьяро. В 6—4 вв. до н. э. начались разработки коренных и россыпных месторождений золота в Трансильвании и Западных Карпатах. В средние века (вплоть до 18 в.) добывали преимущественно серебро, добыча золота снизилась. С 16 в. испанцы начинают разработку Б. м. на территории Южной Америки: с 1532 — в Перу и Чили, а с 1537 — в Н. Гранаде (современная Колумбия). В Боливии в 1545 началась разработка «серебряной горы» Потоси. В 1577 были обнаружены золотоносные россыпи в Бразилии. К середине 16 в. в Америке добывали золота и серебра в 5 раз больше чем, в Европе до открытия Нового Света.

В 1- й половине 16 в. испанские колонизаторы обратили внимание на неплавкий тяжелый белый металл, встречающийся попутно с золотом в россыпях Новой Гранады. По внешнему сходству с серебром (исп. plata) они дали ему уменьшительное название «платина» (platina). Платина была известна ещё в древности, самородки этого металла находили вместе с золотом и называли их «белым золотом» (Египет, Испания, Абиссиния), «лягушачьим золотом» (остров Борнео) и т.д. Первоначально испанцы считали её вредной примесью, поэтому был издан правительственный декрет, предписывающий выбрасывать платину в море. Первое научное описание платины сделал Уотсон в 1741 в связи с началом её добычи в промышленных масштабах в Колумбии (1735).

В 1803 английский учёный У. Х. Волластон открыл Палладий и Родий, а в 1804 английский учёный С. Теннант открыл Иридий и Осмий. В 1808 русский учёный А. Снядицкий, исследуя платиновую руду, привезенную из Южной Америки, извлек новый химический элемент, названный им вестием. В 1844 профессор Казанского университета К. К. Клаус всесторонне изучил этот элемент и назвал его в честь России рутением. Металлы платиновой группы встречаются в природе чаще всего в полиметаллических (медно-никелевых) рудах, а также в месторождениях золота и платины.

Добыча Б. м. в России началась в 17в. в Забайкалье с разработки серебряных руд, которая велась подземным способом. Первое письменное упоминание о добыче золота из россыпей Урала относится к 1669 (летопись Долматовского монастыря). Одно из первых месторождений золота в России было открыто в Карелии в 1737; его разработка относится к 1745. Началом золотого промысла на Урале принято считать 1745, когда Е. Марков открыл Берёзовское рудное месторождение. В 1819 в россыпных месторождениях золота на Урале был обнаружен «новый сибирский металл» (платина). В 1824 на восточном склоне Уральских гор найдена богатая россыпь платины с золотом и заложен первый в России и Европе платиновый прииск. Позднее К. П. Голляховским и др. открыта Исовская система золото-платиновых россыпей, получившая мировую известность. В 1828 русский учёный В. В. Любарский опубликовал работы о первом в мире коренном месторождении платины, обнаруженном у Главного Уральского хребта. 95% платины до 1915 в основном добывали из россыпей, остальное количество получали при электролитическом рафинировании меди и золота.

Для извлечения Б. м. из россыпных месторождений в 19 в. создаются многочисленные конструкции золотоизвлекательных машин (например, Бутара, Вашгерд). С 1-й половины 19 в. на уральских приисках широко применялась Буторная разработка. В 30-х гг. 19 в. на приисках воду для размыва пород россыпей подавали под напором. Дальнейшее совершенствование этого способа привело к созданию водобоев — прототипов Гидромонитора. В 1867 А. П. Чаусов около озера Байкал впервые осуществил гидравлическую разработку россыпи; позднее (1888) этот способ был применен Е. А. Черкасовым в долине р. Чебалсук в Абаканской тайге. В начале 19 в. для добычи золота и платины из обводнённых россыпей применили землечерпалки, а в 1870 в Новой Зеландии для этой цели — драгу (См. Драга).

Начиная со 2-й половины 19 в. глубокие россыпи в России разрабатываются подземным способом, а в 90-х гг. 19 в. внедряются экскаваторы и скреперы.

В 1767 Ф. Бакунин в России впервые применил плавку серебряных руд с использованием шлаков в качестве флюсов. В работах шведского химика К. В. Шееле (1772) содержалось указание на переход золота в раствор при действии цианистых соединений. В 1843 русский учёный П. Р. Багратион опубликовал труд о растворении золота и серебра в водных растворах цианистых солей в присутствии кислорода и окислителей, заложив основы гидрометаллургии золота (см. Гидрометаллургия).

Очистка и обработка платины затруднялась высокой температурой её плавления (1773,5°С). В 1-й половине 19 в. А. А. Мусин-Пушкин получил ковкую платину прокаливанием её амальгамы. В 1827 русские учёные П. Г. Соболевский и В. В. Любарский предложили новый способ очистки сырой платины, положивший начало порошковой металлургии (См. Порошковая металлургия). В течение года этим способом было очищено впервые в мире около 800 кг платины, т. е. осуществлена переработка платины в больших масштабах. В 1859 французские учёные А. Э. Сент-Клер Девиль и А. Дебре впервые выплавили платину в печи в кислородно-водородном пламени. Первые работы по электролизу золота относятся к 1863, в производство этот метод введён в 80-х гг. 19 в.

Кроме амальгамации (См. Амальгамация), в 1886 впервые в России было осуществлено извлечение золота из руд Хлорированием (Кочкарьский рудник на Урале). В 1896 на том же руднике пущен первый в России завод по извлечению золота Цианированием [первый такой завод построен в Йоханнесбурге (Южная Африка) в 1890]. Вскоре цианистый процесс применили для извлечения серебра из руд.

В 1887—88 в Англии Дж. С. Мак-Артур и братья Р. и У. Форрест получили патенты на способы извлечения золота из руд обработкой их разбавленными щелочными цианистыми растворами и осаждения золота из этих растворов цинковой стружкой. В 1893 проведено осаждение золота электролизом, в 1894 — цинковой пылью. В СССР золото добывают в основном из россыпей; за рубежом около 90% золота — из рудных месторождений.

По эффективности добычи Б. м. из россыпей лучшим является дражный способ (см. Дражная разработка), менее экономичны скреперно-бульдозерный и гидравлический. Подземная разработка россыпей почти в 1,5 раза дороже дражного способа; в СССР её применяют на глубоких россыпях в долинах рр. Лены и Колымы. Серебро добывают главным образом из рудных месторождений. Оно встречается в основном в свинцово-цинковых месторождениях, дающих ежегодно около 50% всего добываемого серебра; из медных руд получают 15%, из золотых 10% серебра; около 25% добычи серебра приходится на серебряные жильные месторождения. Значительную часть платиновых металлов извлекают из медно-никелевых руд. Платину и металлы её группы выплавляют вместе с медью и никелем, и при очистке последних электролизом они остаются в шламе.

Для извлечения Б. м. широко пользуются методами гидрометаллургии, часто комбинируемыми с обогащением. Гравитационное обогащение Б. м. позволяет выделять крупные частицы металла. Его дополняют цианирование и амальгамация, первое теоретическое обоснование которой дано советским учёным И. Н. Плаксиным в 1927. Для цианирования наиболее благоприятно хлористое серебро; сульфидные серебряные руды часто цианируют после предварительного хлорирующего обжига. Золото и серебро из цианистых растворов осаждают обычно металлическим цинком, реже углём и смолами (ионитами). Извлекают золото и серебро из руд селективной флотацией (См. Флотация). Около 80% серебра получают главным образом пирометаллургией (См. Пирометаллургия), остальное количество — амальгамацией и цианированием.

Б. м. высокой чистоты получают Аффинажем. Потери золота при этом (включая плавку) не превышают 0,06%, содержание золота в аффинированном металле обычно не ниже 999,9 пробы (См. Проба); потери платиновых металлов не свыше 0,1%. Ведутся работы по интенсификации цианистого процесса (цианирование под давлением или при продувке кислорода), изыскиваются нетоксичные растворители для извлечения Б. м., разрабатываются комбинированные методы (например, флотационно-гидрометаллургический), применяются органические реагенты и др. Осаждение Б. м. из цианистых растворов и пульп эффективно осуществляется с помощью ионообменных смол. Успешно извлекаются Б. м. из месторождений при помощи бактерий (см. Бактериальное выщелачивание).

Сохраняя функции валютных металлов, главным образом золото (см. Деньги), Б. м. в то же время получили широкое применение в технике.

В электротехнической промышленности из Б. м. изготовляют контакты с большой степенью надёжности (стойкость против коррозии, устойчивость к действию образующейся на контактах кратковременной электрической дуги). В технике слабых токов при малых напряжениях в цепях используются контакты из сплавов золота с серебром, золота с платиной, золота с серебром и платиной. Для слаботочной и средненагруженной аппаратуры связи широко применяют сплавы палладия с серебром (от 60 до 5% палладия). Представляют интерес металлокерамические контакты, изготовляемые на основе серебра как токопроводящего компонента. Магнитные сплавы Б. м. с высокой коэрцитивной силой употребляют при изготовлении малогабаритных электроприборов. Сопротивления (потенциометры) для автоматических приборов и тензометров делают из сплавов Б. м. (главным образом палладия с серебром, реже с другими металлами). У них малый температурный коэффициент электрического сопротивления, малая термоэлектродвижущая сила в паре с медью, высокое сопротивление износу, высокая температура плавления, они не окисляются.

В химическом машиностроении и лабораторной технике из Б. м. изготовляют различные коррозионностойкие аппараты, электрические нагреватели, высокотемпературные печи, аппаратуру для производства оптического стекла и стекловолокна, термопары, эталоны сопротивления и др. При этом Б. м. используются в чистом виде, как биметалл и в сплавах (см. Платиновые сплавы). Химические реакторы и их части делают целиком из Б. м. или только покрывают фольгой из Б. м. Покрытые платиной аппараты применяют при изготовлении чистых химических препаратов и в пищевой промышленности. Когда химической стойкости и тугоплавкости платины или палладия недостаточно, их заменяют сплавами платины с металлами, повышающими эти свойства: иридием (5—25%), родием (3—10%) и рутением (2—10%). Примером использования Б. м. в этих областях техники является изготовление котлов и чаш для плавки щелочей или работы с соляной, уксусной и бензойной кислотами; автоклавов, дистилляторов, колб, мешалок и др.

В медицине Б.м. применяют для изготовления инструментов, деталей, приборов, протезов, а также различных препаратов, главным образом на основе серебра. Сплавы платины с иридием, палладием и золотом почти незаменимы при изготовлении игл для шприцев. Из медицинских препаратов, содержащих Б. м., наиболее распространены ляпис, Протаргол и др. Б. м. применяют при лучевой терапии (иглы из радиоактивного золота для разрушения злокачественных опухолей), а также в препаратах, повышающих защитные свойства организма.

В электронной технике из золота, легированного германием, индием, геллием, кремнием, оловом, селеном, делают контакты в полупроводниковых диодах и транзисторах.

В фото-кинопромышленности Б.м. применяют в виде солей при изготовлении светочувствительных материалов (главным образом серебро в виде бромистой соли, являющейся важнейшей частью светочувствительной эмульсии), реже — соли золота и платины при вирировании изображения (см. Окрашивание фотографических изображений).

В качестве покрытий других металлов Б. м. предохраняют основные металлы от коррозии или придают поверхности этих металлов свойства, присущие Б. м. (например, отражательная способность, цвет, блеск и т.д.). Золото эффективно отражает тепло и свет от поверхности ракет и космических кораблей. Для отражения инфракрасной радиации в космосе достаточно тончайшего слоя золота в 1 /60 мкм. Для защиты от внешних воздействий, а также для улучшения наблюдения за спутниками на их внешнюю оболочку наносят золотое покрытие. Золотом покрывают некоторые внутренние детали спутников, а также помещения для аппаратуры с целью предохранения от перегрева и коррозии. Б. м. используют также в производстве зеркал (серебрение стекла растворами или покрытие серебром распылением в вакууме). Тончайшую плёнку Б. м. наносят изнутри и снаружи на кожухи авиационных двигателей самолётов высотной авиации. Б. м. покрывают отражатели в аппаратах для сушки инфракрасными лучами, электроконтакты и детали проводников, а также радиоаппаратуру и оборудование для рентгено- и радиотерапии. В качестве антикоррозийного покрытия Б. м. используют при производстве труб, вентилей и ёмкостей специального назначения. Разработан широкий ассортимент золотосодержащих пигментов для покрытия металлов, керамики, дерева.

Широко распространены антифрикционные сплавы, припои на основе Б. м. Например, припои с серебром значительно превосходят по прочности медно-цинковые, свинцовые и оловянные, их применяют для пайки радиаторов, карбюраторов, фильтров и т.д.

Сплавы иридия с осмием, а также золота с платиной и палладием используют для изготовления компасных игл, напаек «вечных» перьев.

Высокие каталитические свойства некоторых Б. м. позволяют применять их в качестве катализаторов: платину — при производстве серной и азотной кислот; серебро — при изготовлении формалина. Радиоактивное золото заменяет более дорогую платину в качестве катализатора в химической и нефтеперерабатывающей промышленности. Б. м. используют также для очистки воды.

Лит.: Чижиков Д. М., Металлургия тяжёлых цветных металлов, М., 1948; Металлы и сплавы в электротехнике, 3 изд., т. 1—2, М.— Л., 1957; Плаксин И. Н., Металлургия благородных металлов, М., 1958; Данилевский И. В., Русское золото, М., 1959; Бузланов Г. Ф., Производство и применение металлов платиновой группы в промышленности, М., 1961: Вязельщиков В. П., Парицкий З. Н., Справочник по обработке золотосодержащих руд и россыпей, М., 1963; Анализ благородных металлов, М., 1955; Пробоотбирание и анализ благородных металлов, М., 1968; Йорданов Х. В., Записки по металлургия на редките метали, София, 1959; Silver, Princeton, [N. Y.], 1967.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Большая Энциклопедия Нефти и Газа

Инертные металлы ( серебро, золото) с высокопрочной решеткой, при погружении в раствор своей соли, вызывают осаждение катионов соли металла на поверхность электрода, причем металл заряжается положительно. [2]

Если инертный металл , например платину, погрузить в обратимую окислительно-восстановительную систему, например в раствор хлористого и хлорного железа, и если этот электрод соединить с водородным полуэлементом при активности ионов водорода, равной единице, то наблюдается разность потенциалов. Можно показать теоретически и экспериментально, что наблюдающаяся разность потенциалов является функцией отношения окисленной и восстановленной форм; чем больше будет содержание окисленного компонента, тем более положительным будет платиновый электрод по отношению к водородному электроду. [3]

Для очень инертных металлов или для таких, которые недоступны в достаточных количествах или с требуемой степенью чистоты, можно применять другие восстанавливающие агенты. Выбор часто определяется термодинамическими характеристиками. Конечно, водород является одним из наиболее широко применяемых восстановителей. [4]

При обыкновенной температуре инертный металл ; не реагирует с водой, не окисляется на воздухе и не соединяется с другими элементами; легко соединяется со фтором, хлором, бромом и иодом. Чистый бор не взаимодействует с хлором при температурах ниже 500 С, но быстро соединяется с ним при 550 С, образуя трихлорид бора. В соляной и плавиковой кислотах бор не растворяется даже при кипении. Бор окисляется в горячей азотной кислоте, однако горячая концентрированная серная кисло-та и горячий раствор хромовой кислоты в серной кислоте на бор почти не действуют. Бор растворяется в смеси азотной, соляной и серной кислот. [5]

Он представляет собой менее инертный металл , чем иридий. [6]

Они создаются погружением инертного металла ( платина, золото, иридий и др.) в раствор, в котором протекает окислительно-восстановительная реакция. Инертный металл служит источником или приемником электронов. [7]

Поскольку электрод из инертного металла реагирует на все редокс-системы, присутствующие в растворе, расчет активности ионов в ходе окислительно-восстановительного титрования более сложен, чем в других случаях. [8]

Бор при обыкновенной температуре инертный металл ; он не реагирует с водой, не окисляется на воздухе и не соединяется с другими элементами. Бор легко соединяется со фтором, хлором, бромом и иодом. Чистый бор не взаимодействует с хлором при температурах ниже 500 С, но быстро соединяется с ним при 550 С, образуя трихлорид бора. В соляной и плавиковой кислотах бор не растворяется даже при кипении. Бор окисляется в горячей азотной кислоте, однако горячая концентрированная серная кислота и горячий раствор хромовой кислоты в серной кислоте на бор почти не действуют. Бор растворяется в смеси азотной, соляной и серной кислот. [9]

Этот тип электрода представляет собой инертный металл , обычно платину, погруженную в исследуемый раствор, в который засылается кристаллический хингидрон. [10]

Было обнаружено, что различные инертные металлы реагируют с разной скоростью на изменение отношения окисленной формы к восстановленной форме вещества, находящегося в растворе. Так, например, платина реагирует быстро, а некоторые другие металлы, особен - f но вольфрам, - медленно. Так как при титро - ван ии используются только относительные зна - чения величин, то вместо обычного электрода § сравнения можно употреблять вольфрамовый электрод при условии, если титрование производится с постоянной скоростью. Это позволяет конструктивно обойти каломельный электрод с соляным мостиком и создать более прочную механическую конструкцию. Кривые, полученные в этом случае, подобны кривым обычного потенциометрического титрования, однако переход часто происходит значительно резче. [12]

Найдено, что потенциалы инертных металлов в различной степени зависят от отношения окисленной формы к восстановленной форме вещества, находящегося в растворе. Так, потенциал платины может быть точно выражен уравнением ( 3 - 10), потенциалы же некоторых других металлов, в особенности вольфрама, оказываются гораздо ниже, чем это предсказывается теорией. Поэтому при титровании вместо обычного электрода сравнения можно использовать вольфрам, поскольку требуется измерение только относительных величин. Это обстоятельство позволяет устранить каломельный электрод с солевым мостиком и получить более прочную установку, требующую меньше внимания и более редкой замены. [13]

Изменение сопротивления термопар из инертных металлов влияет также на точность измерений. [14]

Редокс-электрод создается путем погружения инертного металла ( платина, зол ото ил и др.) в раствор, в котором протекает окислительно-восстановительная реакция. Инертный металл служит источником или приемником электронов. [15]

Благородные металлы: почему они так называются и сколько их

Благородные металлы

Пожалуй, в доме у каждого человека найдутся изделия из благородных металлов. Но далеко не все знают, почему представителей этой категории так назвали. Многие ошибочно полагают, что благородный — значит драгоценный. Да, действительно, все благородные металлы считаются драгоценными. Но причины, по которым они получили эти звания, абсолютно разные и один статус с другим не имеет фактической связи.

Признаки благородства и классификация элементов

Понять, какие металлы называются благородными, а какие считаются базовыми или, иначе говоря, неблагородными, весьма просто. Этот статус определяется свойствами, которыми они обладают. Вещества, которые относятся к благородным металлам, не окисляются и не подвергаются коррозийному воздействию. Эти характерные особенности разительно отличают их от других элементов — все прочие металлы не могут похвастаться такой стойкостью, поэтому считаются неблагородными.

Виды благородных металлов в слитках

Все без исключений представители благородной категории также обладают статусом драгоценных. Принадлежность к последним обусловлена редкостью этих веществ. В список благородных металлов входят восемь элементов:

  • золото;
  • серебро;
  • платина;
  • иридий;
  • осмий;
  • палладий;
  • родий;
  • рутений.

Вещества из первой тройки считаются основными металлами благородной группы. Пять остальных относятся к так называемым дочерним элементам платины. Платиновых представителей зачастую делят на две группы:

К первым относятся палладий, родий и рутений. К последним — иридий, осмий и сама платина.

Некоторые ученые причисляют к благородным еще девятого представителя — химический элемент технеций. Но подобную точку зрения большинство специалистов не поддерживает — этот крайне редко встречающийся в природе металл обладает изрядной радиоактивностью, поэтому официально называть его в числе благородных не принято.

Основные характеристики и особенности

Плавление золота

Итак, восемь существующих благородных металлов объединены схожими физическими и химическими свойствами, к которым, помимо устойчивости против окислительных и коррозийных процессов, относятся:

  • мягкость;
  • высокая пластичность;
  • невероятная прочность;
  • отличная теплопроводимость;
  • высокая тугоплавкость (за исключением серебра и золота);
  • хорошая тягучесть;
  • прекрасная электропроводимость.

Также среди характеристик веществ благородной категории стоит особо отметить красивый внешний вид. Благодаря высочайшей химической стойкости изделия, выполненные их таких материалов, сохраняют свой привлекательный блестящий облик в течение очень долгого времени.

Для сравнения в качестве наиболее яркого противоположного примера можно привести медь. Первоначальный облик изделий из этого неблагородного металла практически не уступает драгоценностям по яркому блеску и красоте. Но привлекательный внешний вид пропадает очень быстро — при контакте с воздухом элемент вступает в реакцию и начинается процесс окисления. В результате на поверхности металла образуется своеобразная пленка или, иначе говоря, налет, из-за чего изделие становится тусклым и меняет свой изначальный оттенок.

Представители драгметаллов благородной группы составляют единую категорию элементов. Но, разумеется, каждый из них имеет и собственные индивидуальные особенности.

Золото (aurum)

Благородный металл золото

По-настоящему неповторимый элемент — это единственный металл из всех существующих, который в форме чистого вещества обладает столь ярким выразительным желтым окрасом. Химическая стойкость золота заметно выше, чем у его «товарищей» по благородной категории.

На вещество не способны воздействовать даже такие общеизвестные разрушители, как:

  • щелочи;
  • соли;
  • кислоты;
  • высокие температуры;
  • влага.

Плотность золота составляет 19,3 г/см3. Это вещество — одно из самых плотных и тяжелых среди металлов. Температура плавления металла превышает тысячу градусов Цельсия.

Серебро (argentum)

Светло-серый металл серебро

Этот светло-серый металл выделяется среди своих «одногруппников» прекрасной отражательной способностью. По весу серебро, конечно, уступает золоту. То же касается и плотности — у него она достигает всего 10,5 г/см3. Температура плавления составляет 962 градуса Цельсия.

Существует две разновидности кислот, с которыми серебро вступает в реакцию:

Устойчив против влияния влаги. Но темнеет под воздействием содержащегося в воздухе сероводорода.

Платина (platinum) и «дочерние» представители

Достойная соперница золота за звание самого тяжелого металла. Плотность платины составляет 21,5 г/см3. Это бело-серебристое блестящее вещество плавится при температуре 1773 градуса Цельсия.

Благородный металл платина

Представители платиновой группы и их индивидуальные свойства:

Металл иридий

  • Палладий (palladium). В отличие от других благородных представителей при определенных условиях это вещество серебристого цвета все же окисляется. Эти условия заключаются в нагревании в температурном диапазоне 300−860 градусов. Впрочем, если превысить верхний порог, образовавшийся оксидный налет исчезнет, а сам металл еще более посветлеет. Плотность вещества равна 12 г/см3. А плавится палладий при температуре 1554 градуса Цельсия.
  • Родий (rhodium). Вещество голубоватого окраса почти наравне с серебром обладает хорошей отражательной способностью. Твердый, но достаточно хрупкий металл. Его плотность составляет 12,4 г/см3. Температура, необходимая для плавления родия, равняется 1962 градусам Цельсия.
  • Рутений (ruthenium). Внешне почти идентичен с платиной, но по своим свойствам и характеристикам близок к родию. В частности, это касается плотности. По температуре плавления среди всех металлов благородной группы уступает только осмию и иридию. У рутения она составляет 2330 градусов Цельсия.
  • Иридий (iridium). Серо-белое вещество по своим свойствам идентично рутению и родию. Но по плотности обходит даже платину — у иридия этот параметр составляет 22,4 г/см3. По температуре плавления этот металл входит в тройку лидеров среди элементов благородной группы (вместе в рутением и осмием). Иридий плавится при 2466 градусах Цельсия. Это вещество — самый стойкий металл. На него не оказывают воздействие ни кислоты, ни соли, ни какие-либо химические элементы.
  • Осмий (osmium). Белое вещество совершенно невозможно растворить в кислоте. Это абсолютный чемпион среди благородных веществ как по тяжести и плотности, так и по температуре плавления. Последняя у осмия достигает 3035 градусов Цельсия, а плотность составляет 22,5 г/см3.

История открытий

Золотые и серебряные самородки были обнаружены человечеством несколько тысяч лет назад, то есть до наступления нашей эры. Разработки их природных месторождений успешно велись на территории почти всего земного шара еще во времена древности.

Самородки золота

Несколько примитивные приспособления и методы добычи не мешали древним людям достигать поставленных целей и проникать в недра земли. Полученные золото и серебро переплавлялись и обрабатывались. Их использовали для производства самых разных предметов. Об этом свидетельствуют исторические сведения и разнообразные изделия из этих металлов, обнаруженные при археологических раскопках древних захоронений.

Платиновое «серебришко»

Самородки платины

В отличие от золота и серебра, третий основной благородный элемент — платина — был открыт людьми только в 16 веке. Тяжелые белые самородки, которые плохо плавились, были найдены испанскими колонизаторами в виде примеси в золотых месторождениях в Новой Гранаде. За внешнюю схожесть с серебром (по-испански — plata) первооткрыватели прозвали обнаруженный металл словом platina, что буквально на испанском языке значит «серебришко».

До находки испанцев платина, разумеется, существовала и даже была известна людям. Ее называли белым золотом и использовали для изготовления фальшивых золотых монет и драгоценностей. В результате подобных махинаций, прокатившихся по всему миру, этот металл был официально объявлен запрещенным, в результате чего его начали топить в морской пучине.

В XVI веке испанцы заново открыли драгметалл и реабилитировали его. Но, несмотря на это, первое описание платины с научной точки зрения было сделано только в XVIII веке английским ученым Уильямом Уотсоном.

Остальные представители группы

Оставшиеся представители, элементы платиновой группы, были открыты один за другим в XIX веке. Они прекрасно символизируют эпоху научных исследований и открытий.

Благородный металл палладий

Родий и палладий были получены в ходе химических опытов англичанином Уильямом Хайдом Уолластоном в 1803 году. Ровно через год таким же образом были открыты осмий и иридий, но уже другим английским химиком — Смитсоном Теннантом.

История открытия рутения более длинная, чем у его «родственников». Впервые он был извлечен из платиновой руды в 1808 году видным польским научным мужем Анджеем Снядецким. Полученному новому химическому элементу ученый дал название вестий.

Под таким именем металл просуществовал до 1844 года, когда профессор университета Казани, русский ученый Карл Клаус начал масштабное изучение этого элемента. По окончании всестороннего исследования Клаус переименовал вещество в рутений — в честь великой Руси.

Нахождение в природе и получение

Добыча благородных металлов

Каждый из благородных элементов встречается в природе в двух формах — самородковой и примеси в рудах. Но стоит отметить, что в отличие от золота и серебра, платины в виде чистого вещества не существует в природе. А серебряные самородки попадаются очень редко.

Месторождений руд благородных металлов в мире осталось не так много, как хотелось бы. По этой причине их разработки ведутся под строжайшим контролем предприятий, которым принадлежат соответствующие разрешения на добычу драгоценных металлов в конкретных месторождениях.

Кроме того, благородные элементы зачастую выделяются при разработке руд неблагородных металлов. Способы, которыми могут добываться благородные металлы из руды, активно совершенствуются и обретают все больше вариаций.

Сферы и области использования

Уникальные неповторимые качества этих веществ обусловили их применение в самых разнообразных отраслях и сферах. Этому не помешала даже высокая стоимость таких материалов.

Ювелирные изделия из благородных металлов

Разумеется, первое, с чем ассоциируется драгоценное сырье — это ювелирные изделия. Украшения и другие предметы, выполненные из таких металлов, пользуются огромным спросом, что вполне объяснимо. Это не только красиво, но и выгодно. Драгоценности всегда были отличным вложением денежных средств.

Не менее известно и использование благородных материалов в качестве валюты. Впрочем, в современном мире монеты из таких металлов — это объект инвестирования или коллекционирования. В области инвестиций драгметаллы неизменно пользуются популярностью и востребованностью. Особенно это касается золота.

Кроме того, эти элементы широко применяются (для изготовления изделий полностью, отдельных деталей и так далее):

  • в производстве различной техники и электроники, включая микротехнологии;
  • в авиации и космонавтике;
  • в машиностроении (от различных агрегатов до автомобилей);
  • в производстве радиоаппаратуры;
  • в химической отрасли, включая лабораторную сферу (от посуды до техники);
  • в медицине;
  • в производстве различных защитных покрытий для абсолютно любых поверхностей (от ракет и аппаратуры до зеркал, труб, керамики, металлов и дерева);
  • в кино- и фотопромышленности;
  • в производстве часов и часовых механизмов.

Причем в медицине благородные металлы используются не только для изготовления инструментов и медтехники, но также и в производстве лекарственных препаратов. И это далеко не все — перечислить все области и сферы применения драгоценных материалов невозможно.

Вещества, относящиеся к благородным, играют крайне значительную роль. Они встречаются каждый день в какой-либо форме и используются практически во всех отраслях. Какой станет жизнь человечества и мир вокруг, когда природные запасы этих металлов иссякнут, можно только гадать.

Все о благородных металлах

Все о благородных металлах

С древнейших времен людям известно о существовании драгметаллов. Согласно верованиям, их наделяют магическими свойствами. Кроме того, им не страшны высокие температуры, воздействие кислотно-щелочных растворов, они сияют на солнце и сохраняют роскошный вид даже после продолжительного контакта с влагой. За такие свойства их и назвали благородными.




Что это такое?

Металлы бывают черными, цветными, а также благородными. Последние всегда высоко оценивались людьми. Чем больше их было у человека, тем более богатым и влиятельным он считался. Высокая цена этих металлов, трудо- и ресурсоемкость добычи в сочетании с ограниченностью запасов стали причиной, по которой металлы этой группы прозвали драгоценными.

Полный список всех благородных элементов указан в ФЗ «О драгоценных металлах и драгоценных камнях» 1998 г. В наши дни к этой категории относят восемь химических элементов. Они широко востребованы в самых разных сферах. Это платина, золото, палладий и серебро, также драгметаллами считаются МПГ (рутений, радий, осмий и иридий). Ещё один металл, технеций, также является благородным, но он обладает высокой радиоактивностью, потому в общий перечень не входит.


Отличительная особенность благородных металлов заключается в том, что под действием неблагоприятных внешних факторов их молекулярная структура остается неизменной. Температура плавления таких элементов очень высока. Они не разлагаются в воде и не вступают в реакцию с кислородом, соответственно, не образуют окислов. Получить сплав с такими металлами можно исключительно путем сложных технических манипуляций с применением сильных химических реагентов.

Массовая доля драгметаллов в общем объеме добычи ископаемых невелика. Именно этим объясняется их исключительный статус и повышенная стоимость.




Драгметаллы относятся к невозобновляемым и особо ценным естественным ресурсам. Ни один из них невозможно получить лабораторным путем, поэтому возникновение этих металлов на Земле для ученых по сей день остаётся загадкой. На сегодняшний день существует две основных гипотезы их появления.

  • Космическая. Согласно этой теории, на определенном этапе своего формирования Земля была бомбардирована метеоритами. Считается, что именно это и привело к появлению металлов в земной коре. У данной гипотезы имеется существенный изъян. Ученые установили, что в среднем каждый метеорит содержит не более 0,005% драгметаллов. Это не сопоставляется с количеством, которое добывается на действующих месторождениях.
  • Тектоническая. Сторонники этой версии утверждают, что драгметаллы появились в ядре нашей планеты под действием особых условий. А потом вместе с раскаленной лавой были выброшены на земную поверхность. Эта теория более правдоподобна, но и она не дает ответы на все вопросы. Так, она не объясняет, по какой причине эти ископаемые в какой-то момент развития планеты перестали формироваться и поступать в земную кору вместе с горячей лавой.

Тема возникновения драгоценных металлов является на сегодняшний день одной из самых дискутируемых. Не исключено, что если однажды ученые сумеют найти ответ, то это может изменить всю систему финансовых взаимоотношений в стране и мире.



Почему первые деньги были из драгоценных металлов?

Золото с древних времён выступает в качестве денежного материала. Люди всегда стремились заполучить этот металл для того, чтобы потом с его помощью приобрести другой желаемый товар. Чтобы понять, почему именно этот металл стал расчетной единицей, нужно заглянуть в далекое прошлое.

В наши дни денежные монеты отливают из алюминия, никеля и палладия. В распоряжении древних людей было намного меньше материалов: золото, серебро, медь, свинец, олово, а также железо. Из них только два не окислялись при контакте с воздухом и водой и считались благородными. Эти металлы сами по себе уже имели высокую ценность. А также обладали необходимыми для изготовления всеобщего денежного эквивалента характеристиками.



Рассмотрим эти характеристики подробнее.

  • Однородность. Пара кусков одного и того же драгоценного металла, имеющие равный вес, имеют и одинаковую стоимость. Именно поэтому для выражения цены изделий подобный металл оптимален. Все его экземпляры идентичны, их отличие заключается лишь в массе.
  • Делимость. В отличие от иных принятых в древности денежных эквивалентов, например, скота и мехов, благородные металлы можно разделить на несколько частей без утраты их стоимости. Это очень актуально для любых денежных единиц, которые должны обслуживать обмен товаров самой разной ценности.
  • Безотходность. Эта характеристика вытекает из предыдущей. При делении куска драгоценного металла не образуется отходов, более и менее ценных частей, а общая стоимость остаётся неизменной.
  • Мобильность. Монеты удобны в применении. Они маловесны, их можно с легкостью переносить. Так, даже небольшие весовые количества золота, переходящие из рук в руки, имеют довольно высокую стоимость, поэтому они могут обслуживать обращение больших объемов относительно дешевых изделий.
  • Сохраняемость. Благородные металлы не подвергаются порче, их не ест ржа, на них не появляется гниль. Соответственно, по мере хранения они не утрачивают своей внутренней ценности.

Наконец, золото, серебро и прочие благородные металлы всегда были универсальным средством накопления, так называемым сокровищем. На протяжении всей истории, вне зависимости от политического режима, общественной обстановки, изменения государственных границ и перемещения из одной страны в другую, эти металлы были и остаются ценными.

Все эти характеристики привели к тому, что за благородными металлами на протяжении многих столетий прочно закрепилась функция денежных материалов.



Обзор видов

Свое определение благородные металлы получили за счет особых физико-химических свойств. В зависимости от вида металла эти параметры могут давать о себе знать в большей или меньшей степени. Но в любом случае они будут уникальными.


Родий

Этот металл относится к группе платиновых металлов. Он имеет светло-голубой окрас и принадлежит к категории лёгких металлов. Его отличает высокая степень хрупкости и при этом исключительная твердость. Востребован благодаря уникальным отражательным характеристикам. Этот металл проявляет стойкость к агрессивному воздействию химикатов, окислить его можно исключительно нагретой серной кислотой. Процесс плавления происходит при термическом воздействии в 2000 градусов.



Платина

Платина была впервые обнаружена на рудниках Америки, а из-за белесого блеска её раньше называли «серебришко». Только в середине XVIII столетия металл получил статус драгоценного, и в кратчайшее время его цена обогнала серебро и золото. Материал пластичный, тугоплавкий, хорошо поддается ковке, благодаря чему пользуется большой популярностью у ювелиров.

При этом платина твёрже золота, она устойчива к кислотно-щелочным воздействиям. Не окисляется.



Золото

Золото характеризуется хорошей ковкостью и исключительной пластичностью. В отличие от платины, оно плавится при более низких температурных показателях. Неуязвимо для воздействия кислот, щелочей и едких солей, может вступать в реакцию лишь с царской водкой. Чистое золото имеет типичный блеск и насыщенный жёлтый оттенок, но в природной среде встречается очень редко. Преимущественно старатели добывают руду зеленоватого цвета.



Осмий

Благородный металл белого колера. Отличается повышенной устойчивостью к агрессивному воздействию химических и физических факторов. Температура плавления соответствует 2700 градусам.



Иридий

Иридий относятся к категории тяжелых металлов. Он самый плотный и крепкий. Не растворяется в едких кислотах и щелочах. Плавится при нагреве в 2450 градусов. Имеет серовато-белый оттенок.



Рутений

По визуальным характеристикам рутений можно перепутать с платиной, а по плавкости этот металл имеет такие же характеристики, что и иридий. Его отличает плотность и исключительная прочность. Под воздействием окислителей, щёлочи и повышенных температур может сформировать растворимые в воде спеки.



Палладий

Мягкий металл, имеющий белый с выраженным серебристым отливом окрас. Температура плавления — 1550 градусов. При нагревании до 850 градусов начинает формировать оксиды, но при последующем повышении нагрева вновь становится чистым.



Серебро

Среди всех драгметаллов серебро имеет сравнительно пониженную температуру плавки — только 960 градусов, а также минимальную плотность. Тем не менее этот материал почти не вступает во взаимодействие с кислотами, служит надежным тепло- и электропроводником.

Однако под воздействием сероводорода в составе атмосферного воздуха темнеет.



Особенности добычи и производства

Драгметаллы — это невозобновляемые элементы. Их россыпи уже почти не встречаются на поверхности нашей планеты. Сегодня золотые прииски больше напоминают подземные резервуары, в них добытую руду сперва трансформируют в раствор, а потом процеживают и подвергают повторной переработке.

Золото и серебро сегодня становятся побочным продуктом извлечения руды в базовой добывающей отрасли. В качестве самостоятельных такие прииски в промышленных масштабах не разрабатываются. Это объясняется тем, что присутствие благородных элементов в земной коре минимально, поэтому их добыча будет нерентабельной.



Руда, добытая старателями, непригодна для применения без последующей очистки и обработки. Рассмотрим подробнее процесс подготовки драгметалла на примере золота.

Читайте также: