Что такое хрупкость металла
Механические свойства характеризуют поведение материалов под действием нагрузки. В рамках данной статьи рассмотрим 5 основных механических свойств материалов: прочность, упругость, пластичность, хрупкость и твердость.
Что такое Прочность?
Прочностью называется способность разнообразных материалов без разрушения воспринимать напряжение под внешним воздействием различных сил. Прочность зависит не только от того, какой материал, но и имеет зависимость от типа состояния напряжения — например, это может быть сжатие, растяжение или изгиб. Также непосредственное влияние на прочность оказывают условия, при которых материал эксплуатируется — воздействия извне, температура окружающей среды.
Испытания на прочность
Существует понятие предела прочности, который является основной количественной характеристикой прочности и численно равен разрушающему напряжению для конкретного материала. Предел прочности для каждого материала определяется средним результатом серии испытаний, так как основные материалы, используемые в строительстве, характеризуются неоднородностью.
Если происходит статическая нагрузка для выявления прочности проводится испытание образцов определенного стандарта (как правило речь идет об образцах, имеющих сечение круглой формы, реже прямоугольной), диаграмма таким образом отражает зависимость относительного удлинения от величины действующего на образец напряжения.
Прочность материала различных конструкций обосновывается при сравнении тех напряжений, которые возникают в конструкции при внешнем воздействии, также с учетом таких показателей как пределы прочности и текучести.
О так называемой усталости материала (в частности, металла) говорят если при большом числе циклически повторяющихся внешних напряжений разрушение происходит даже при напряжениях меньших чем предел прочности. В этом случае рассчитывается циклическая прочность, т.е. обоснование прочности материала, проводящееся с учетом нагрузки, которая меняется с определенным циклом.
Упругость
Если материал самопроизвольно восстанавливает форму, после того как внешняя сила прекращает действовать, то такое механическое свойство называется упругостью материала. Если после снятия внешней нагрузки, деформация полностью исчезает, то следует говорить об обратимой упругой деформации.
От чего зависит упругость?
Упругость материала непосредственно связана с силами взаимодействия, происходящими между отдельными атомами. В твёрдых телах при температуре равной абсолютному нулю и при отсутствии какого-либо внешнего воздействия атомы занимают положения, называемые равновесными. Потенциальная энергия тела увеличивается при воздействии внешнего напряжения, и атомы смещаются из равновесного положения. Соответственно, когда прекращается внешнее напряжение, конфигурация неравновесных атомов деформированного материала постепенно становится неустойчивой и возвращается в равновесное состояние. Помимо силы притяжения и отталкивания, которые действуют на каждый атом материала со стороны остальных, существуют и угловые силы, они непосредственно связаны с валентными углами, наблюдающимися между прямыми, которые соединяют атомы между собой. Естественно, это характерно исключительно для макроскопических тел и молекул, содержащих много атомов. Угловые силы уравновешиваются при равновесных значениях валентных углов. Когда говорят о количественной характеристике упругости материала, то используется модуль упругости, зависящий от напряжения воздействующего на материал и определяется производной зависимости напряжения от деформации, что применимо для области упругой деформации.
Пластичность
Пластичностью называется механическое свойство материалов под влиянием внешней нагрузки изменять форму и размер, а после того как нагрузка перестает действовать — сохранять ее в измененном виде.
Пластичность является важным свойством, учитывающееся когда происходит выбор материала несущей конструкции, либо же определения технологии (методики) изготовления разнообразных изделий. Для конструкций важно сочетание высокой пластичности материала и большого показателя упругости. Эта комбинация свойств предотвращает внезапное разрушение материала. В целом пластичность в физике материалов противопоставляется как упругости, так и хрупкости — пластичный материал сохраняет форму, которую придают ему внешние воздействия.
Пластичность — важное механическое свойство
Изучение пластичности важно при прогнозировании долговечности и прочности какой-либо конструкции, так как пластичность зачастую предшествует разрушению и важно рассмотреть деформационные процессы, возникающие в материале. Измерение пластичности, являющейся важным свойством металлов, очень важно при обработке под давлением — ковке и прокатке. Это свойство металлов непосредственно зависит от тех условий, в которых происходит деформирование — температуры, давления и т.д. Пластичность металлов влияет на такие характеристики как удлинение (абсолютное и относительное) и сужение материала. При удлинении происходит увеличение длины образца под воздействием происходящего растяжения, а при сужении, соответственно, от растяжения образца происходит уменьшение площади поперечного сечения.
Хрупкость
Хрупкость относится к механическим свойствам материалов противоположным пластичности. Те процессы, которые повышают пластичность, соответственно, снижают хрупкость, и наоборот. Материалы, отличающиеся хрупкостью при статическом испытании разрушаются без пластической деформации.
Это характерно, например, для стекла. Если при статическом испытании материал характеризуется пластичностью, но при динамическом испытании разрушается, то речь идет о так называемой ударной хрупкости. Причиной ударной хрупкости могут быть пределы текучести (то есть зависимость скорости деформации и сопротивления) и пределы прочности (изменение сопротивления разрушению). Хрупкое разрушение материала происходит если сопротивление деформации равно или больше сопротивления отрыву. Соответственно, пластичность материала уменьшается, если рост сопротивления деформации происходит быстрее роста сопротивления разрушению.
Фактором, от которого непосредственно зависит хрупкое состояние материала является однородность напряженного состояния. Материал переходит от пластичности к хрупкости при неоднородном напряженном состоянии. Расчет сопротивления хрупкому разрушению является важным обоснованием прочности конструкции.
Твёрдость
Механическое свойство материала при внешнем воздействии не испытывать пластической деформации называется твёрдостью. В первую очередь оно зависит от механических характеристик материала, в частности структуры, модуля упругости, предела прочности и т.д. Количественную связь твердости от данных характеристик устанавливает общая физическая теория упругости.
Методы, с помощью которых экспериментально устанавливают твердость бывают как статическими (например, в поверхность вдавливается твердый предмет или же она царапается), так и динамическими. К статическим методам также относятся измерения твёрдости по Бринеллю (вдавление шарика в поверхность), Виккерсу (вдавление алмазного наконечника) и Роквеллу (для материалов с высокой твердостью используется алмазный конус, с низкой — шарик из стали). Также к статическим методам относится склерометрия — царапание алмазной структурой в виде конуса, пирамиды, или же карандашом различной твердости — оценивается нагрузка, которую необходимо приложить, чтобы создать царапину, а также размеры созданной царапины.
При динамических методах установления твердости материала благодаря ударной нагрузке наносится отпечаток шариком (по принципу маятника) и величина твердости характеризуется тем, как материал сопротивляется деформации от удара или же параметрами отскока шарика от поверхности, в том числе затуханию маятниковых колебаний.
Охрупчивание вследствие потери пластичности или вязкости, или и того и другого, материалом, обычно металлом или сплавом. Много форм хрупкости могут вести к хрупкому разрушению. Много форм могут встречаться при термической обработке или использования при высокой температуре (термическая хрупкость). Некоторые из видов хрупкости, которые действуют на сталь, — это синеломкость, 475 °С (885 °F), хрупкость, хрупкость старения, сигма-фазовая хрупкость, хрупкость деформационного старения, хрупкость при закалке, хрупкость закаленного мартенсита. Кроме того, сталь и другие металлы могут охрупчиваться под воздействием окружающей среды. Формы такой хрупкости включают кислотную хрупкость, щелочную хрупкость, охрупчивание при ползучести, коррозионную хрупкость, водородную хрупкость, жидкометаллическую хрупкость, нейтронную хрупкость, хрупкость при пайке, твердометаллическую хрупкость и образование трещин при коррозии под напряжением.
(Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО "Профессионал", НПО "Мир и семья"; Санкт-Петербург, 2003 г.)
Смотреть что такое "хрупкость" в других словарях:
Хрупкость — способность твердых тел разрушаться при механических воздействиях без заметной пластической деформации (свойство, противоположное пластичности). Источник: РД 03 380 00: Инструкция по обследованию шаровых резерву … Словарь-справочник терминов нормативно-технической документации
ХРУПКОСТЬ — свойство материала разрушаться при небольшой (преим. упругой) деформации под действием напряжений, средний уровень к рых ниже предела текучести. Образование хрупкой трещины и развитие процесса хрупкого разрушения связано с образованием малых… … Физическая энциклопедия
хрупкость — мягкость, субтильность, ломкость, непрочность, ненадежность, хрусткость, сомнительность, слабое здоровье, подверженность заболеваниям, болезненность, нежность, хрупкое здоровье. Ant. прочность, твердость Словарь русских синонимов. хрупкость 1.… … Словарь синонимов
Хрупкость — – способность твёрдых тел разрушаться при механических воздействиях без заметной пластической деформации (свойство противоположное пластичности). [РД 22 01.97] Хрупкость – свойство материала разрушаться при незначительной деформации… … Энциклопедия терминов, определений и пояснений строительных материалов
ХРУПКОСТЬ — свойство тел разрушаться после незначительной пластической деформации … Большой Энциклопедический словарь
Хрупкость — горных пород (a. rock fragility, rock brittleness; н. Sprodigkeit der Gesteine; ф. friabilite des roches, fragilite des roches; и. fragilidad de rocas) способность горных пород к разрушению без заметных пластич. деформаций (не более 5% от … Геологическая энциклопедия
ХРУПКОСТЬ — ХРУПКОСТЬ, хрупкости, мн. нет, жен. отвлеч. сущ. к хрупкий. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
хрупкость — ХРУПКИЙ, ая, ое; пок, пка, пко; хрупче. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
ХРУПКОСТЬ — (Brittleness) свойство, характеризующее материал, противоположное пластичности. Хрупкие металлы разрушаются без предварительно заметных деформаций перед моментом разрушения. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское… … Морской словарь
Хрупкость — способность твердых тел разрушаться при механических воздействиях без заметной пластической деформации (свойство, противоположное пластичности). Источник: ТРЕБОВАНИЯ К ПРОВЕДЕНИЮ ОЦЕНКИ БЕЗОПАСНОСТИ ЭКСПЛУАТАЦИИ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ И… … Официальная терминология
хрупкость — Свойство твёрдого тела разрушаться под действием растягивающих напряжений без существенных пластических деформаций с отрывом одной части тела от другой [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики… … Справочник технического переводчика
свойство материала разрушаться при небольшой (преим. упругой) деформации под действием напряжений, средний уровень к-рых ниже предела текучести. Образование хрупкой трещины и развитие процесса хрупкого разрушения связано с образованием малых локальных зон пластич. деформации (см. ПРОЧНОСТЬ). Относит. доля упругой и пластич. деформации при хрупком разрушении зависит от св-в материала (характера межат. и межмол. связей, микро- и кристаллич. структуры) и условий его работы. Приложение растягивающих напряжений по трём главным осям (трёхосное напряжённое состояние), концентрация напряжений в местах резкого изменения сечения детали, понижение темп-ры и увеличение скорости нагружения, а также повышение запаса упругой энергии нагруженной конструкции способствуют переходу материала в хрупкое состояние. Напр., существенно упругий материал — мрамор, хрупко разрушающийся при растяжении, в условиях несимметричного по трём гл. осям сжатия ведёт себя, как пластичный материал; чем выше концентрация напряжений, тем сильнее проявляется X. материала, и т. д. Поэтому X. следует рассматривать в связи с условиями работы материала.
Условием роста хрупкой трещины явл. нарушение равновесия между освобождающейся при этом энергией упругой деформации и приращением полной поверхностной энергии (включая и работу пластич. деформации тонкого слоя, примыкающего к краю трещины). Хрупкая прочность элемента с трещиной обратно пропорц. ?l, где l — полудлина трещины.
Склонность материала к хрупкому разрушению оценивают обычно по температурным зависимостям работы разрушения или хар-к пластичности, позволяющих определить критич. темп-ру хрупкости Ткр, т. е. темп-ру перехода из пластич. состояния в хрупкое. Чем выше Tкр, тем более материал склонен к хрупкому разрушению.
При рассмотрении макроскопич. закономерностей хрупкого разрушения необходимо учитывать две независимые хар-ки — сопротивление пластич. деформации (предел текучести ss) и сопротивление хрупкому разрушению (хрупкая прочность, сопротивление отрыву Sот). При понижении темп-ры испытания, введении надрезов — концентраторов напряжения, увеличении скорости деформации ss возрастает быстрее, чем Sот, вследствие чего происходит переход от вязкого разрушения к хрупкому (рис.).
Схема перехода каменной соли из вязкого состояния в хрупкое при понижении темп-ры испытания на растяжение (по А. Ф. Иоффе).
Представление о возникновении хрупкого разрушения как результате небольшой предварительной пластич. деформации лежит в основе дислокац. теории разрушения. Зарождение хрупких трещин связывают с плоским скоплением линейных дефектов крист. решётки — дислокаций — перед к.-л. препятствием, к-рым могут служить границы зёрен или субзёрен, различные включения и т. п. При этом возникает высокая концентрация напряжений, пропорциональная касательному напряжению от внешней нагрузки и длине скопления дислокаций.
Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .
-свойство материала разрушаться при небольшой (преим. упругой) деформации под действием напряжений, ср. уровень к-рых ниже предела текучести. Образование хрупкой трещины и развитие процесса хрупкого разрушения связаны с появлением малых локальных зон пластич. деформации (см. Прочность твёрдых тел). Относит. доля упругой и пластич. деформации при хрупком разрушении зависит от свойств материала (характера межатомных и межмолекулярных связей, микро- и кристаллич. структуры) и условий работы. Приложение растягивающих напряжений по трём гл. осям (трёхосное напряжённое состояние), концентрация напряжений в местах резкого изменения сечения детали, понижение темп-ры и увеличение скорости нагружения, а также повышение запаса упругой энергии нагруженной конструкции способствуют переходу материала в хрупкое состояние. Напр., существенно упругий материал мрамор, хрупко разрушающийся при растяжении, в условиях несимметричного по трём гл. осям сжатия ведёт себя как пластичный материал; чем выше концентрация напряжений, тем сильнее проявляется X. материала, и т. д.
Условием роста хрупкой трещины является нарушение равновесия между освобождающейся при этом энергией упругой деформации и приращением полной поверхностной энергии (включая и работу пластич. деформации тонкого слоя, примыкающего к краю трещины). Хрупкая прочность элемента с трещиной обратно пропорциональна l -полудлина трещины. Склонность материала к хрупкому разрушению оценивают обычно по температурным зависимостям работы разрушения или характеристикам пластичности, позволяющим определить критич. темп-ру хрупкости T кр , т. е. темп-ру перехода из пластич. состояния в хрупкое. Чем выше Т кр , тем более материал склонен к хрупкому разрушению.
При рассмотрении макроскопич. закономерностей хрупкого разрушения необходимо учитывать две независимые характеристики-сопротивление пластич. деформации (предел текучести s s ) и сопротивление хрупкому разрушению (хрупкая прочность, сопротивление отрыву S от ). При понижении темп-ры испытания, введении надрезов-концентраторов напряжения, увеличении скорости деформации S от возрастает быстрее, чем S от , вследствие чего происходит переход от вязкого разрушения к хрупкому (рис.).
Схема перехода каменной соли из вязкого состояния в хрупкое при понижении температуры испытания на растяжение (по А. Ф. Иоффе).
Представление о возникновении хрупкого разрушения как результате небольшой предварит. пластич. деформации лежит в основе дислокац. теории разрушения. Зарождение хрупких трещин связывают с плоским скоплением линейных дефектов кристаллич. решётки - дислокаций - перед к.-л. препятствием, к-рым могут служить границы зёрен или субзёрен, разл. включения и т. п. При этом возникает высокая концентрация напряжений, пропорциональная касательному напряжению от внеш. нагрузки и длине скопления дислокаций.
Лит.: Дроздовcкий Б. А., Фридман Я. Б., Влияние трещин на механические свойства конструкционных сталей, М., 1960; Черепанов Г. П., Механика хрупкого разрушения, М., 1974; Разрушение, ред. Г. Либовиц, пер. с англ., т. 1-7, М., 1973-77.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .
Хрупкие металлы – перечень, особенности обработки и использования
Металл ассоциируется с надежностью, прочностью, твердостью. Хрупкость – это атрибут стекла и подобных материалов. Однако и в металлическом сегменте есть «стекло».
Хрупкими могут стать изначально пластичные элементы.
Что представляют собой
Хрупкость – антипод пластичности. Это свойство вещества разрушаться без визуально различимых деформаций. То есть на изломе, например, цинковой проволоки цвет, блеск, структура не изменятся.
Хрупкие металлы подразделяются на две группы:
- Наделенные этим свойством от природы.
- Ставшие таковыми в результате обработки.
Ко второй группе причисляются также сплавы.
Причины уязвимости
Склонность к разрушению у металлов, других простых веществ, сплавов обусловлена следующими причинами:
- Структура. Например, у сурьмы это крупные зерна. У стали – доминирование в структуре а-фазы.
Переход металла в хрупкое состояние происходит при разных температурах.
- Скорость нагрузки. Чем быстрее возрастает нагрузка на материал, тем быстрее он разрушится. Резкие удары способны погубить даже пластичные структуры (малоуглеродистую сталь).
Сплавы становятся хрупкими из-за примесей:
- Самый «вредный» химический элемент – углерод. Он делает сплавы железа (чугун, сталь) хрупче в разы.
- Сталь с фосфором обретает хладноломкость.
- При малейшем «загрязнении» пластичный хром становится неподатливым к обработке.
«Стеклянными» сплавы делают фосфор, сера, мышьяк, сурьма, вольфрам.
Этот изъян не устранили даже создатели материалов поколения 2.0. Например, «супервещества» алюминид титана. Этот титаново-алюминиевый серебристый конгломерат термо-, коррозиестоек, но перед кувалдой бессилен.
Список
К металлам с изначальной хрупкостью относятся природные и технологичные материалы.
- Щелочноземельные – бериллий.
- Легкоплавкие – олово, висмут.
- Тяжелые элементы – цинк, марганец, хром, сурьма, кобальт.
В списке присутствуют уникумы:
- Вольфрам. Самый прочный на растяжение среди металлов. . Твердый хрупкий платиноид голубовато-серебристого цвета, второй по плотности среди простых веществ, тугоплавкий. . Мягкий хрупкий белый металл.
Самый хрупкий металл – сурьма. Ее легко сделать порошком вручную.
Материалы, полученные в результате технологических процессов: бронза, белый чугун, сталь с высоким содержанием углерода.
Особенности обработки
Материалы, наделенные хрупкостью, разрушаются при попытке их удлинить даже на пару процентов.
Поэтому их обработка специфична:
- Перед работой материал подогревают, чтобы нейтрализовать хладноломкость.
- Исключено воздействие давлением. Например, чугун (нагретый либо холодный) после такой операции сохранит форму, но внутренне разрушится.
- Болванки из хрупких сплавов (чугунные, бронзовые) рубят от края к центру.
Неоднозначно воздействие закалки. В отличие от подогрева, при такой обработке кратно увеличивается прочность стали, других материалов, но в ущерб пластичности. То есть порог хрупкости понижается.
Хрупкие металлы легче разрушить растяжением, чем сжатием.
Где используются
Малопластичные вещества используют там, где исключено резкое механическое воздействие:
- Производство катализаторов.
- Электроника.
- Лаки, краски.
- Аптечные препараты.
- Косметические средства.
Алюминид титана задействуют в космических технологиях и медицине.
Читайте также: