Что такое горячая обработка металлов давлением
Физические основы пластической деформации
1.1. Общие сведения об обработке металлов давлением
В основе всех процессов обработки металлов давлением (ОМД) лежит способность металлов и их сплавов под действием внешних сил пластически деформироваться, т. е., не разрушаясь, необратимо изменять свою форму и размеры. При этом изменяется структура металла, его механические и физические свойства.
Обработка металлов давлением известна с древнейших времен. Холодная ковка самородной меди и метеоритного железа была известна еще до того, как люди начали добывать металлы из руд (VII в. до н. э.). Техника обработки металлов давлением получила развитие в X. XIII веках, когда кузнецы научились изготавливать многослойные мечи и топоры со стальными закаливаемыми лезвиями, а также предметы бытового назначения, инструменты и ремесленные приспособления. Ручная ковка была исторически первым из применяемых до сих пор способов формоизменяющей обработки металлов. Первый паровой молот, появившийся в 1843 г., деформировал металл силой падения груза, а для поднятия которого использовался пар. В 1888 г. появился молот двойного действия, у которого верхняя «баба» при движении вниз дополнительно разгонялась силой пара. Прокатка металлов возникла позже ковки и волочения. Первые сведения о прокатке относятся к XV в. (прокатка свинцовых полос). Основоположником современных методов прокатки принято считать английского изобретателя Г. Корта, изготовившего первый прокатный стан в 1783 г.
В настоящее время давлением обрабатывают около 90 % всей выплавляемой в мире стали, а также большое количество цветных металлов и их сплавов (до 60 %). В машиностроении наиболее широко применяется штамповка (горячая объемная и листовая). В современном автомобиле насчитывается до 90 % штампованных деталей (облицовочные детали, детали подвески, колесные диски, валы и шестерни коробки передач, детали двигателя (поршни, шатуны, коленчатые и распределительные валы, клапаны), тормозные колодки, бензобаки, глушители и др.), половина из которых не подвергается никаким другим видам обработки, в тракторе — 70 %. Современные двигатели конструктивно состоят из деталей (до 100 %), полученных ОМД.
Обработка металлов давлением — группа методов получения полуфабрикатов или изделий требуемых размеров и формы путем пластического деформирования заготовок за счет приложения внешних усилий.
Основными процессами ОМД являются: прокатка, прессование, волочение, ковка, объемная и листовая штамповка. По назначению они подразделяются на следующие две группы:
1. Процессы ОМД, направленные на получение машиностроительных профилей — изделий постоянного поперечного сечения по их длине (прутков, труб, проволоки, лент, листов и др.). К этим процессам относятся прокатка, прессование и волочение. Изделия, полученные этими методами, применяются в строительных конструкциях или в качестве заготовок для последующего изготовления из них деталей другими методами (резанием, ковкой, штамповкой и т. д.).
2. Процессы ОМД, направленные на получение машиностроительных заготовок, которые имеют форму и размеры, приближенные к готовым деталям, и только в рядечсалеув требуют обработки резанием для придания им окончательных размеров и получения необходимого качества поверхности. К этим процессам относятся ковка и штамповка.
При ОМД, во-первых, достигается получение изделий сложной формы из заготовок простой формы и, во-вторых, улучшается кристаллическая структура исходного литого металла и повышаются его физико-механические свойства.
Преимуществами методов ОМД являются следующие:
1) низкая трудоемкость процессов и, следовательно, их высокая производительность;
2) рациональное использование металла (коэффициент использования металла (КИМ) приближается к единице);
3) стабильность размеров и относительно высокая точность изготавливаемых деталей при большой сложности их форм;
4) универсальность используемого прессового оборудования;
5) возможности для механизации и автоматизации технологических процессов;
6) простота осуществления процесса.
Главными недостатками методов ОМД являются следующие: относительно высокая стоимость инструмента (в условиях серийного производства она составляет до 14 % от себестоимости деталей), а также сложность и уникальность прессового оборудования.
1.2. Сущность пластической деформации
Следует отметить, что металлы характеризуются наличием металлической связи, когда в узлах атомно-кристаллической решетки расположены положительно заряженные ионы, окруженные электронным газом. Наличие такой металлической связи и придает металлу способность подвергаться пластической деформации.
Пластичность — свойство твердого тела под действием внешних сил или внутренних напряжений, не разрушаясь, необратимо изменять свою форму и размеры. Такое изменение формы и размеров металлического тела называют пластической деформацией.
Деформация — изменение формы и размеров твердого тела под влиянием приложенных внешних сил. Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки.
Механизмы пластической деформации. Как бы не были малы приложенные к металлу усилия, они вызывают его деформацию. Начальные деформации всегда являются упругими, и величина их находится в прямой зависимости от нагрузки (закон Гука). При упругой деформации под действием внешних сил изменяются расстояния между атомамилвликчреисктоай решетке. После снятия нагрузки атомы под действием межатомных сил возвращаются в исходное положение, и металл восстанавливает свои первоначальные размеры и форму.
Скольжение. При пластической деформации одна часть кристалла необратимо сдвигается по отношению к другой на целое число периодов атомно-кристаллический решетки — смещается по так называемым плоскостям сдвига (скольжения). Следует отметить, что ими являются кристаллографические плоскости, в которых находится наибольшее количество атомов. Расположение этих плоскостей зависит от типа атомно-кристаллической решетки металла. У aжелеза, вольфрама, молибдена и других металлов с объемноцентрированной кубической (ОЦК) решеткой имеется шесть плоскостей сдвига (в каждой из них имеется по два направления сдвига) и так называемая система скольжения (имеет 6 × 2 = 12 элементов сдвига) (рис. 2.1, а). При этом g-железо, медь, алюминий и другие металлы с гранецентрированной кубической (ГЦК) решеткой имеют четыре плоскости сдвига с тремя направлениями скольжения в каждой, т. е. 4 × 3 = 12 элементов сдвига (рис. 2.1, б). У цинка, магния и других металлов с гексагональной плотноупакованной (ГПУ) решеткой имеется одна плоскость с тремя направлениями скольжения, т. е. три элемента сдвига (рис. 2.1, в). Чем больше элементов сдвига в решетке, тем выше пластичность металла.
Рис. 2.1. Плоскости и направления (заштрихованные плоскости) сдвига в кристаллической решетке: а — ОЦК; б — ГЦК; в — ГПУ
Наиболее легкий сдвиг по определенным плоскостям и направлениям объясняется тем, что при таком перемещении атомов из одного устойчивого равновесного положения в другое значения затрачиваемых усилий будут минимальными, и, следовательно, будут наименьшими необходимые для этого затраты энергии.
Если нагрузку снять, перемещенная часть кристалла не возвратится на старое место и деформация сохранится. Наличие плоскостей скольжения в кристалле подтверждается при микроструктурном исследовании пластически деформированных металлов.
Двойникование. Скольжение или сдвиг по определенным кристаллографическим плоскостям является основным, но не единственным механизмом пластической деформации металлов. При некоторых условиях пластическое деформирование может также происходить путем двойникования. При пониженных температурах у металлов с ОЦК решеткой наблюдается переход от механизма скольжения к механизму двойникования. Сущность двойникования заключается в том, что под действием касательных напряжений одна часть зерна оказывается смещенной по отношению к другой части, занимая симметричное положение и являясь как бы ее зеркальным отражением (рис. 2.2).
Дислокационный механизм пластической деформации. Процесс скольжения не следует представлять как одновременное передвижение одной части кристалла относительно другой. Такой жесткий или синхронный сдвиг потребовал бы напряжений в сотни или даже тысячи раз превышающие по величине те, при которых в действительности протекает процесс
Рис. 2.2. Схема процесса двойникования
пластической деформации. В реальных металлах сдвигас(птилче ское деформирование) происходит при напряжениях, величина которых меньше теоретических в сотни и тысячи раз (например, для железа tтеор ≈ 2 600 МПа, а tреал ≈ 290 МПа, для меди
tтеор ≈ 1 540 МПа, а tреал ≈ 1 МПа). Такое расхождение объясняется дислокационным механизмом пластической деформации.
При дислокационном механизме пластической деформации скольжение осуществляется в результате перемещения в кристалле дислокации, когда сдвиг происходит последовательно от атома к атому вблизи ядра дислокации. В этом случае усилие сдвига значительно меньше, чем при одновременном сдвиге всех атомов.
Данный процесс можно объяснить с помощью моделей движения гусеницы (рис. 2.3, а) и перемещения ковра (рис. 2.3, б).
Рис. 2.3. Дислокационный механизм пластической деформации: а — модель движения гусеницы; б — модель перемещения ковра
Гусеница перемещается путем последовательного подъема одной пары ног и перестановки их в новое место, а не за счет подъема всех ног одновременно и перемещения на шаг. Когда
все ноги гусеницы последовательно выполнят эту операцию, то она переместится на шаг (такой режим движения требует от нее значительно меньших усилий). Аналогичным образом происходит перемещение ковра по полу в случае прокатывания на нем складки, что требует значительно меньших усилий, чем, транспортировка ковра целиком.
Дислокационный механизм пластической деформации объясняетсядсулюещим образом. Атомы, расположенные в поле дислокации, возбуждены (их энергия повышена) и выведены из устойчивого положения равновесия с минимальной свободной энергией. Такое состояние кристалла является метастабильным. Поэтому для того чтобы ограниченная группа атомов в области дислокации сдвинулась и заняла новое устойчивое положение равновесия, достаточно приложить существенно меньшее напряжение, чем при их синхронном сдвиге, т. е. совершить незначительную работу и затратить при этом минимум энергии.
Механизм перемещения дислокации на атомном уровне представлен на рисунке 2.4.
Рис. 2.4. Схема перемещения дислокаций
Следует отметить, что силы взаимодействия атомов зависят от расстояния. В зоне дислокации расстояния атомов 3 и 4 от краевого атома 1 экстраплоскости 1 – 1 1 увеличены и связи между этими атомами утрачены. Под действием сдвигающей силы Р смещение плоскостей приводит к уменьшению расстояния 1 – 4 и увеличению расстояния 2 – 4. В результате этого связь между атомами 1 и 4 восстанавливается, а между атомами 2 и 4 обрывается. Дислокация перемещается на одно межатомное расстояние.
Таким образом, движение дислокации — это процесс последовательного разрыва и восстановления связей в кристаллической решетке. В результате пробега дислокации от одной границы кристалла до другой происходит смещение части кристалла на одно межатомное расстояние. Из совокупности пробегов дислокаций складывается общая деформация кристаллического тела.
1.3. Наклеп и рекристаллизация
Пластическая деформация поликристаллических тел (металлов и сплавов) имеет некоторые особенности по сравнению с пластической деформацией одного зерна (монокристалла). В поликристаллическом металле зерна (следовательно, и плоскости скольжения) имеют различную ориентировку (рис. 2.5, а). Из-за влияния соседних зерен деформирование каждого зерна не может совершаться свободно. Пластическая деформация на первой стадии начинается тогда, когда действующие напряжения превысят предел упругости. На первой стадии пластическая деформация может происходить лишь в отдельных зернах с благоприятной ориентировкой, у которых плоскости легкого скольжения совпадают с направлением максимальных касательных напряжений. В каждом зерне сдвиг происходит последовательно: сначала по одной плоскости, затем по другой и т. д. Кроме сдвига, происходит и поворот смещенных частей зерна в направлении уменьшения угла между направлениями плоскостей скольжения и направлением растягивающих сил. В результате сдвигов и поворота плоскостей скольжения зерно постоянно вытягивается в направлении растягивающих сил (рис. 2.5, б). Зерна удлиняются настолько, что напоминают волокна, поэтому структура деформированного металла называется волокнистой (рис. 2.5, в). Дальнейшая деформация (вторая стадия) приводит к дроблению зерен.
Рис. 2.5. Схема образования текстуры в поликристаллитном теле: а — исходное расположение зерен; б — изменение формы зерен при пластической деформации; в — текстура металла после деформации
В процессе межзеренных и внутризеренных сдвигов происходит искажение кристаллической решетки, удлинение и поворот зерен, их последующее дробление, что, в конечном итоге, затрудняет дальнейшее скольжение. Это вызывает возрастание сопротивления деформации. Кроме того, неравномерная деформация отдельных зерен приводит к возникновению внутренних напряжений, которые так же вызывают увеличение сопротивления деформации.
При холодной пластической деформациимиезнения структуры приводят к повышению твердости НВ и предела прочности металла σв, а также понижению его пластических (относительное удлинение δ) и вязкостных (ударная вязкость КС) свойств (рис. 2.6). Чем больше величина пластической деформации ε, тем значительнее эти изменения.
Рис. 2.6. Влияние степени деформации на механические свойства металлов
Изменение свойств и структуры металла в результате пластической деформации в холодном состоянии называется наклепом или упрочнением. Интенсивность нарастания наклепа по мере увеличения степени деформации неодинакова (в начальный момент деформирования она резко увеличивается, а затеммзеадляется ).
Наклеп не всегда является отрицательным фактором, затрудняющим процесс получения заготовки пластическим деформированием. Иногда его используют для получения изделия с необходимыми полезными свойствами (часто в сочетании с последующей термической обработкой). Так, холодной пластической деформацией можно в 2. 3 раза повысить предел прочности (особенно предел текучести). Например, гвозди должны быть изготовленыти могу применяться только из наклепанного металла. Гвозди, у которых наклеп снят термической обработкой (побывавшие в печи), к применению непригодны.
Следует отметить, что наиболее прочным материалом в современной технике является нагартованная (упрочненная) стальная проволока (в немецком языке слово hard означает твердость), получаемая в результате холодного волочения при ε = 80. 90 % и имеющая σв = 3 000. 4 000 МПа. Такая высокая прочность не может быть достигнута легированием и термической обработкой.
Понижение пластических свойств наклепанного металла может быть очень значительным. Например, у низкоуглеродистой стали относительное удлинение δ уменьшается почти в 6 раз (с 30. 35 до 5. 6 %).
При определенной степени деформации металл утрачивает пластичность настолько, что дальнейшее деформирование внешним усилием может привести к его разрушению.
Возврат и рекристаллизация. Деформированный металл по сравнению с недеформированным находится в неравновесном состоянии. В таком металле даже при комнатной температуре могут самопроизвольно протекать процессы, приводящие его в более устойчивоеувтнреннее состояние. При повышении температуры скорость таких процессов возрастает.
При нагреве до сравнительно низких температур протекает процесс возврата, т. е. снятие микронапряжений и частично искажений кристаллической решетки. Изменений структуры при этом еще не наблюдается. Возврат несколько изменяет свойства наклепанного металла (понижается его прочность и повышается пластичность). Возврат происходит при температуре (0,2. 0,3) Тпл, °K.
При дальнейшем нагреве в результате теплового воздействия происходит перестройка кристаллов деформированного тела, зарождение новых зерен (кристаллов) и их рост. Такой процесс называется рекристаллизацией.
В результате рекристаллизации (рис. 2.7) образуются совершенно новые зерна, с неискаженной кристаллической решеткой. Размеры новых зерен могут сильно отличаться от исходных. Образование новых зерен приводит к резкому снижению плотности дислокаций и высвобождению энергии, накопленной при пластической деформации металла. В результате рекристаллизации металл разупрочняется и восстанавливает свои первоначальные свойства, а его зерна становятся равноосными.
Рис. 2.7. Изменения микроструктуры деформированного металла при нагреве:
а — наклепанный металл; б — начало первичной рекристаллизации; в — завершение первичной рекристаллизации; г, д — стадии собирательной рекристаллизации
Пластически деформированные металлы могут рекристаллизоваться лишь после деформации, степень которой превышает определенное критическое значение, которое называется критической степенью деформации. Для алюминия она составляет ~2 %, для железа и меди — ~5 %. Если степень деформации меньше критической, то зарождения новых зерен при нагреве не происходит.
Наименьшая температура нагрева, обеспечивающая возможность зарождения новых зерен, называется температурой рекристаллиза- ции Трекр. Рекристаллизация для технически чистых металлов происходит при температурах Трекр ≥ 0,4 Тпл, °K. Температура рекристаллизации Трекр. некоторых металлов представлена в таблице 2.1.
Обработка металлов давлением: виды и способы
Существует большое количество технических вариантов обрабатывания металлических изделий: как ручных, так и автоматизированных (при эксплуатации специального оборудования). Однако несмотря на широкий выбор, простые обыватели и настоящие профессионалы нередко выбирают способ обработки металла давлением. Отличительной чертой пластической деформации является не только изменение формы детали, но и ее физических, механических свойств. Благодаря этому технология активно применяется в разных сферах промышленности и производства. Еще одна причина популярности – таким образом можно значительно повысить производительность и сэкономить расходование сырья, чем при помощи иных аналогичных методик.
Что такое обработка металлов давлением
ОМД представляет собой изменение параметров и размера заготовок благодаря влиянию на них внешними условиями с дальнейшим сохранением и закреплением полученного результата. Такой эффект достигается за счёт высокой пластичности материалов, поддающихся отделке. После завершения всех рабочих этапов удаётся получить готовое изделие, форма и габариты которого полностью соответствует заявленным заказчиком требованиям. Для увеличения пластичности, перед работой с этим материалом, его прогревают до высоких температурных показателей. Для любой разновидности существуют установленные критерии нагрева, которые имеют четкую зависимость от физико-химических показателей.
Суть обработки металлов посредством давления определяется тем фактом, что атомы при взаимодействии со сторонними факторами обретают тенденцию и склонны принимать иное, устойчиво стабильное положение в кристаллической форме решетке. Важно, чтобы величина этого воздействия была больше допустимого значения пределов металлической упругости. Данный процесс называется пластическая деформация, которая способна изменить не только внешний критерий оценки и габариты изделия, но и его физико-химические параметры. Чтобы обеспечить правильность выполнения с технической точки зрения, нужно обладать профессиональным подходом, иметь необходимое оснащение. Подобрать качественное оборудование легко и удобно в каталоге компании «Сармат».
Разновидности
На основании условий, в которых осуществляется ОМД, специалисты выделяют два направления. Они пользуются примерно одинаковой популярностью на современном рынке, но последняя относится к более инновационной методике. Их отличительными особенностями являются:
- Холодная разновидность, напротив, имеет температурный уровень, ниже рекристаллизации.
- Вид - горячая обработка металлов давлением выбирается при температурных показателях, превышающих баланс нагрева при рекристаллизации материала.
Схемы основных категорий металлообработки
В основе лежит получение заготовки, соответствующей техническому заданию и формату посредством пластической деформации. Доминирующая особенность пластинчатости (в сравнении с упругим аналогом) — это сохранение деформированных форм и параметров после устранения внешних сил, оказывающих влияние. Достижение такого результата объясняется тем, что атомы движутся относительно друг друга на величины, превышающие межатомное расстояние и, после прекращения воздействия на них, не способны вернуться в исходное положение.
Горячая и холодная штамповка металла известна на протяжении многих столетий. Последняя раньше была основным методом изготовления металлической посуды. Это связано с тем, что её отличает быстрота исполнения, отличное качество и доступная стоимость. Такие параметры особенно ценны при массовом производстве и крупном бизнесе, требующем быстрого создания товаров в больших объемах.
Прокатка
Эта разновидность ОМД подразумевает под собой применение двух движущихся валиков, которые обжимают изделие с обеих сторон. Скорость их вращения устанавливается самостоятельно. Целью этой манипуляции является снижение геометрических данных поперечного сечения, а также достижение желаемой конфигурации. Деформация заготовки происходит за счёт трения (толщина минимизируется, а длина и ширина — увеличивается). Данным методом могут обрабатываться металлические листы и ленты, но при условии применения гладких валков. Помимо этого, методика используется при работах с деталями фасонного профиля, но с привлечением ручьевого валка. Типы прокатки металла:
- Продольная — изделие пропускается через движущиеся в разных направлениях валки, из-за чего оно обжимается до толщины расстояния между ними.
- Поперечная — эта разновидность необходима для преобразования материала в форму шара, конуса, цилиндра или друг вращающихся тел. Таким образом изготавливают бесшовные балки и многие строительные предназначения для работы.
- Поперечно-винтовая — в большинстве случаев, она используется для создания и переработки полых заготовок.
Помимо этого, в зависимости от присутствия или отсутствия подогрева, в качестве подготовительного процесса работы, специалисты выделяют холодную или горячую прокатку металла.
Ковка
Данная технология отнесена к категории высокотемпературных способов металлической обработки. Пред тем, как приступить к делу, деталь нагревается до высоких температурных показателей. Температура выставляется и зависит от вида материала, из которого выполнено изделие. Сегодня применяется несколько методов. Важно выделить:
- Ручная — осуществляется руками мастера и применяется по мере необходимости изготовить небольшую партию заказа. Они не ограничены в рабочей зоне, поэтому формируют любое положение в пространстве.
- Штамповки — предусматривают подготовительные работы, в виде помещения заготовки в штамповую матрицу, не позволяющей ей свободно перемещаться. Благодаря этому она полностью повторяет форму матричной полости.
- С применением дополнительного специализированного оснащения (пневматического, гидравлического или паровоздушного).
Метод ковки при обработке металлов давлением, в подавляющем большинстве, выбирается для разовых заказов и мелкосерийного производства. Перед тем как приступить к этой процедуре, деталь разогревается и помещается между двумя ударными положениями молота (бойки). Помимо бойки можно использовать также топор, раскатку или обжимку. Основными ковочными операциями служат:
- Осадка — уменьшение высоты болванки за счёт увеличения площади поперечного сечения.
- Высадка — это, своего рода, осадки. Проведение этого этапа требует наличия оправки (подкладной инструмент).
- Протяжка — увеличение длины посредством снижения площади поперечного сечения.
- Раскатка на оправе — внутренний и внешний диаметр увеличивается, а стенозная толщина уменьшается.
- Пошивка — создание сквозных или глухих отверстий. Рабочим инструментом выступает прошивень, а для отвода необходима выдра.
- Скручивание — поворот определенного участка вокруг продольной оси.
Прессование
Этот вид ОМД подразумевает под собой помещение металлического предмета в специальную форму с дальнейшим выдавливанием через имеющееся отверстие. Эти процессы происходят за счёт мощного пресса и давления, которое способствует выталкиванию. При этом важно помнить, что площадь отверстия не должна превышать площадь сечения используемого изделия. При выполнении этой работы деталь приобретает вид прута, форма и технические свойства которого устанавливаются в зависимости от отверстия. Эта методика отличается простотой и высокой эффективностью. Она часто применяется для оловянных, медных, свинцовых, алюминиевых или цинковых предметов.
На основании того, какой материал используется, прессование металла бывает холодного и горячего типа. Если изделие выполнено из алюминиевого, оловянного, медного или прочего вещества, то оно не нагревается. Если используемые предметы имеют в составе никель или титан, осуществляется нагрев заготовки и рабочего инструмента. Выделяют 2 метода:
- Прямой — выдавливание осуществляется в направление движения пуансона.
- Обратный — перемещается навстречу движениям пуансона.
Использование этой тактики ОМД нередко сокращает срок эксплуатации, в связи с чем рекомендуется периодически наносить на рабочие поверхности минеральные масла, графит, канифоль или жидкое стекло. Несмотря на множество достоинств этой обработки, её главным недостатком считается большой пресс остаток (порядка 20%) в прессовочной камере.
Волочение металла
Главным инструментом, используемым в этой методике, является фильера (или волока). Овальная или фасонная форма пропускается через фильерное отверстие, из-за чего создаётся необходимый профиль с поперечным сечением. Лучший пример исполнения этой техники — это создание проволоки, подразумевающее протягиванием заготовки с большим диаметром через несколько фильеров. В результате этих действий происходит его превращение в изделие нужного размера. Технология пользуется спросом при необходимости получения деталей маленького диаметра, создании фасонных профилей, производстве тонкостенных труб и калибровки.
Материалом для волоки может быть инструментальная сталь, металлокерамический сплав или технический алмаз (при тонкой проволоке). Целью этой техники служил уменьшение трения, повышение стойкости инструментария и улучшение отвода тепла.
Существует несколько разделений волочения по разным критериям. Одной из них является:
- Сухое — в случае привлечения мыльной стружки.
- Мокрое волочение предполагает работу с мыльной эмульсией.
Также к основным категориям обработки металлов давлением на практике относятся следующие разновидности:
- Однократное — осуществляемся единственным проходом.
- Многократное — требует более одного прохода, благодаря чему осуществляется постепенное снижение поперечного сечения.
Объемная штамповка
Это технологический процесс, в результате которого происходит пространственное изменение различных объемных заготовок, имеющих простейшую геометрическую конфигурацию (цилиндрическую, призматическую и т.п.), для того, чтобы изготовить из них детали гораздо более сложной формы. Такой эффект реализуется посредством специального штампа. Исходя из конструктивной реализации, эта методика делится на 2 основных вида:
- Открытая — даёт возможность не придерживаться весовой точности. В ней предусмотрен зазор, расположенный между их движущимися элементами, куда отправляется лишний объём материала. Работая с открытым типом, необходимо удалить облой, который формируется по контуру.
- Закрытая — эта холодная и горячая обработка металлов под давлением не имеет специальных отверстий, а создание изделия проводится в ограниченном пространстве. Но важным условием является грамотный расчёт габаритов (вес и объём).
Листовая
Исходя из ожидаемого результата, эта разновидность ОМД делится на:
- Разделительную — включает в себя пробивку, отрезку и вырубку.
- Формообразующую — состоит из таких элементов, как чеканка, а также гибка и раздача и т.д.
При работе с этой методикой требуется гидравлический пресс или кривошипно-шатунный. Главной деталью этого оборудования считается штамп из матричных элементов и пунсона. Отличительной особенностью метода является отсутствие необходимости обрабатывать в дальнейшем. Для обеспечения высококачественного эффекта, применяемые детали должны иметь высокую точность.
Сегодня самым популярным и распространенным способом обработки является штамповка листового металла под давлением. Она пользуется спросом среди большинства промышленных отраслей, что значительно расширяет область применения. С ее помощью производятся как небольшие элементы радиоэлектронных аппаратов, так и кузова автомобилей и иных транспортных средств.
Комбинированная
Эта разновидность ОМД актуальна при возникновении необходимости одновременного использования нескольких технологий. Комбинировать можно любые доступные на сегодняшний день методы. Их определение зависит от конечной цели, желаемого результата и текущего технического оснащения. На практике комбинирование проводится достаточно часто, так как это дает возможность создавать более сложные формы и конфигурации.
На практике используется схема прокатки, которая позволяет оптимизировать производственный процесс и ускорить обработку. Благодаря высокому уровню пластичности используемого в производстве сырья, выбор наиболее подходящей технологии проходит исходя из конечной цели изготовителя. Показатели способствуют созданию продукта необходимых размеров, заданным показателям или конкретным тех.заданиям. Максимальное количество промышленных отраслей задействуют в своем рабочем процессе разнообразные методы и технологии. При этом учитываются такие обязательные факторы, как общие условия, при которых проводится изготовление и направление деятельности предприятия.
Работа с металлическими изделиями — это сложный, кропотливый и длительный процесс, требующий ответственного подхода. Для достижения желаемого и технически верного результата обязательно требуется привлечение специалистов и оборудования. Добиться этого в домашних условиях практически невозможно, поэтому крайне важно обратиться в проверенную фирму, которая сможет предоставить достаточное количество оборудования, способного удовлетворить требования заказчика. Компания «Сармат» обладает этими возможностями, позволяя реализовать самые сложные задумки.
Обработка металлов давлением: правила и способы
Обработка металлов давлением не уступает по востребованности процедуре резания и, более того, имеет выраженные преимущества по сравнению с ней. Получение необходимых размера и формы детали практически без отхода высоко ценится в различных областях промышленности.
Обработка давлением – это не только штамповка, о которой слышали многие. В нашей статье мы расскажем о преимуществах этого метода обработки, разберем технологии ОМД и поговорим о возможных дефектах в этой сфере.
Суть технологии обработки металла давлением
ОМД (технология обработки металлов давлением) означает, что материалу придается необходимая форма, габариты и физико-механические свойства, при этом не нарушается его целостность из-за пластической деформации.
Технология обработки металлов давлением обладает следующими преимуществами:
- удается существенно – на 20–70 % – снизить отход металла, если сравнивать с обработкой резанием;
- можно увеличить производительность труда, поскольку однократно приложенное усилие позволяет сразу же изменить форму и габариты заготовки, которую деформируют;
- изменяются физикомеханические параметры металла заготовки во время пластической деформации, эта особенность используется, чтобы получать детали с улучшенными эксплуатационными характеристиками: сделать их прочнее, жестче, увеличить сопротивляемость износу, при этом их масса остается небольшой.
Благодаря вышеперечисленным особенностям данной технологии производства деталей доля ОМД по сравнению с другими способами металлообработки ежегодно увеличивается. Технологические процессы постоянно улучшаются, совершенствуется используемое в работе оборудование.
Поэтому расширяется ассортимент изделий, которые производятся по этой технологии. Также увеличивается диапазон деталей по массе и габаритам, повышается точность размеров заготовок, которые получаются во время обработки металлов давлением.
Основные методы обработки металла давлением
Прокатка металлов
Это один из наиболее популярных видов обработки металлов давлением. В качестве инструмента, который воздействует на заготовку, используются валки. Их форма влияет на тип и структуру получившегося изделия.
Используется также прокатный стан, он представляет собой комплекс оборудования по производству деталей. Он позволяет осуществлять горячую и холодную обработку металлов давлением.
Прокатка бывает нескольких видов:
- Продольная. Такая металлообработка является наиболее распространенной. В этом случае заготовка проходит между двумя валками, которые вращаются в разные стороны. Чтобы изменить размер проката, специалист регулирует расстояние между рабочими элементами.
- Поперечная. В данном способе металлообработки нет поступательных движений. Эта технология подходит для того, чтобы изготавливать детали в форме цилиндра, к примеру шары, втулки и другие тела вращения.
- Поперчено/продольно-винтовая. Здесь валки находятся под углом к заготовке. Поэтому металлу придается вращательно-поступательное движение. Такая прокатка позволяет производить сверла, цельнокатаные трубы, оси, полые изделия.
При обработке металлов давлением в 80 % случаев применяется данная технология. По этой причине происходит непрерывное улучшение используемых методов. К примеру, на крупных заводах осуществляется внедрение технологии бесконечной холодной прокатки.
Это значит, что на стан монтируют сварочную машину, чтобы соединять рулоны либо заготовки друг с другом. За счет этого на стан постоянно подается полоса без перерыва.
При реализации этого способа обработки металлов давлением обеспечивается высокотемпературный режим. Ковка применяется человечеством в течение многих столетий. То, насколько сильно нужно нагреть заготовку, зависит от параметров металла.
Чаще всего температура достигает 1 000 градусов Цельсия. Эта температура достаточна для того, чтобы слиток потерял прочность, приобрел необходимую пластичность. Из такой заготовки кузнец сможет сделать необходимую деталь, которая в дальнейшем используется на производстве либо в качестве элемента интерьера.
Технология ковки включает в себя несколько шагов:
- Слиток разделывают на части с нужными габаритами.
- Затем осуществляется порубка, во время которой обрабатывается наружная поверхность заготовки.
- После того как кузнец удалит лишний материал, получается черновой вариант изделия.
- Далее деталь удлиняется за счет уменьшения поперечного сечения. Данный этап носит название вытяжки.
- Затем пробиваются отверстия нужного диаметра, для этого мастер применяет специальный инструмент.
- Если необходимо, заготовку изгибают для получения нужной формы с применением шаблона.
- Заключительный этап: при необходимости проводится чеканка, кузнец изменяет рельеф, делает гравировку на детали.
Чтобы выполнять ковку в промышленности, применяются плоские бойки. Это параллельные плиты и гидравлический пресс.
Основные достоинства ковки:
- улучшаются механические характеристики заготовки;
- можно обрабатывать крупногабаритные изделия, масса которых до 250 тонн;
- процесс ковки автоматизирован;
- производство низкозатратное.
Прессование – также распространенный процесс обработки металлов давлением. В этом случае слиток располагается в закрытой форме. Затем пуансон вытесняет заготовку из матрицы. При реализации данной технологии применяется сверхмощный пресс.
С помощью прессования удается изготовить детали с необходимым профилем. При выборе металла, который подойдет для обработки этим способом, отдают предпочтение наиболее хрупким, таким как:
- медь;
- алюминий;
- олово;
- магний;
- сплавы титана.
Благодаря применению сменной матрицы можно выбрать любую форму детали.
Волочение
Данный способ обработки металлов давлением наиболее востребован на производстве. Технология работы следующая: болванку протягивают через фильеру. Она представляет собой волоки, габариты которых меньше, чем поперечное сечение заготовки.
Существует несколько методов волочения, наиболее популярные среди них следующие:
- безоправочное;
- профилировочное;
- длиннооправочное;
- короткооправочное;
- волочение на самоустанавливающейся оправке.
Если этого требует технология обработки металлов давлением, заготовку предварительно нагревают. Если применяется болванка большого размера, ее пропускают через фильеры, уменьшая сечение.
Валки чаще всего производят из инструментальной стали либо сплавов большой твердости.
Метод волочения позволяет производить изделия с высокой точностью, к примеру проволоку, толщина которой несколько микрометров.
Слитки, используемые при реализации этой технологии, должны соответствовать определенным требованиям. Дело в том, что дефекты могут перейти на получившееся изделие.
У безоправочного волочения при изготовлении труб есть один минус: внутренняя поверхность получается низкокачественной.
Данная технология обработки металлов давлением наиболее популярна. Болванку нагревают, а затем последовательно деформируют, не нарушая ее целостностью. Чтобы придать слитку необходимую форму, применяют объемные штампы, повторяющие контуры изделия.
Объемная штамповка подразумевает, что геометрия и размеры заготовки будут изменяться сразу в нескольких измерениях.
В роли проката обычно выступают материалы с круглым либо прямоугольным сечением.
Листовая штамповка
Листовая штамповка позволяет производить плоские, а также объемные тонкостенные изделия из листового металла.
Такая технология обработки применяется, чтобы изготавливать много одинаковых деталей высокой точности. При создании заготовок используют металлы, сплавы и пластмассы.
Рабочие станки, которые применяются в данной технологии, подразделяются на несколько видов:
- кривошипно-шатунные;
- гидравлические;
- радиально-ковочные;
- электромагнитные.
Эта технология обработки металлов давлением универсальна и позволяет получить тонкостенные корпуса для бытовых приборов или изготовить детали для кораблей.
Нагревание при обработке металлов давлением
Горячая обработка металлов давлением означает, что заготовки нагреваются, чтобы сделать их более пластичными, уменьшить сопротивление металла деформированию. Все это позволяет снизить энергозатраты.
Так как при работе с заготовкой ее температура уменьшается из-за того, что она остывает, было введено такое понятие, как оптимальный температурный интервал. Чтобы его определить, нужно знать экстремальные значения параметров пластических и прочностных свойств металлических систем.
Чтобы правильно выбрать верхнюю границу горячей обработки tв, необходимо исключить перегрев, пережог, а также сильное окисление и обезуглероживания (при работе со сталью) металла, который нагревается.
Как определить нижнюю границу tн? Важно, чтобы этот показатель был выше температуры мгновенной рекристаллизации. Это позволит исключить образование наклепа.
Чтобы не допустить ошибку при выборе этих параметров, изучите диаграмму состояния сплавов. К примеру, для углеродистых сталей данный интервал содержится в диаграмме железо-углерод.
Верхняя граница tв находится в пределах 100–2000 °С ниже линии солидуса, а нижняя граница tн на 30–500 °С выше линии GS для доэвтектоидных, но на 30–500 °С выше линии PSK для заэвтектоидных сталей.
Допустимый температурный интервал обработки металлов (легированных сталей) давлением характеризуется сужением, при этом понижаются предельные температуры.
К примеру, температурный интервал для меди – 900–7000 градусов Цельсия, латуни — 760–6000 градусов, бронзы — 900–7500 градусов Цельсия, сплавов алюминия — 470–3800 градусов, магниевых сплавов — 430– 3000 градусов Цельсия.
Чтобы детали, полученные по данной технологии, были высококачественными, необходимо правильно выбрать режим нагрева и охлаждения. Если элемент будет охлажден быстро, образуется термическое напряжение, снаружи детали появятся трещинки.
Когда теплопроводность сплава небольшая, а габариты изделия внушительные, охлаждение должно происходить максимально долго.
Как охлаждаются детали при горячей обработке металлов давлением:
- на воздухе;
- на воздухе в штабелях;
- в закрытых боксах (ямах);
- в закрытых боксах (ямах), в которые засыпается песок, зола, шлак;
- в печах.
Данные способы охлаждения указаны в порядке увеличения продолжительности.
Возможные дефекты металла после обработки давлением
Трещины на поверхности и внутри, а также разрывы могут образоваться в поковке: штамповке и прокате. Причина появления этих дефектов – напряжения в металле при деформации.
Из-за растягивающего внутреннего напряжения появляются разрывы и трещины в тех областях, которые ослаблены дефектами слитка. Однако некоторые зоны могут разрушиться, даже если дефектов не было.
Важно понимать, что при такой технологии обработки металла он несколько раз нагревается и охлаждается. В результате образуются термические напряжения, из-за которых появляются разрывы и трещины на заготовках.
Если метод обработки металлов давлением – холодная объемная штамповка, по причине низкой пластичности материала на поверхности заготовок появляются скалывающие трещины, они расположены под углом 45 градусов к направлению действующего усилия.
На поверхности проката образуются риски – небольшие открытые царапины, глубина которых 0,2—0,5 мм. Причина заключается в том, что мелкие частички попадают на валки при прокате либо изношена матрица при прессовании.
Волосовины образуются из-за того, что деформировались мелкие неметаллические включения, пузырьки газа. Волосовины напоминают тонкие прямые линии, длина которых доли миллиметра, однако они могут достигать 2–3 см. Расположены такие дефекты на поверхности, а также под поверхностью металла. Увидеть волосовины можно в конструкционных сталях.
Закаты образуются, если наблюдается избыток металла в валках (калибрах). Визуально они похожи на заусенцы, глубина которых превышает 1 мм. Они закатаны в диаметрально противоположных направлениях.
Плены представляют собой брызги жидкой стали, которые застыли на поверхности слитка, а затем были раскатаны при прокатке. Поэтому они выглядят как отслаивающиеся с поверхности пленки, их толщина не более полутора миллиметров.
Еще один дефект – расслоения, то есть внутренние нарушения сплошности, представляют собой ориентированные по направлению волокна. Расслоения появляются после обработки слитка, в котором есть усадочные раковины либо рыхлоты. Расслоения также образуются при прокатке листа из-за того, что расплющились крупные посторонние включения, пузырьки газа. Поверхность нарушения сплошности параллельна плоскости прокатки.
При реализации метода горячей объемной штамповки сплошность в поковке будет нарушена, если есть включения шлака в заготовке. Это считается металлургическим браком.
Образование флокенов происходит в среднеуглеродистых и среднелегированных сталях, если содержание водорода в них повышено. Дело в том, что, когда водород растворен в жидкой стали, он выделяется после охлаждения при фазовых превращениях из-за быстрого понижения растворимости. В этом случае водород будет заполнять пустоты, даже дефекты кристаллической решетки. Он перейдет из атомарного в молекулярный, в результате чего образуется большое давление, разрушающее металл.
Появление торцовых трещин связано с тем, что во время резки больших профилей проката к моменту среза заготовка под высоким удельным давлением под ножом сминается из круглого сечения в эллипс.
В металле образуются внутренние напряжения, появляются трещины спустя 2–6 часов после резки. Кроме того, торцовые трещины появляются зимой, когда из-за пониженных температур растрескивается металл даже при резке малых профилей. Чтобы исключить образование таких дефектов, следует выбрать подходящие условия резки.
Зажим — еще один распространенный дефект, представляет собой заштампованную складку. Зажимы образуются, если неправильно наполнить фигуру штампа металлом либо закатать заусенцы, которые появились на первых переходах штамповки.
Утонение и разрывы образуются, если не была соблюдена технология работы при штамповке (вытяжки деталей из листового металла).
Разрыв можно увидеть, осмотрев крупно- и среднегабаритное изделие. Сильную степень утонения получится выявить с помощью спецметодов, таких как радиоизотопный.
При использовании метода глубокой вытяжки деталь будет считаться эксплуатационно надежной, если нет разрывов и трещин, при этом степень утонения предельно допустимая.
Необходимо отслеживать, не появились ли во время эксплуатации дефекты в области утонения в результате знакопеременных нагрузок.
Использование технологии листовой штамповки подразумевает, что должна в автоматическом режиме контролироваться степень утонения металла при вытяжке.
На современных промышленных предприятиях обработка металлов давлением применяется чаще всего. Эта технология подходит при производстве заготовок, а также при изготовлении готовых деталей.
При этом наиболее популярным способом обработки считается прокатка. С годами будет происходить внедрение и других методов металлообработки, которые показывают максимальную эффективность.
Обработка металлов давлением – ОМД: разновидности и особенности технологии
ОМД, или обработка металлов давлением, возможна благодаря тому, что такие материалы отличаются высокой пластичностью. В результате пластической деформации из металлической заготовки можно получить готовое изделие, форма и размеры которого соответствуют требуемым параметрам. Обработка металла давлением, которая может выполняться по различным технологиям, активно используется для выпуска продукции, применяемой в машиностроительной, авиационной, автомобилестроительной и других отраслях промышленности.
Обработка листового металла давлением на прокатном станке
Физика процесса обработки металлов давлением
Сущность обработки металлов давлением состоит в том, что их атомы такого материала при воздействии на них внешней нагрузки, величина которой превышает значение его предела упругости, могут занимать новые устойчивые положения в кристаллической решетке. Такое явление, которым сопровождается прессование металла, получило название пластической деформации. В процессе пластической деформации металла изменяются не только его механические, но и физико-химические характеристики.
В зависимости от условий, при которых происходит ОМД, она может быть холодной или горячей. Различия их состоят в следующем:
- Горячая обработка металла выполняется при температуре, которая выше температуры его рекристаллизации.
- Холодная обработка металлов, соответственно, осуществляется при температуре, находящейся ниже температуры, при которой они рекристаллизуются.
Ковка раскаленной заготовки на молоте – вид горячей обработки металла давлением
Виды обработки
Обрабатываемый давлением металл в зависимости от используемой технологии подвергается:
- прокатке;
- ковке;
- прессованию;
- волочению; ; ;
- обработке, выполняемой комбинированными способами.
Основные виды обработки металла давлением
Прокатка – это обработка давлением заготовок из металла, в ходе которой на них воздействуют прокатные валки. Целью такой операции, для выполнения которой необходимо использование специализированного оборудования, является не только уменьшение геометрических параметров поперечного сечения металлической детали, но и придание ей требуемой конфигурации.
Виды прокатных валков
На сегодняшний день прокатку металла выполняют по трем технологиям, для практической реализации которых необходимо соответствующее оборудование.
Это прокатка, являющаяся одним из самых популярных методов обработки по данной технологии. Сущность такого способа обработки металла давлением заключается в том, что заготовка, проходящая между двумя валками, вращающимися в противоположные стороны, обжимается до толщины, соответствующей зазору между этими рабочими элементами.
По такой технологии обрабатывают давлением металлические тела вращения: шары, цилиндры и др. Выполнение обработки данного типа не предполагает, что заготовка совершает поступательное движение.
Это технология, которая представляет собой нечто промежуточное между продольной и поперечной прокаткой. С ее помощью преимущественно обрабатываются полые металлические заготовки.
Виды прокатки металла
Такая технологическая операция, как ковка, относится к высокотемпературным методам обработки давлением. Перед началом ковки металлическую деталь подвергают нагреву, величина которого зависит от марки металла, из которого она изготовлена.
Обрабатывать металл ковкой можно по нескольким методикам, к которым относятся:
- ковка, выполняемая на пневматическом, гидравлическом и паровоздушном оборудовании;
- штамповка;
- ковка, выполняемая вручную.
При машинной и ручной ковке, которую часто называют свободной, деталь, находясь в зоне обработки, ничем не ограничена и может принимать любое пространственное положение.
Ручная ковка используется в кузнечных мастерских при изготовлении небольшого количества изделий
Машины и технология обработки металлов давлением по методу штамповки предполагают, что заготовка предварительно помещается в матрицу штампа, которая препятствует ее свободному перемещению. В результате деталь принимает именно ту форму, которую имеет полость матрицы штампа.
К ковке, относящейся к основным видам обработки металлов давлением, обращаются преимущественно в единичном и мелкосерийном производстве. Разогретую деталь при выполнении такой операции располагают между ударными частями молота, которые называются бойками. При этом роль подкладных инструментов могут играть:
- обычный топор:
- обжимки различных типов;
- раскатка.
При выполнении такой технологической операции, как прессование, металл вытесняется из полости матрицы через специальное отверстие в ней. При этом усилие, которое необходимо для осуществления такого выдавливания, создается мощным прессом. Прессованию преимущественно подвергают детали, которые изготовлены из металлов, отличающихся высокой хрупкостью. Методом прессования получают изделия с полым или сплошным профилем из сплавов на основе титана, меди, алюминия и магния.
Прессование в зависимости от материала изготовления обрабатываемого изделия может выполняться в холодном или горячем состоянии. Предварительному нагреву перед прессованием не подвергают детали, которые изготовлены из пластичных металлов, таких как чистый алюминий, олово, медь и др. Соответственно, более хрупкие металлы, в химическом составе которых содержится никель, титан и др., подвергаются прессованию только после предварительного нагрева как самой заготовки, так и используемого инструмента.
Установка холодного прессования изделий из листового металла
Прессование, которое может выполняться на оборудовании со сменной матрицей, позволяет изготавливать металлические детали различной формы и размеров. Это могут быть изделия с наружными или внутренними ребрами жесткости, с постоянным или разным в различных частях детали профилем.
Основным инструментом, при помощи которого выполняется такая технологическая операция, как волочение, является фильера, называемая также волокой. В процессе волочения круглая или фасонная металлическая заготовка протягивается через отверстие в фильере, в результате чего и формируется изделие с требуемым профилем поперечного сечения. Наиболее ярким примером использования такой технологии является процесс производства проволоки, который предполагает, что заготовка большого диаметра последовательно протягивается через целый ряд фильер, в итоге превращаясь в проволоку требуемого диаметра.
Технологические процессы получения проволоки методом волочения
Классифицируется волочение по целому ряду параметров. Так, оно может быть:
- сухим (если выполняется с применением мыльной стружки);
- мокрым (если для его выполнения используется мыльная эмульсия).
По степени чистоты формируемой поверхности волочение может быть:
Линия волочения медной проволоки
По кратности переходов волочение бывает:
- однократным, выполняемым за один проход;
- многократным, выполняемым за несколько проходов, в результате которых размеры поперечного сечения обрабатываемой заготовки уменьшается постепенно.
По температурному режиму этот вид обработки металла давлением может быть:
Сущность такого способа обработки металла давлением, как объемная штамповка, состоит в том, что получение изделия требуемой конфигурации осуществляется при помощи штампа. Внутренняя полость, которая сформирована конструктивными элементами штампа, ограничивает течение металла в ненужном направлении.
В зависимости от конструктивного исполнения штампы могут быть открытыми и закрытыми. В открытых штампах, применение которых позволяет не придерживаться точного веса обрабатываемой заготовки, предусмотрен специальный зазор между их подвижными частями, в который может выдавливаться избыток металла. Между тем использование штампов открытого типа вынуждает специалистов заниматься удалением облоя, образующегося по контуру готового изделия в процессе его формирования.
Особенностью горячей штамповки металла является воздействие высокой температуры, вследствие чего заготовка деформируется, принимая форму штампа
Между конструктивными элементами штампов закрытого типа такой зазор отсутствует, и формирование готового изделия происходит в замкнутом пространстве. Для того чтобы обрабатывать металлическую заготовку при помощи такого штампа, ее вес и объем должны быть точно рассчитаны.
При помощи листовой штамповки готовые изделия получают из листового металла. В зависимости от того, какого результата необходимо добиться в процессе выполнения такой технологической операции, различают штамповку:
- разделительную (отрезка, вырубка и пробивка);
- формообразующую (гибка, вытяжка, раздача, отбортовка, чеканка и др.).
Для выполнения листовой штамповки используют гидравлические или кривошипно-шатунные прессы, рабочими органами которых являются штампы, состоящие из матрицы и пунсона.
Примеры изделий, изготовленных методом листовой штамповки
Качество готового изделия, которое обеспечивает листовая штамповка, позволяет не подвергать его последующей механической обработке. Для того чтобы обеспечить это качество, матрица и пунсон должны быть хорошо разработаны и изготовлены с высокой степенью точности.
Листовая штамповка – это одна из наиболее распространенных методик ОМД, которая активно применяется почти во всех отраслях промышленности. По такой технологии, в частности, производят как мельчайшие детали радиоэлектронных устройств, так и массивные кузова автотранспортных средств.
Получить более полное представление о способах обработки металла давлением, позволяет видео, демонстрирующее их в мельчайших подробностях.
Читайте также: