Что такое дислокации в металлах
Идеального кристаллического строения в природе не бывает. Экспериментально установлено наличие трех типов дефектов микроструктуры на атомном уровне в металлах и сплавах: точечных, линейных и поверхностных.
Рис. 18.1. Точечные дефекты: а)вакансия,
б) межузельный (дислоцированный) атом
1. Точечные дефекты – вакансии[21] и межузельные атомы (рис. 18.1) малы во всех трех измерениях и искажают кристаллическую решетку только на расстояниях порядка 10 –10 м. Концентрация точечных дефектов в металлах при комнатной температуре составляет порядка 10 –13 ат. %; при нагреве до температур близких к плавлению и особенно при облучении нейтронами в ядерном реакторе она может достигать 1…3 ат. %, что приводит к разбуханию и потере прочности металлоконструкций.
2. Линейные дефекты – краевые и винтовые дислокации[22] имеют большую протяженность в одном измерении и проявляются в нарушении правильного расположения атомных плоскостей – рис. 18.2. От числа, характера расположения и подвижности дислокаций в кристаллах сильно зависят механические и многие физические свойства монокристаллических и поликристаллических материалов.
Рис. 18.2. Линейные дефекты: а) краевая, б) винтовая дислокация
Плотность дислокаций – суммарная длина всех линий дислокаций в единице объема составляет у чистых неупрочненных металлов 10 6 …10 8 см –2 , а у деформированных – достигает 10 12 …10 13 см –2 , дальше появляются трещины и металл разрушается. Наличие достаточного числа дислокаций облегчает движение атомов, а, следовательно, и деформацию неупрочненных металлов – рис. 18.3. Из-за большого числа дислокаций прочность реальных (дефектных) кристаллических материалов во много раз меньше теоретической прочности, рассчитанной на основании сил взаимодействия между атомами для идеальных (бездефектных) структур.
Рис. 18.3. Зависимость сопротивления деформации от плотности дислокаций: 1 – теоретическая прочность; 2–4 – техническая прочность (2 – «усы»; 3 – чистые неупрочненные металлы; 4 – сплавы, упрочненные легированием, наклепом, термической или термомеханической обработкой)
Плотностью дислокаций, а, следовательно, и свойствами материала можно управлять в очень широком диапазоне (рис. 18.3). Исходя из вида кривой на рис. 18.3, возможны два принципиально различных способа повышения прочности материалов:
· Традиционными методами повышения прочности материалов за счет повышения числа дислокаций являются: легирование, холодная деформация, термическая или термомеханическая обработка. Самая эффективная из них – термомеханическая обработка позволяет повысить прочность до 1 /3 от теоретической.
· Во второй половине ХХ в. нанотехнологи научились выращивать нитевидные монокристаллы – усы[23](длиной до 2…10 мм и диаметром 0,5…2 мкм) с одной винтовой дислокацией, прочность которых приближается к теоретической[24]. Такие «усы» используются для армирования высокопрочных волокнистых композиционных материалов, в приборостроении (для микроподвесок), в микроэлектронике и т. п.
3. Поверхностные дефекты имеют большую протяженность в двух измерениях; наиболее существенными из них являются большеугловые и малоугловые границы, дефекты упаковки и границы двойников.
Границы между зернами обусловлены поликристаллическим строением металлов (см. рис. 16), они представляют собой узкую переходную область шириной до 5…10 межатомных расстояний, в которой атомы расположены менее правильно, чем в объеме зерна. По границам зерен в технических металлах концентрируются примеси, что еще больше нарушает правильный порядок расположения атомов. Атомные решетки (плоскости) соприкасающихся зерен металла разориентированы на величину до нескольких десятков градусов, что приводит к образованию, так называемых, большеугловых границ.
Каждое зерно металла, как правило, состоит из отдельных субзерен – блоков, образующих субструктуру – рис. 18.4. Поперечные размеры субзерен (блоков) составляют 0,1…1 мкм, т. е. блоки на один – три порядка меньше размеров кристаллитов. Если не учитывать точечные дефекты, то в пределах каждого блока кристаллическая решетка почти идеальна. Субзерна повернуты один по отношению к другому на угол от малых долей до единиц градусов, образуя субграницы (малоугловые границы). Установлено, что малоугловые границы образованы упорядоченными скоплениями (так называемыми, стенками) большого количества краевых дислокаций (┴) – см. рис. 18.4.
Рис. 18.4. Субструктура зерна: 1 – границы между зернами (большеугловые границы), 2 – границы между субзернами (малоугловые границы), 3 – субзерна (блоки)
Дефект упаковки представляет собой часть атомной плоскости, ограниченную дислокациями, в пределах которой нарушен нормальный порядок чередования атомных слоев.
Все поверхностные дефекты, включая дефекты упаковки и границы двойников*, представляют собой рассогласования в расположении пакетов атомных плоскостей.
Поверхностные дефекты также влияют на механические и физические свойства материалов. Особенно большое значение имеют границы зерен. Предел текучести σт связан с размером зерен d уравнением Холла-Петча: σт = σо + kd –1/2 , где σо и k – постоянные для данного материала. Чем мельче зерно, тем выше предел текучести, вязкость и меньше опасность хрупкого разрушения. Аналогично, но более слабо влияет на механические свойства размер субзерен.
Помимо перечисленных микродефектов в технических металлах и сплавах могут быть макродефекты объемного характера: газовые пузыри, микротрещины, поры, неметаллические включения и т. п., которые также снижают прочность, являясь концентраторами напряжений.
19(8). Деформация и разрушение металла. Упругая и пластическая деформация. Механизм пластической деформации. Наклёп
При приложении к твердому телу усилий происходит его деформация – изменение формы, обусловленное отклонением атомов от равновесного положения.
Если напряжения невелики, то деформация носит упругий характер. В этой области выполняется закон Гука – абсолютная деформация Δl прямо пропорциональна приложенному усилию Р – рис. 19.1. Сопротивляемость упругой деформации, т. е. жесткость материала при растяжении характеризует модуль нормальной упругости (модуль Юнга) Е, прямо пропорциональный tga (Е = (l0/F0)tga – см. п. 8). Модуль упругости практически не зависит от структуры металла и определяется силами межатомных связей в кристаллической решетке, например, для сталей он составляет 170…206 ГПа, для чугунов – 113…150 ГПа, титана – 116 ГПа, алюминия – 63…70 ГПа.
Рис. 19.1. Схема деформирования металла при растяжении: участки упругой (а) и пластической (б) деформации, × – разрушение
При упругой деформации после снятия нагрузки атомы возвращаются в исходное положение и тело восстанавливает исходную форму и размеры.
Если при внешнем нагружении напряжения достигают критической величины, то деформация становится пластической вследствие интенсивного размножения и движения дислокаций. После снятия нагрузки тело не восстанавливает свою форму и размеры.
Механизм пластической деформациипроще всегорассмотреть на примере деформации монокристалла. Пластическая деформация осуществляется путем сдвига одной части монокристалла относительно другой. Сдвиг атомных плоскостей вызывают внешние касательные напряжения τ, когда их значение превышает критическое τк. Различают две разновидности сдвига – скольжение и двойникование. При скольжении одна часть кристалла смещается параллельно другой части вдоль плоскости, называемой плоскостью скольжения или сдвига (рис. 19.2). Скольжение существенно облегчается за счет присутствия дислокаций, которые в большом количестве имеются в реальных металлах.
Рис. 19.2. Схема скольжения за счет движения краевой дислокации
Скольжение – основной вид сдвига в металлах и сплавах. Деформация двойникованием представляет собой перестройку части кристалла в новое положение, зеркально симметричное к его недеформированной части – рис. 19.3. Плоскость зеркальной симметрии называют плоскостью двойникования.
Рис. 19.3. Схема образования двойника (I–I – плоскость двойникования)
По сравнению со скольжением, двойникование в металлах с ОЦК и ГЦК решетками имеет второстепенное значение. Роль двойникования возрастает, когда скольжение затруднено. У менее пластичных металлов с ГПУ решеткой деформация обычно развивается как скольжением, так и двойникованием.
По мере развития пластической деформации металл наклёпывается. Под наклёпом понимают совокупность изменений структуры и связанных с ними изменений свойств, вызванных пластической деформацией металла[25].
При достаточно большой степени деформации все зерна становятся напряженными; равноосные до деформации зерна поликристаллических металлов вытягиваются, образуя волокнистую структуру – рис. 19.4. Количество дефектов кристалллической решетки и, прежде всего, дислокаций возрастает на несколько порядков (см. рис. 18.3). Внутри зерен за счет роста числа дислокаций происходит интенсивное образование малоугловых границ и увеличение углов разориентировки субзерен, что приводит к развитию блочной структуры.
Рис. 19.4. Изменение формы зерен в результате деформации: а – до деформации; б – после деформации
При большой степени деформации возникает преимущественная ориентация решеток зерен – текстура деформации, проявляющаяся в анизотропии свойств деформированных поликристаллических металлов и сплавов.
С увеличением степени деформации увеличиваются твердость, предел текучести, электросопротивление, коэрцитивная сила и др.; уменьшаются пластичность, вязкость, коррозионная стойкость, магнитная проницаемость и др.
При дальнейшем увеличении приложенных напряжений процесс деформации заканчивается разрушением, которое может быть вязким или хрупким. Вязкое разрушение происходит после значительной пластической деформации; сопровождается поглощением большого количества энергии; проходит по телу зерен; имеет волокнистый, матовый излом. Хрупкое разрушение имеет малую энергоемкость; деформация мала и носит в основном упругий характер; излом светлый, грубокристаллический.
Контрольная работа 1 Вариант 37
Что такое дислокация? Виды дислокаций и их влияние на механические свойства металла.
В любом реальном кристалле всегда имеются дефекты строения. Линейные несовершенства имеют малые размеры в двух измерениях и большую протяженность в третьем. Эти несовершенства называются дислокациями.
Краевая дислокация представляет собой линию, вдоль которой обрывается внутри кристалла край “лишней“ полуплоскости (рисунок 1)
Неполная плоскость называется экстраплоскостью.
Большинство дислокаций образуются путем сдвигового механизма. Ее образование можно описать при помощи следующей операции. Надрезать кристалл по плоскости АВСD, сдвинуть нижнюю часть относительно верхней на один период решетки в направлении, перпендикулярном АВ, а затем вновь сблизить атомы на краях разреза внизу.
Наибольшие искажения в расположении атомов в кристалле имеют место вблизи нижнего края экстраплоскости. Вправо и влево от края экстраплоскости эти искажения малы (несколько периодов решетки), а вдоль края экстраплоскости искажения простираются через весь кристалл и могут быть очень велики (тысячи периодов решетки) (рисунок 2).
Если экстраплоскость находится в верхней части кристалла, то краевая дислокация – положительная (┴), если в нижней, то – отрицательная (┬). Дислокации одного знака отталкиваются, а противоположные притягиваются.
Другой тип дислокаций был описан Бюргерсом, и получил название винтовая дислокация
Винтовая дислокация получена при помощи частичного сдвига по плоскости Q вокруг линии EF (рисунок 3) На поверхности кристалла образуется ступенька, проходящая от точки Е до края кристалла. Такой частичный сдвиг нарушает параллельность атомных слоев, кристалл превращается в одну атомную плоскость, закрученную по винту в виде полого геликоида вокруг линии EF, которая представляет границу, отделяющую часть плоскости скольжения, где сдвиг уже произошел, от части, где сдвиг не начинался. Вдоль линии EF наблюдается макроскопический характер области несовершенства, в других направлениях ее размеры составляют несколько периодов.
Если переход от верхних горизонтов к нижним осуществляется поворотом по часовой стрелке, то дислокация правая, а если поворотом против часовой стрелки – левая.
Винтовая дислокация не связана с какой-либо плоскостью скольжения, она может перемещаться по любой плоскости, проходящей через линию дислокации. Вакансии и дислоцированные атомы к винтовой дислокации не стекают.
В процессе кристаллизации атомы вещества, выпадающие из пара или раствора, легко присоединяются к ступеньке, что приводит к спиральному механизму роста кристалла.
Линии дислокаций не могут обрываться внутри кристалла, они должны либо быть замкнутыми, образуя петлю, либо разветвляться на несколько дислокаций, либо выходить на поверхность кристалла.
Дислокационная структура материала характеризуется плотностью дислокаций.
Плотность дислокаций в кристалле определяется как среднее число линий дислокаций, пересекающих внутри тела площадку площадью 1 м2, или как суммарная длина линий дислокаций в объеме 1 м3:
Если плотность меньше значения а, то сопротивление деформированию резко возрастает, а прочность приближается к теоретической. Повышение прочности достигается созданием металла с бездефектной структурой, а также повышением плотности дислокаций, затрудняющим их движение. В настоящее время созданы кристаллы без дефектов – нитевидные кристаллы длиной до 2 мм, толщиной 0,5…20 мкм – «усы» с прочностью, близкой к теоретической: для железа σВ = 13000 МПа, для меди σВ =30000 МПа. При упрочнении металлов увеличением плотности дислокаций, она не должна превышать значений 10 15 …10 16 м –2 . В противном случае образуются трещины.
Дислокации влияют не только на прочность и пластичность, но и на другие свойства кристаллов. С увеличением плотности дислокаций возрастает внутреннее, изменяются оптические свойства, повышается электросопротивление металла. Дислокации увеличивают среднюю скорость диффузии в кристалле, ускоряют старение и другие процессы, уменьшают химическую стойкость, поэтому в результате обработки поверхности кристалла специальными веществами в местах выхода дислокаций образуются ямки.
Дислокации образуются при образовании кристаллов из расплава или газообразной фазы, при срастании блоков с малыми углами разориентировки. При перемещении вакансий внутри кристалла, они концентрируются, образуя полости в виде дисков. Если такие диски велики, то энергетически выгодно «захлопывание» их с образованием по краю диска краевой дислокации. Образуются дислокации при деформации, в процессе кристаллизации, при термической обработке.
Полосы свинца были прокатаны при комнатной температуре с различной степенью обжатия: 10, 20, 40, 60%. После прокатки твердость всех листов оказалась практически неизменной. Объясните, почему не наблюдается упрочнение свинца при деформации в этих условиях. Какими процессами сопровождается деформирование свинца при комнатной температуре?
По правилу А.А. Бочвара можно оценить в первом приближении температурный порог рекристаллизации по известной температуре плавления металла: Тп.р.=0,4 Тпл.
Температура начала рекристаллизации свинца:
Тп.р.=(327+273)0,4-273=-33°С.
Таким образом, комнатная температура превышает температуру начала рекристаллизации. Лист свинца подвергся горячей пластической деформации. Деформация называется горячей, если ее проводят при температуре выше температуры рекристаллизации для получения полностью рекристаллизованной структуры. При этих температурах деформация вызывает упрочнение («горячий наклеп»), которое снимается рекристаллизацией, протекающей при температурах обработки и при последующем охлаждении. Поэтому свойства листа свинца в результате не изменились.
Вычертите диаграмму состояния железо – карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,01% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).
При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1 % заканчивается по линии АН с образованием α (δ)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.
При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3 % образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3Л[А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.
Таким образом, структура чугунов ниже 1147°С будет: доэвтектических – аустенит+ледебурит, эвтектических – ледебурит и заэвтектических – цементит (первичный)+ледебурит.
Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.
Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.
Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.
В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,03+Ц6,67].
Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.
Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит+цементит третичный и называются техническим железом.
Доэвтектоидные стали при температуре ниже 727ºС имеют структуру феррит + перлит и заэвтектоидные – перлит + цементит вторичный в виде сетки по границам зерен.
В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).
Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.
Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:
C = K + 1 – Ф,
где С – число степеней свободы системы;
К – число компонентов, образующих систему;
1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);
Ф – число фаз, находящихся в равновесии.
Сплав железа с углеродом, содержащий 0,01%С, называется доэвтектоидной сталью. Его структура при комнатной температуре – Феррит + Цементит (первичный).
Вычертите диаграмму изотермического превращения аустенита для стали У8. Нанесите на нее кривую режима термической обработки, обеспечивающей твердость 350 НВ. Опишите сущность превращений и какая структура получается при этой обработке.
Термической обработкой, необходимой для получения твердости 350 НВ, является изотермическая закалка на троостит. В качестве охлаждающей среды при изотермической закалке чаще всего применяют расплавленные соли, интервал температур которых определяется экспериментально.
При нагреве стали У8 выше А1 перлит переходит в аустенит. В результате охлаждения в расплавах солей из аустенита образуется ферритно-цементитная структура – троостит.
Рисунок 6 – Диаграмма изотермического превращения аустенита стали У8
В результате термической обработки получается твердость стали 350 НВ, структура – троостит.
Как изменяются структура и свойства стали 30 и У11 в результате закалки от температуры 750 и 850°С. Объясните с применением диаграммы состояния железо-цементит. Выберите оптимальный режим закалки каждой стали.
Исходная структура высокоуглеродистой инструментальной стали У11 до нагрева под закалку – перлит + карбиды.
Критические точки для стали У11: Аc1=730ºС, Аcm=810ºС.
Оптимальный режим нагрева под закалку для заэвтектоидных сталей (%С>0,8%) составляет АС1+(30÷50º), т.е. для У11 – 760–780ºС. При этом после закалки имеем мелкое зерно, обеспечивающее наилучшие механические свойства стали У11.
Нагрев и выдержка стали У11 при температуре 850ºС перед закалкой приводит к росту зерна и ухудшению механических свойств стали после термической обработки. Крупнозернистая структура вызывает повышенную хрупкость стали, иногда приводит к трещинам.
Закалка доэвтектоидной стали заключается в нагреве стали до температуры выше критической (Ас3), в выдержке и последующем охлаждении со скоростью, превышающей критическую.
Температура точки Ас3 для стали 30 составляет 820°С.
Если доэвтектоидную сталь нагреть выше Ас1, но ниже Ас3, то в ее структуре после закалки наряду с мартенситом будут участки феррита. Присутствие феррита как мягкой составляющей снижает твердость стали после закалки. При нагреве до температуры 750°С (ниже точки Ас3) структура стали 30 – аустенит + феррит, после охлаждения со скоростью выше критической структура стали – мартенсит + феррит.
Доэвтектоидные стали для закалки следует нагревать до температуры на 30-50°С выше Ас3. Температура нагрева стали под закалку, таким образом, составляет 850-870°С. Структура стали 30 при температуре нагрева под закалку – аустенит, после охлаждения со скоростью выше критической – мартенсит.
Лекция 5. Основные типы дислокаций: краевые, винтовые и смешанные дислокации
Дислокации принадлежат к линейным несовершенствам кристалла. Первоначально представления о дислокации были введены в физику твёрдого тела в 1934 году для того, чтобы объяснить несоответствие между наблюдаемой и теоретической прочностью и описать атомный механизм скольжения при пластической деформации кристаллов. Численные теоретические значения скалывающих напряжений, необходимых для деформации оказываются больше экспериментальных в 10- 10раз. Такая разница между расчётной и экспериментальной величинами свидетельствует о том, что механизм процесса сдвига при деформации, основанный на предположении, что части кристалла при этом смещаются относительно друг друга вдоль плоскости скольжения как жесткие системы, не соответствует реальности. Это объясняется тем, что в кристалле, находящемся под внешним напряжением, взаимодействуют уже существующие в нём и возникающие под воздействием внешнего напряжения особого рода дефекты кристаллической решётки. Впоследствии теория дислокаций получила широкое развитие и стала применяться для анализа самых разнообразных явлений в металлах и сплавах. При этом, если на первых этапах развития этой теории представления о дислокациях были чисто гипотетическими, то затем были получены прямые доказательства их существования, а в настоящее время используются разнообразные экспериментальные методы изучения дислокаций в металлах и сплавах.
Схема краевой дислокации показана на рис.20. Если в кристалле сделать надрез по плоскости АВСД и сдвинуть части кристалла вдоль плоскости надреза, перпендикулярно к краю надреза, что полученная граница АВ между участком, где скольжение уже произошло, и ненарушенным участком будет краевой дислокацией (рис.20.а). Представим себе, что в части кристалла по каким либо причинам появилась лишняя полуплоскость атомов, так называемая экстраплоскость. Вблизи края экстраплоскости решётка сильно искажена. В этом участке кристаллов против n атомов одного ряда располагается n+1 или n-1 атомов другого ряда. Выше края экстраплоскости (линия АВ) межатомные расстояния меньше параметра решётки, а ниже края – больше. Атом на самой кромке экстраплоскости имеет меньше соседей, чем внутри совершенной решётки. Таким образом, вдоль края экстраплоскости находится область с несовершенной решёткой, которая называется краевой дислокацией.
Рисунок 20 – Краевая дислокация
а – пространственная схема,
б – схема расположения атомов в области дислокации
Ядром или центром дислокации называют осевую зону дефектного участка кристалла, где очень сильны искажения решётки. Положение ядра дислокации в кристаллографической плоскости, являющейся плоскостью чертежа, обозначается знаком. Совокупность таких центров в параллельных атомных плоскостях образует линию дислокации.
Еслиэкстраплоскость находится в верхней части кристалла, то дислокацию называют положительной, в нижней – отрицательной. Положение центра ядра отрицательной краевой дислокации обозначается знаком . Дислокация перемещается в плоскости АВ, называемой плоскостью скольжения.
Большое значение в теории прочности и пластичности металлов имеет характер искажений кристаллической решётки вокруг краевой дислокации. У положительной краевой дислокации наблюдается растяжение кристаллической решётки под плоскостью скольжения, выше плоскости – сжатие решётки. У отрицательной дислокации наоборот.
Винтовая дислокация показана на рис.21. Если надрезать кристалл по плоскости АВСД и сдвинуть по этой плоскости одну часть кристалла относительно другой параллельно краю надреза, то границей сдвига окажется винтовая дислокация АВ (рис.21.а). Дефект решётки заключается в том, что одна её часть ( атомы изображены чёрными кружками) на некотором протяжении оказались сдвинутыми на один параметр решётки вниз по отношению к другой (белые кружки). Благодаря такому сдвигу части кристаллической решётки образовалась спиральная или винтовая поверхность. В отличие от линейной дислокации, лишней атомной плоскости у винтовой дислокации нет. Искажение кристаллической решётки заключается в том, что вблизи дислокации атомы меняют своих ближайших соседей, в результате чего плоскости решётки изгибаются. Характер искажений зависит от знака винтовой дислокации. Если искажения решётки направлены по часовой стрелке винтовая дислокация называется правой, если против часовой стрелке – левой.
Рисунок 21 – Сдвиг, создавший винтовую дислокацию.
а – кристалл до сдвига надрезан по АВСD, б – кристалл после сдвига, АВСD – зона сдвига.
Дислокации смешанной ориентации наиболее распространены в металлах и сплавах. Зона сдвига АВС на рис.22 ограничена линией дислокации АС. Плоскость чертежа является плоскостью скольжения, чёрные кружки обозначают атомы, расположенные под плоскостью скольжения, белые – над ней. Вблизи точки А дислокация имеет винтовую ориентацию, около точки В – краевую. Линия смешанной дислокации может оканчиваться на гранях кристалла, как это показано на рис.22, кроме того, возможно существование замкнутой петли внутри кристалла. Отдельные участки имеют чисто винтовую или краевую ориентацию, но, в основном, ориентация дислокаций смешанная. Петля определяет границу зоны сдвига части кристалла (внутри петли) относительно области вне петли, не претерпевшей сдвиг.
Рисунок 22 – дислокация смешанной
Дислокации, находящиеся в кристаллической решётке зёрен и кристаллов, называют дислокациями решётки, или внутризеренными.
Геометрически дислокации характеризуются двумя параметрами: направлением линии дислокации и вектором Бюргерса (рис.23).
Рисунок 23 – схема определения вектора Бюргерса
а – схема плоскости реального кристалла,
б – решётка совершенного кристалла.
Вектор Бюргерса является мерой искаженности кристаллической решётки, обусловленной присутствием в ней дислокации. Он определяет энергию дислокации, действующие на дислокации силы, величину, связанного с дислокацией сдвига, влияет на подвижность дислокации. Следовательно вектор Бюргерса главная количественная характеристика дислокации.
Если дислокация вводится в кристалл чистым сдвигом – так как это было показано ранее на примере краевой, винтовой дислокации, то вектор сдвига и является вектором Бюргерса. Вектор сдвига определяет величину и направление смещения атомов в той области, где сдвиг уже произошел, т.е. определяет степень искаженности решётки, связанную с присутствием дислокации, введенной в кристалл путём сдвига. Однако дислокация не всегда называется сдвигом. Кроме того, не все типы дислокаций можно определять через вектор сдвига. Поэтому более общим является определение вектора Бюргерса не как сдвига, а как меры искаженности кристаллической решётки.
Чтобы оценить степень искаженности кристаллической решётки, вызванной дислокацией, следует сравнить несовершенный кристалл, содержащий дислокацию, с совершенным кристаллом. Для этого строят так называемый контур Бюргерса. Контуром Бюргерса называется замкнутый контур произвольной формы, построенный в реальном кристалле путём последовательного обхода дефекта от атома к атому в совершенной области кристалла.
При одинаковом количестве шагов в горизонтальном и вертикальном направлении в конце концов приходим к первоначальному атому, т.е. в идеальном кристалле контур Бюргерса замкнут. В кристалле, содержащем краевую положительную дислокацию, контур Бюргерса окажется незамкнутым. Остаётся ещё отрезок, длина и направление которого определяют вектор Бюргерса.
На рис.24 показано построение контура и вектора Бюргерса для винтовой дислокации. Контур Бюргерса можно, например, построить от исходной точки А (рис.24.а). Пройдём от неё влево девять межатомных расстояний до точки В, шесть до точки С и вправо девять до точки Д. Чтобы попасть на уровень исходной точки А, опустимся от точки Д по вертикали вниз до точки Е на одно межатомное расстояние и пройдём шесть межатомных расстояний от Е доА.
Рисунок 24 – Контур Бюргерса вокруг винтовой дислокации (а) и эквивалентный контур в совершенном кристалле (б)
Для проведения соответствующего контура к совершенном кристалле (рис 24.б) сделаем девять шагов от исходной точки Адо В, затем шесть до С, девять до Д, один шаг вниз по вертикали от Ддо Еи шесть шагов на горизонтальном уровне в сторону исходной точки. При этом мы попадём не в исходную точку А, а в точку F. Невязку контура ликвидируем, замыкая его вектором Бюргерса b (соединяя точки F и А). Этот вектор характеризует степень искаженности решётки, вызванной дислокацией в кристалле на рис.24а. Весьма удобно, что искаженность решётки несовершенного кристалла выражается через период решётки идеального кристалла, т.е. через константу.
Дислокации, у которых вектор Бюргерса соответствует тождественной трансляции атома, называются полными или единичными. Векторы единичных дислокаций имеют в решётке различные направления. Энергия дислокаций будет минимальной в том случае, когда их векторы Бюргерса параллельны направлению плотнейшей упаковки атомов в кристаллической решётке. Частичными являются такие дислокации, вектор Бюргерса не соответствует тождественной трансляции атома. Векторы Бюргерса частичных дислокаций меньше, чем полных.
Вектор Бюргерса характеризуется рядом особенностей:
1. Нормален к лини краевой дислокации и параллелен к линии винтовой дислокации. Вдоль линии смешанной дислокации угол между ней и вектором Бюргерса в разных точках имеет разную величину и располагается под углом к линии дислокации АС.
2. У дефектов недислокационного типа равен нулю. Если построить контур Бюргерса вокруг любого точечного или линейного дефекта недислокационного типа (вокруг цепочки атомов или вакансий), то соответствующий контур в идеальном кристалле окажется замкнутым.
3. Одинаков вдоль всей линии дислокации, т.е. является инвариантом дислокации. Это следует, например, из того, что при смещении контура Бюргерса вдоль линии дислокации он всё равно будет оставаться эквивалентным исходному контуру (при условии, что он всеми своими точками не выходит из совершенной области решётки, т.е. не пересекает другие несовершенства). Кроме того, вектор сдвига, создающего, например, криволинейную смешанную дислокацию, имеет одну величину и одно направление для всего кристалла.
Из инвариантности вектора Бюргерса вытекает важное следствие: дислокация не может обрываться внутри кристалла. Внутри кристалла дислокации могут образовывать замкнутые петли с одинаковыми векторами Бюргерса вдоль всей петли или встречаться с другими дислокациями, образовывая узлы (точки встречи).
Выход дислокаций на поверхность шлифа металла проявляется в виде точки – углубления. Дислокации являются местами развития растущего кристалла. Эти же места активны при обратном процессе – растворении.
К параметрам, характеризующим свойства дислокации относятся её длина и ширина. Длина дислокации – это протяженность зоны искажения кристаллической решётки. В чистых ГЦК металлах устойчивая дислокация при напряжениях, сравнимых с пределом текучести, может иметь длину 10-3 – 10-4 см. Под шириной краевой дислокации следует понимать ширину области на плоскости скольжения, где величина межатомных смещений составляет не менее 1/8 максимального значения атомного смещения в центре дислокации, равного примерно 1/4а. Ширина дислокации определяет её энергию, подвижность, уровень напряжений, при которых дислокация может двигаться вдоль плоскости скольжения.
ПРОИСХОЖДЕНИЕ ДИСЛОКАЦИЙ
Энергия дислокаций составляет несколько электронвольт на атом.* Поэтому термическая активация не может помочь образованию дислокаций (в противоположность образованию точечных дефектов).
Сразу же после кристаллизации металлические моно- и поликристаллы содержат, как правило, очень большое число дислокаций. Следовательно, дислокации могут возникать непосредственно у фронта кристаллизации или же при охлаждении кристаллов после исчезновения жидкой фазы. Ниже кратко рассмотрены шесть возможных механизмов образования дислокаций.
1. На фронте кристаллизации легко себе представить образование винтовой дислокации.Когда кристалл, не содержащий дислокаций, растет путем присоединения атомов к ступеньке на новом слое, то этот слой, полностью достраиваясь, сам себя изживает (см. рис. 88, а). Для образования нового атомного слоя требуется возникновение на гладкой поверхности кристалла «двумерного» зародыша, что является самым узким звеном процесса роста совершенного кристалла и требует больших пересыщений (переохлаждений). Это звено отсутствует, если растет кристалл, содержащий винтовую дислокацию (см. рис. 88, б). Присоединение атомов к ступеньке на его поверхности приводит к вращению ступеньки. Поскольку атомы откладываются на винтовую поверхность, то ступенька все время продолжает существовать, облегчая тем самым присоединение атомов к кристаллу, облегчая рост кристалла.
Кристалл, содержащий винтовую дислокацию, представляет собой атомную плоскость, закрученную по спирали. Как же возникает такое закручивание в первый момент роста, при образовании зародыша? Известно, что, как правило, зарождение кристаллов несамопроизвольно (негомогенно). Кристаллы зарождаются на готовой подложке, которой служат стенки изложницы и мельчайшие твердые частицы, взвешенные в расплаве. На поверхность таких подложек выходят винтовые дислокации, т.е. здесь имеются готовые ступеньки, к которым и присоединяются атомы из кристаллизующегося расплава. Таким образом, винтовая дислокация из подложки как бы «прорастает»'в образующийся кристалл.
2. Другая причина зарождения дислокаций в период кристаллизации — возникновение напряжений. Когда происходит ориентированное нарастание (эпитаксия) кристалла на подложку, то сопряжение двух решеток из-за имеющегося всегда небольшого их несоответствия вызывает упругие напряжения в подложке и эпитаксиальном слое.Когда толщина эпитаксиального слоя достигает некоторой критической величины, компенсация несоответствия решеток подложки и растущего кристалла становится энергетически более выгодной не только в результате упругой деформации по всей поверхности сопряжения двух решеток, а частично за счет дислокаций, возникающих на этой поверхности (рис. 103). Такие дислокации называют структурными, эпитаксиальными или дислокационными несоответствиями.
Чем больше степень несоответствия двух решеток, тем выше плотность эпитаксиальных дислокаций. Повышение энергии- из-за образования дислокаций компенсируется снижением энергии упругой деформации сопряженных решеток.
3. Из-за сегрегации примесей при кристаллизации образуются смежные слои разного состава с несколько различающимися меж атомными расстояниями. Эта разница вызывает появление упругих напряжений. При определенной разнице в межатомных расстояниях соседних слоев энергетически выгодным может стать их сопряжение с участием структурных дислокаций на границе между соседними слоями.
4. Дислокаций могут возникать во время кристаллизации из-за разных случайностей при росте кристаллов. Эти случайности приводят к образованию мозаичной структуры — кристалл состоит из субзерен (блоков), слегка взаимно разориентированных. Одна из возможных причин образования субзерен — изгиб очень «нежных» ветвей дендрита из-за конвекционных токов, градиента температур и действия других факторов. Когда слегка разориентированные ветви одного дендрита срастаются, на границе между ними возникают дислокации.На рис. 104 показан простейший случай срастания двух симметрично разориентированных частей одного кристалла (или разных кристаллов). Вертикальные атомные плоскости в месте срастания не доходят до низа кристалла. Вокруг края каждой такой плоскости находится краевая дислокация. На рис. 104, б поверхность срастания представляет собой стенку из положительных дислокаций.
5.Дислокации могут возникать в полностью затвердевшем металле в непосредственной близости от фронта кристаллизации и вдали от него. Считается, что основным здесь является вакансионный механизм образования дислокаций. Равновесная концентрация вакансий резко уменьшается с понижением температуры от точки кристаллизации. При ускоренном охлаждении кристалл сильно пересыщается вакансиями (см. § 3 и 7). Избыточные вакансии конденсируются в дискообразные образования, параллельные плоскости плотнейшей упаковки. Диск может быть толщиной в один, два или три слоя вакансий. Когда диаметр вакансионного диска превышает некоторую критическую величину, то под действием сил межатомного притяжения его стороны сближаются и диск сплющивается. Это явление называют захлопыванием диска вакансий.
Если в г. ц. к. решетке вакансионный диск, лежащий в плоскости , захлопывается при сближении по нормали двух соседних слоев, разделенных слоем вакансий, то возникает дефект упаковки. На рис. 56 показано чередование плотноупакованных слоев после захлопывания диска вакансий. До захлопывания вакансионный диск находился в слое атомов В (середина этого слоя отсутствовала). При захлопывании диска сближение соседних слоев А и С по нормали одного к другому привело к образованию дефекта упаковки САСА в г. ц. к. решетке АВСАВС. Этот дефект имеет дискообразный контур. Границей дефекта упаковки на рис. 56 является сидячая дислокация Франка краевой ориентации (см. § 25). Вектор Бюргерса ее перпендикулярен плоскости дефекта упаковки и равен расстоянию между соседними плоскостями
Дефект упаковки в г. ц. к. решетке, образующийся при захлопывании вакансионного диска, чаще имеет не круглую или овальную форму, а огранен плотноупакованными рядами атомов . Соответственно линия образующейся дислокации Франка имеет форму шестиугольника. Такие шестиугольники наблюдались в фольгах закаленного алюминия.
Дислокация Франка сама скользить не может. Но если в плоскости ее дефекта упаковки имеется частичная дислокация Шокли, то возможно объединение по реакции (39) дислокаций Франка и Шокли в одну единичную дислокацию, которая может скользить.
Эта реакция энергетически выгодна, так как устраняет дефект упаковки, связанный с дислокацией Франка. Образующаяся по указанной реакции единичная дислокация была названа R-дислокацией (результирующей дислокацией).
Читайте также: