Что происходит при перекристаллизации металлов в твердом состоянии

Обновлено: 22.01.2025

Любое вещество может находиться в трех агрегатных состояниях: твердом, жидком, газообразном.

Изменение свободной энергии в зависимости от температуры

Кристаллизация – это процесс образования участков кристаллической решетки в жидкой фазе и рост кристаллов из образовавшихся центров. Кристаллизация протекает в условиях, когда система переходит к термодинамически более устойчивому состоянию с минимумом свободной энергии. При соответствующем понижении температуры в жидком металле начинают образовываться кристаллики – центры кристаллизации или зародыши. Для начала их роста необходимо уменьшение свободной энергии металла, в противном случае зародыш растворяется. Минимальный размер способного к росту зародыша называется критическим размером, а зародыш – устойчивым. Переход из жидкого состояния в кристаллическое требует затраты энергии на образование поверхности раздела жидкость – кристалл. Процесс кристаллизации будет осуществляться, когда выигрыш от перехода в твердое состояние больше потери энергии на образование поверхности раздела. Зародыши с размерами равными и большими критического растут с уменьшением энергии и поэтому способны к существованию.

Свободная энергия – составляющая полной энергии, которая обратимо меняется с изменением температуры.

Зависимость энергии системы от размера зародыша твердой фазы

Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело.

Размер зерен при кристаллизации зависит от числа частичек нерастворимых примесей, которые играют роль готовых центров кристаллизации- оксиды, нитриды, сульфиды. Чем больше частичек, тем мельче зерна закристаллизовавшегося вещества.

Мелкозернистую структуру можно получить в результате модифицирования, добавлением в жидкие металлы посторонних веществ-модификаторов. По механизму воздействия модификаторов различают:

А)вещества, не растворяющихся в жидком металле-выступают в качестве дополнительных центров кристализации;

Б)поверхностно-активные вещества, которые растворяются в металле, и, осаждаюсь на поверхности растущих кристаллов, препятствуют их росту

7. Строение металлического сплава зависит от того, в какие взаимодействия вступают компоненты, составляющие сплав. Почти все металлы в жидком состоянии растворяются друг в друге в любых соотношениях.

В зависимости от характера взаимодействия компонентов различают сплавы:

1. механические смеси;

2. химические соединения;

3. твердые растворы.

Сплавы механические смеси образуются, когда компоненты не способны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединения.

Сплавы химические соединения образуются между элементами, значительно различающимися по строению и свойствам, если сила взаимодействия между разнородными атомами больше, чем между однородными.

Кристаллическая решетка химического соединения

Сплавы твердые растворы – это твердые фазы, в которых соотношения между компонентов могут изменяться. Являются кристаллическими веществами. Характерной особенностью твердых растворов является: наличие в их кристаллической решетке разнородных атомов, при сохранении типа решетки растворителя. Твердый раствор состоит из однородных зерен

Схема микроструктуры твердого раствора

По характеру распределения атомов растворенного вещества в кристаллической решетке растворителя различают твердые растворы:

Рис.4.4. Кристаллическая решетка твердых растворов замещения (а), внедрения (б)

Внедрение – размещение атомов раствор вещ-ва в своб промежутках растворителя.

Строение – зона столб кристаллов, зона равноосн крист.

Система – группа тел, выбираемых для изучения или исследования.

Компонент – вещ-ва, необходимые и достаточные для образования системы.

Фаза – однородная часть системы, отделенная от неё другой частью системы, пов-тью раздела, при переходе ч-з которую хим состав или структура изменяются скачком.

8.Диаграмма состояния и её построение Правило фаз

Фаза – однородная часть системы, отделенная от других частей системы поверхностного раздела, при переходе через которую структура и свойства резко меняются. Если вариантность C = 1 (моновариантная система), то возможно изменение одного из факторов в некоторых пределах, без изменения числа фаз. Если вариантность C = 0 (нонвариантная система), то внешние факторы изменять нельзя без изменения числа фаз в системе. Существует математическая связь между числом компонентов (К), числом фаз (Ф) и вариантностью системы ( С ). Это правило фаз или закон Гиббса

Если принять, что все превращения происходят при постоянном давлении, то число переменных уменьшится

Диаграмма состояния представляет собой графическое изображение состояния любого сплава изучаемой системы в зависимости от концентрации и температуры

.

Диаграммы состояния показывают устойчивые состояния, т.е. состояния, которые при данных условиях обладают минимумом свободной энергии, и поэтому ее также называют диаграммой равновесия, так как она показывает, какие при данных условиях существуют равновесные фазы.

Температуры, соответствующие фазовым превращениям, называют критическими точками. Некоторые критические точки имеют названия, например, точки отвечающие началу кристаллизации называют точками ликвидус, а концу кристаллизации – точками солидус. По диаграмме состояния можно определить температуры фазовых превращений, изменение фазового состава, приблизительно, свойства сплава, виды обработки, которые можно применять для сплава.

Превращения в металлах и сплавах в твердом состоянии

Превращения в металлах и сплавах в твердом состоянии по своей физической сущности во многом напоминают кристаллизацию жидких металлов. Эти превращения называют фазовой перекристаллизацией, а при их исследованиях используют те же подходы в отношении механизмов и кинетики формирования новой фазы, включая образование зародышей и последующий их рост.

В чистых металлах основными превращениями в твердом состоянии являются аллотропические (полиморфные), а также магнитные превращения. В сплавах превращения в твердом состоянии дополняются целым рядом превращений, таких как эвтектоидное, перитектоидное, растворение и выделение избыточных фаз и др. Их изучение потребует знания диаграмм фазового равновесия и будет кратко рассмотрено позже.

Аллотропическим (полиморфным) превращением называют изменение пространственной решетки кристаллического тела. В качестве примеров аллотропических превращений можно привести превращение низкотемпературной аллотропической формы a - Fe с объемно-центрированной кубической решеткой в высокотемпературную форму g - Fe с гранецентрированной кубической решеткой, при температуре 911 °С и последующее превращение при температуре 1392 °С g - Fe в d - Fe с объемно-центрированной кубической решеткой, аналогичной a - Fe. Аналогичные превращения можно наблюдать в титане, цирконии и т.д. В титане и цирконии низкотемпературной аллотропической формой являются a - Ti, a - Zr с гексагональной плотноупакованной решеткой. При температуре выше 882° С для титана и 862° С для циркония образуются b - Ti и b - Zr, обладающие объемно-центрированной решеткой.

Аллотропическое превращение заключается в том, что атомное строение кристаллического тела изменяется при нагреве и охлаждении при переходе через критическую точку. Сам процесс перестройки кристаллической решетки происходит изотермически при постоянной температуре, кривая охлаждения сплава претерпевающая аллотропические превращения, аналогична кривой, наблюдаемой при затвердевании жидкого металла (рисунок 2. 11). Температура перехода называется критической точкой превращения. При температуре (Т0) наблюдается фазовое равновесие двух аллотропических разновидностей.

Рисунок 2.11. Термическая кривая для случая аллотропического при охлаждении Рисунок 2.12. Изменение свободной энергии системы при аллотропическом превращении

Аналогично процессу кристаллизации аллотропическое превращение идет с поглощением тепла при нагреве и выделением его при охлаждении. Аллотропическое превращение (также по аналогии с процессом кристаллизации) происходит путем образования зародышей и их последующего роста, в связи с чем оно протекает всегда с наличием переохлаждения (при охлаждении) и перенагрева при нагреве.

Аллотропическое превращение происходит так же как и процесс кристаллизации, в связи со стремлением системы к уменьшению свободной энергии, и поскольку линии, характеризующие изменения свободной энергии в зависимости от температуры, пересекаются при температуре Т0 (рисунок 2.12). При температурах выше Т0 стабильной является b - фаза, при более низкой температуре стабильной оказывается a - фаза, имеющая меньший запас свободной энергии.

В процессах кристаллизации основным препятствием образования твердых кристаллов являются затраты энергии на образование границы раздела фаз. Это вызывает необходимость переохлаждения для начала процесса кристаллизации.

При аллотропическом превращении кроме энергии, затрачиваемой на образование границы раздела фаз, необходимы дополнительные затраты энергии на преодоление упругого сопротивления твердой фазы, связанные с тем, что полиморфные превращения всегда приводят к изменением объема. Поскольку затраты энергии для образования зародышей при аллотропическом превращении больше, чем при кристаллизации из жидкого состояния, то переохлаждение при превращениях в твердом состоянии должны быть гораздо больше, чем при кристаллизации.

Аллотропические превращения могут протекать по двум механизмам:

1. диффузионным (нормальным) путем,

2. бездиффузионным (мартенситным) путем.

В отдельных металлах эти превращения могут протекать как по одному, так и по другому механизму, что будет зависеть от скорости охлаждения.

Диффузионный механизм аллотропического превращения заключается в том, что атомы, располагающиеся в решетке высокотемпературной модификации путем диффузионного перемещения, занимают новые места, характерные для новой аллотропической формы: низкотемпературной модификации.

Следовательно, развитие диффузионного механизма аллотропического превращения наиболее благоприятно при высоких температурах, обеспечивающих большую скорость диффузионного перемещения атомов. Кроме того, если температура превращения настолько высока, что обеспечивает высокую пластичность, то затраты энергии на преодоление упругого сопротивления тела образованию и росту новой фазы, отличающейся от новой фазы удельным объемом становятся меньше, в связи с чем аллотропическое превращение протекает при минимальном переохлаждении. Зародыши новой фазы появляются на границах зерен старой фазы и на других дефектах кристаллов. В дальнейшем происходит рост этих зародышей за счет перехода атомов из старой фазы в новую. Наряду с этим наблюдается продолжение зарождения новых зародышей образующейся фазы.

При переходе металла из одного кристаллографического состояния в другое происходит не только изменение кристаллической структуры, но и имеет место полный процесс фазовой перекристаллизации, при которой на месте старых зерен образуются совершенно новые зерна с новым расположением границ. Причем на месте старого одного зерна могут возникнуть несколько новых или на месте нескольких старых - одно новое зерно.

Этот процесс зависит, главным образом, от скорости охлаждения и степени переохлаждения, которые в основном определяют количество образующихся в единицу времени центров кристаллизации и скорость роста новой фазы. Чем выше скорость охлаждения и выше степени переохлаждения, тем больше количество центов кристаллизации, тем более дисперсными являются зерна новой фазы.

Поскольку аллотропические превращения происходят в твердой среде, наиболее интенсивно процесс фазовой перекристаллизации будет происходить в том случае, если длина диффузных путей будет минимальной. А это означает, что при образовании зародышей должен соблюдаться принцип структурного и размерного соответствия. Он сформулирован С.Т. Конобеевским и заключается в том, что: "форма и ориентировка зародышей новой фазы при кристаллизации должны соответствовать минимуму поверхностной энергии при данном объеме, а минимум поверхностной энергии обеспечивается при максимальном сходстве в расположении атомов на соприкасающихся гранях старой и новой фаз".


Рисунок 2.13. Близкие по строению плоскости в решетке ОЦК и в ГЦК решетке

Поэтому зарождение новой фазы начинается на плоскостях, которые являются наиболее сходными у обеих кристаллических решеток. Например, при переходе g - Fe в a - Fe наибольшее сходство имеют плоскости в g - Fe и в a - Fe (рисунок 2.13).

Преобразованием плоскостей g в a и направлений [110] g в [111] a во всем объеме металла протекает рассматриваемое аллотропическое превращение. При этом происходит лишь небольшой поворот кристаллографических направлений, при котором обеспечиваются углы 70°30¢ и 54°45¢ соответствующие расположению атомов в объемно-центрированном кубе.

Форма выделений новой фазы в основном определяется упругой энергией, возникающей при выделении. Если при аллотропическом превращении наблюдается большая степень размерного и структурного соответствия кристаллов старой и новой фаз, упругая энергия системы минимальна, а кристаллы новой фазы имеют форму дисков (пластин). Кроме того, на форму выделяющихся кристаллов оказывает влияние степень анизотропии упругих свойств обеих фаз. Если модули упругости возникающей фазы для всех направлений меньше, чем модули переходной фазы, в этом случае форма выделений - диски или пластины. Если модуль новой фазы только для одного из направлений меньше, чем модуль исходной фазы, то может появиться игольчатая форма выделений.

Появление новой фазы с новым удельным объемом может способствовать развитию сопутствующих процессов, таких как наклеп (фазовый) и рекристаллизации. Кроме того, на развитие аллотропии может оказывать влияние наличие примесей, которые могут играть роль дополнительных зародышевых центров. Все эти дополнительные параметры могут оказать влияние на окончательную структуру и свойства металла, претерпевшего аллотропическое превращение. В результате собирательной рекристаллизации, сопутствующей аллотропическому превращению, происходит укрупнение зерна, причем тем больше, чем выше температура нагрева. В случае же нагрева до температур, лежащих выше критической точки, когда происходит образование зерен новой фазы, но не успевает начаться укрупнение зерна, обычно получается очень маленькое зерно.

Бездиффузионный или мартенситный механизм аллотропического превращения осуществляется при низких температурах, при которых диффузия или самодиффузия почти не осуществляется. Это превращение происходит или в металлах с низкой температурой аллотропического перехода или при сильном переохлаждении высокотемпературной аллотропической формы в металлах с высокой температурой превращения. Так у кобальта, у которого Т0 = 420 °С, аллотропическое превращение идет только бездиффузионным путем. В железе, титане, цирконии и других металлах с высокой температурой Т0 при большом переохлаждении превращение идет бездиффузионным путем, а при малом переохлаждении - диффузионным путем. При мартенситном аллотропическом превращении новая фаза образуется путем кооперативного и закономерного перемещения атомов таким образом, что они сохраняют своих соседей и смещаются по отношению один к другому на расстояния, не превышающие междуатомные. Основное предположение мартенситного превращения заключается в том, что в процессе перехода старой фазы в новую сохраняется сопряженность (когерентность) их пространственных решеток. При наличии когерентности двух фаз поверхностная энергия границы очень мала, что способствует интенсивному росту образовавшихся кристаллов.

Упругая энергия сравнительно велика, она все время возрастает в процессе роста кристалла. Это происходит до тех пор, пока не будет превзойден предел упругости в переходной зоне. При этом в ней происходит пластический сдвиг, нарушающий когерентность кристаллических решеток старой и новой фаз. Возникновение некогерентной границы приостанавливает рост данного кристалла мартенситной фазы. Дальнейшее увеличение количества образующейся фазы происходит путем образования новых зародышей и мгновенного их роста. Скорость роста кристаллов при мартенситном превращении очень велика и достигает скорости звука. Скорость образования центров кристаллизации подчиняется общим закономерностям фазовых превращений. При развитии мартенситного механизма аллотропического превращения участки новой фазы располагаются вдоль определенных кристаллографических плоскостей старой фазы и выглядят под микроскопом в виде иголок или пластин. Это является результатом структурного и размерного соответствия, устанавливающегося между решетками старой и новой фаз.

Важной особенностью мартенситного превращения является то, что в изотермических условиях превращения только часть старой фазы переходит в новую. Дальнейшее превращение может протекать только при понижении температуры. Мартенситное превращение происходит в интервале температур. Различают точки Мн и Мк - начало и конец мартенситного превращения. Во многих случаях превращение не доходит до конца даже при очень низких температурах. Установлено, что мартенситное превращение, как и нормальное - диффузионное обратимо. Образование высокотемпературной формы из низкотемпературной при достаточной степени перенагрева может происходить бездиффузионным путем.

Магнитное превращение, наблюдаемое в ферромагнитных материалах, не является обычным фазовым превращением. Оно не связано с перемещением диффузией атомов, а вызывается только изменением взаимодействия магнитно нескомпенсированных d или f - электронов, обусловливающих возникновение ферромагнетизма. Характер изменения магнитных свойств зависит от физической природы металла. Температура потери магнитных свойств, называемая точкой Кюри, не зависит от скорости нагрева или охлаждения. Эта температура постоянна для каждого металла. Для железа она равна 768° С, никеля - 365- 370° С, кобальта - 1050° С.

Особенности кристаллизации металла шва

Кристаллизацией называется процесс образования зерен (кристаллитов) расплавленного металла при переходе его из жидкого состояния в твердое. Это, так называемая, первичная кристаллизация. Существует еще вторичная кристаллизация, при которой происходит изменение структуры уже затвердевшего металла. Первичная кристаллизация металла шва начинается в результате его охлаждения при отводе тепла в толщу твердого металла, окружающего сварочную ванну. Сначала возникают отдельные центры кристаллизации, а от них начинают расти уже сами кристаллы, образующие зерна металла.


Первичная кристаллизация зарождается в первую очередь по линии сплавления I—II (рис. 33, а), на границах частично оплавленных зерен твердого металла, так как именно здесь начинается охлаждение ванны. Кристаллы растут в сторону толщи металла шва, как показано стрелкой, перпендикулярно плоскости отвода тепла. Количество, форма и расположение зерен зависят от места зарождения центров кристаллизации, скорости роста зерен, скорости охлаждения и направления отвода тепла, а также от наличия в расплавленном металле посторонних включений. При затвердевании металла сварочной ванны (рис. 33, б) сначала возникают быстрорастущие кристаллы вследствие интенсивного отвода тепла в основной металл. Между ними появляются более мелкие и медленнее растущие кристаллы, поскольку от них тепло отводится не так быстро. Затем зерна смыкаются и из них продолжают расти только те, которые расположены перпендикулярно поверхности раздела между твердым и жидким металлом. При уменьшении скорости охлаждения центры кристаллизации возникают более равномерно по всему объему металла, а зерна растут во все стороны. Первичная кристаллизация металла шва протекает периодически и при специальном травлении в нем можно различить слоистое строение.

Металл шва в результате первичной кристаллизации получает или гранулярную (зернистую) структуру, при которой зерна не имеют определенной ориентировки, а по форме напоминают многогранники, или столбчатую и дендритную структуру, при которой зерна вытянуты в одном направлении (рис. 33, в). При столбчатой структуре зерна имеют компактную вытянутую форму, при дендритной — ветвистую, напоминающую дерево. Дендриты обычно располагаются в столбчатых зернах, являясь их основой.

Чем быстрее охлаждение металла, тем больше образуется центров кристаллизации и тем мельче будут зерна. При медленном охлаждении в процессе затвердевания металл приобретает крупнозернистое строение. Столбчато-дендритная структура с крупными зернами (см. рис. 33, в) характерна для сварки под флюсом, где охлаждение металла шва происходит медленнее, чем при ручной сварке. Гранулярная структура присуща сварке покрытыми электродами. Она может быть крупной и мелкой, в зависимости от условий охлаждения и кристаллизации. Мелкозернистая гранулярная структура повышает механические свойства наплавленного металла.

Зерна основного металла отличаются по форме от зерен металла шва тем, что они деформированы и вытянуты в направлении прокатки.

Находящиеся в жидком металле примеси и загрязнения (окислы, шлаки и др.) имеют более низкую температуру затвердевания, чем металл, и при застывании располагаются по границам зерен, ухудшая их сцепление между собой. Это снижает прочность и пластичность наплавленного металла. Чем чище наплавленный металл, тем выше его механические свойства.

Форма шва имеет значение для направления кристаллизации и расположения неметаллических включений. При широких швах (рис. 33, г) эти включения вытесняются наверх и могут быть легко удалены; при узких швах (рис. 33, д) включения часто остаются в середине шва между зернами.

Структура шва и ЗТВ

Теплота, выделяемая сварочным источником нагрева, распространяется на прилегающие ко шву участки основного металла. При нагреве и последующем остывании в этих участках изменяются структура и свойства металла. Участок основного металла, подвергающийся в процессе сварки нагреву до температуры, при которой происходят видимые или невидимые структурные изменения, называют зоной термического влияния (околошовной зоной). Наряду с тепловым воздействием основной металл околошовной зоны, как правило, претерпевает и пластическую деформацию.

Температура нагрева различных участков зоны термического влияния находится в пределах от точки плавления металла (у шва) до начальной температуры основного металла. Строение и размеры зоны термического влияния зависят от химического состава и теп-лофизических характеристик свариваемого материала, а также от термического цикла сварки.

Зона термического влияния является обязательным спутником шва при всех видах электрической сварки плавлением. Ширина ее изменяется в достаточно широких пределах в зависимости от способа и режима сварки, состава и толщины основного металла и ряда других факторов. Меньшая ширина зоны относится к условиям сварки, характеризуемым большим перепадом температур.


На рис. 2-47 приведена схема строения зоны термического влияния при сварке однослойного стыкового шва на конструкционных сталях. Рассмотрим на этом примере структурные превращения в околошовной зоне. Первый участок зоны примыкает непосредственно к металлу шва. Основной металл на этом участке находится в твердо-жидком состоянии. Здесь и происходит собственно сварка, т. е. формирование кристаллитов шва на частично оплавленных зернах основного металла. Участок имеет небольшую ширину. По своему составу и структуре он отличается от соседнего участка основного металла. За время контакта жидкой и твердой фаз в нем протекают диффузионные процессы и развивается химическая неоднородность.

Совокупность первого участка околошовной зоны и пограничного участка металла шва именуют зоной сплавления или переходной зоной. Свойства переходной зоны оказывают подчас решающее влияние на работоспособность сварной конструкции. На этом участке часто образуются трещины, ножевая коррозия, усталостные разрушения при вибрационной нагрузке, хрупкие разрушения и т. п. Поэтому дальнейшее изучение свойств переходной зоны представляет первостепенный интерес. Ширина переходной зоны зависит от природы источника нагрева, теплофи-зических свойств, состава и толщины (до определенных пределов) основного металла, режима сварки и других факторов.

Второй участок околошовной зоны, получивший название участка перегрева (участка крупного зерна), включает металл, нагретый до температуры примерно 1200° С до температуры плавления. Металл на этом участке претерпевает аллотропические превращения. При нагреве сс-железо переходит в у-железо, причем в результате значительного перегрева происходит рост аусте-нитного зерна.

Характер вторичной структуры металла на этом участке зависит от его состава и термического цикла сварки. Например, при электрошлаковой сварке низкоуглеродистой стали образуется крупнозернистая видманштеттова структура. Обычно, особенно в тех случаях, когда перегрев сочетается с последующей закалкой, металл на втором участке околошовной зоны обладает худшими свойствами (меньшая пластичность, меньшая стойкость против перехода в хрупкое состояние), чем основной металл вне зоны термического влияния. Задача выбора рациональной технологии сварки сводится в первую очередь к обеспечению наименьшего ухудшения свойств металла на этом участке.

Третий участок околошовной зоны получил название участка перекристаллизации (нормализации). Он включает металл, приобретший в процессе нагрева полностью аустенитную структуру.

Четвертый участок околошовной зоны, получивший название участка неполной перекристаллизации, включает металл, нагретый от температуры, при которой во время нагрева начинаются аллотропические превращения (~720° С), до температуры около 880° С. Металл на этом участке подвергается только частичной перекристаллизации. Поэтому здесь наряду с зернами основного металла, не изменившимися в процессе сварки, присутствуют зерна, образовавшиеся при перекристаллизации. Изменения структуры металла на этом участке значительно меньше влияют на качество сварного соединения углеродистых конструкционных сталей, чем изменения, происходящие в первых трех участках.

На пятом участке околошовной зоны, именуемом участком старения при рекристаллизации, металл нагревается от температуры примерно 500° С до температуры несколько ниже температуры 720° С. Здесь происходит сращивание раздробленных при нагартовке (ковке, прокатке) зерен основного металла и некоторое разупрочнение его по сравнению с исходным состоянием. Снижение прочности наблюдается также при сварке основного металла, подвергшегося упрочняющей термообработке. На этом же участке околошовной зоны при сварке углеродистых конструкционных сталей с содержанием до 0,3% С при некоторых условиях наблюдается снижение пластичности и ударной вязкости и повышение прочности металла. Можно предположить, что это обусловливается старением после закалки и дисперсионным твердением.

Кристаллизация металлов

материаловедение решение

Любое вещество может находиться в одном из четы­рех агрегатных состояний: твердом, жидком, газообразном и плазменном. Агрегатное состояние определяется энер­гией взаимодействия атомов. Стабильным (равновесным) при определенных внешних условиях является состояние вещества, при котором оно обладает минимумом свободной энергии. Свободная энергия — часть внутренней энергии вещества. Внутренняя энергия веще­ства — это сумма потенциаль­ной энергии (энергии взаи­модействия) и кинетической энергии частиц (тепловые колебания). Часть внутрен­ней энергии, высвобождающаяся при переходе вещества из одного состояния в другое,называется свободной энергией. Чем больше высвободится свободной энергии, тем меньшей энергией будет обладать вещество, тем более стабильно его состояние. Свободную энергию можно представить как аналог потенциальной энергии (рис. 1).

Стремление системы к уменьшению свободной энергии


Рисунок 1 - Стремление системы к уменьшению свободной энергии

В положении 1 шарик имеет максимальную потенциальную энергию. Это положение не является устойчивым, шарик скатывается в положение 2, при котором его потенциальная энергия будет равна 0. Вещество может находиться в метастабильном состоянии (закаленная сталь). Такое состояние не обладает минимумом свободной энергии, но является достаточно устойчивым (стабильным). Вещество в метастабильном состоянии может находиться бесконечно долго при условии постоянства внешних факторов.
Первичная кристаллизация металлов и сплавов. Кри­сталлизация — это переход металла из жидкого состояния в твердое с образованием кристаллического строения. Это первичная кристаллизация (в отличие от вторичной, когда кристаллы металлических фаз выделяются из твердого вещества).
Рассмотрение кристаллизации для металлов и сплавов на их основе связано с тем, что эти материалы получают методом литья, тогда как многие неметаллические матери­алы производят другими способами. Ряд неметаллических материалов существует в природном виде (углерод), мно­гие химические соединения получают путем химических реакций: карбиды — карбидизацией, нитриды — азотирова­нием и т.п. Процесс кристаллизации (затвердевания) обусловлен стремлением системы к переходу в более устойчивое термодинамическое состояние. При изменении внешних условий, например темпе­ратуры, свободная энергия системы меняется различно для жидкого и твердого (кристаллического) состоя­ния (рис. 2). Выше темпе­ратуры Ts более стабильным
является жидкое состояние, так как металл в этом состоянии имеет меньший запас свободной энергии. Ниже температуры Ts меньшим запасом свободной энергии обладает металл в твердом состоянии. При темпера­туре величины свободных энергий твердого и жидкого состояний равны. Это озна­чает, что металл может нахо­диться в обоих состояниях бесконечно долго, так как пере­ход из одного состояния в другое не будет сопровождаться уменьшением свободной энергии. Температура Ts получила название теоретической температуры кристаллизации.

Изменение свободной энергии в зависимости от температуры


Рисунок 2 - Изменение свободной энергии (Ts) в зависимости от температуры (Т) жидкого (1) и твердого (2) состояния вещества

Для начала кристаллизации необходимо, чтобы свобод­ная энергия металла в твердом состоянии стала меньше свободной энергии жидкого состояния. Это становится воз­можным при охлаждении жидкости ниже Ts. Температура, при которой фактически начинается процесс кристаллиза­ции, называется фактической температурой кристаллиза­ции (Тк). Охлаждение жидкого металла ниже теоретической температуры кристаллизации называется переохлаждение, а разность между теоретической и фактической температу­рой кристаллизации — степенью переохлаждения (ΔТ):

Степень переохлаждения зависит от скорости охлажде­ния жидкого металла. С увеличением скорости охлаждения понижается фактическая температура кристаллизации и, следовательно, возрастает степень переохлаждения. Процесс кристаллизации можно описать с помощью кривых охлаждения, построенных в координатах «тем­пература — время» (рис. 3). Охлаждение в жидком состоянии сопровождается плавным понижением температуры (участок 1 кривой охлаждения), при достижении температуры кристаллизации на кри­вой охлаждения появля­ется горизонтальная пло­щадка (участок 2 кривой охлаждения), т.е. охлаж­дение (понижение темпе­ратуры) останавливается. Это вызвано тем, что отвод тепла компенсируется выделяющейся в процессе кристаллизации скрытой
теплотой кристаллиза­ции. После полного перехода металла из жидкого состояния в твердое температура вновь начинает плавно снижаться (участок 3 кривой охлаждения). Увеличение скорости охлаждения от V1 до V3 приводит к увеличению степени
переохлаждения (см. рис. 3).

Кривые охлаждения металла


Рисунок 3 - Кривые охлаждения металла

Кристаллизация начинается с образования в жидком металле центров кристаллизации и продолжается за счет роста их числа и размеров (рис. 4). Процесс кристаллизации можно охарактеризовать двумя параметрами: числом центров кристаллизации (ЧЦК),

Схема процесса кристаллизации


Рисунок 4- Схема процесса кристаллизации

образующихся в единицу времени в единице объема (1 см 3 /с), и скоростью роста кристаллов (СК ) [мм /с]. Эти параметры зависят от степени переохлаждения, а следовательно, от скорости охлаждения при кристалли­зации металла. В соответ­ствии с законом Таммана для каждой степени пере­охлаждения указанные пара­метры могут иметь только одно значение (рис. 5).
При теоретической темпе­ратуре кристаллизации ( Ts) значения ЧЦК и СК равны 0 и кристаллизация происходить не может. При повышении степени переохлаждения значения ЧЦК и СК возрастают, процесс кристаллизации идет быстро. Это объясняется тем, что при высоких температурах, близких к Тs подвижность атомов велика. При определенных степенях переохлажде­ния значения ЧЦК и СК достигают максимума, после чего снижаются вследствие уменьшения подвижности атомов при низких температурах.

Размер образовавшихся в процессе кристаллизации зерен зависит от соотношения величин ЧЦК и СК, т.е. определяется степенью переохлаждения (скоростью охлаждения
металла в процессе кристаллизации). При малых степенях переохлаждения (низкой скорости охлаждения металла) образуется малое число центров кристаллизации, которые
растут с большой скоростью,---- АТ' (см. рис. 5). В этом случае структура металла после окончания кристаллизации будет крупнозернистой. При больших степенях переохлаждения, напротив, ЧЦК велико, а СК мала (ДГ" - АТ”'), поэтому структура металла получается мелкозернистой.
Если степень переохлаждения настолько велика, что значения ЧЦК и СК близки к пулю, кристаллизации не происходит. При этом образуется твердое тело, имеющее не кристаллическое строение с «правильным» расположением атомов, а аморфное — с хаотическим расположением атомов — «твердая жидкость». Аморфное состояние
характерно для неметаллических материалов (стекла, полимеры). Для получения аморфного состояния у металлических материалов требуется очень большая скорость охлаждения 10 6 . 10 7 °С/с.

Читайте также: