Батарейка представляет собой металлическую сферу
Химические источники тока (ХИТ) – электрохимические устройства, в результате работы которых химическая энергия окислительно-восстановительных процессов превращается в электрическую энергию постоянного тока. К ним относятся гальванические элементы, аккумуляторы, топливные элементы.
Основными характеристиками ХИТ являются ЭДС, напряжение, мощность, энергия, которую они отдают во внешнюю цепь, саморазряд.
Химические источники тока должны иметь: как можно большее значение ЭДС; максимально высокие удельные мощность и емкость; по возможности меньшую разность между напряжением источника тока и его ЭДС; максимально низкий саморазряд (потеря емкости ХИТ при разомкнутой цепи).
Гальванические элементы – устройства, в которых энергия химической окислительно-восстановительной реакции превращается в электрическую. Он состоят из двух электродов, имеющих различный электродный потенциал, электролита, который дает возможность перемещаться ионам от одного электрода к другому, и металлического проводника для перемещения электронов, направленный поток которых приводит к возникновению электрического тока.
Рассмотрим механизм возникновения электрического тока на примере медно-цинкового гальванического элемента (элемента Даниэля – Якоби). Он состоит из двух электродов – цинкового и медного, погруженных в соответствующие растворы сульфатов цинка и меди, которые разделены полупроницаемой перегородкой 1 (внутренняя цепь) (рис. 8.3.). Электроды соединены друг с другом металлическим проводником (внешняя цепь) через гальванометр 2.
Если цепь замкнута, то происходят процессы гидратации ионов металлов на обоих электродах и устанавливается химическое равновесие между металлом и его ионами в растворе:
Металлы приобретают разный по величине заряд, так как Zn и Cu имеют различную активность, которая может быть оценена с помощью стандартных электродных потенциалов ( =−0,76 В, =+0,34 В).
Рис. 8.3. Схема гальванического элемента Даниэля-Якоби
Таким образом, концентрация свободных электронов на этих электродах различна. При замыкании внешней цепи происходит выравнивание этих концентраций и электроны по внешнему проводнику перемещаются от Zn электрода к Cu электроду. Концентрация электронов на цинковом электроде уменьшается, что приводит к смещению равновесия на границе Zn/ZnSO4 в сторону образования катионов Zn 2+ ,т.е. происходит процесс растворения цинка (Zn Zn 2+ + 2 ).
Процесс окисления в электрохимии называется анодным процессом, а сам электрод – анодом.
Концентрация свободных электронов на медном электроде увеличивается в результате поступивших электронов с цинка и равновесие на границе Cu/CuSO4 смещается в сторону образования металлической меди (Cu Cu 2+ + 2 ), т.е. происходит процесс восстановление меди.
Процесс восстановления в электрохимии называется катодным процессом, а сам электрод – катодом.
На Zn – аноде происходит процесс окисления, в результате которого цинк переходит в раствор в виде катионов, на Cu – катоде – процесс восстановления ионов меди:
Cu 2+ + Zn « Zn 2+ + Cu.
Таким образом, при работе гальванического элемента одновременно происходят процессы окисления и восстановления.
Схематически работа гальванического элемента записывается следующим образом:
(−) Zn /Zn 2+ ç H2SO4 ç Cu 2+ /Cu (+).
В гальваническом элементе происходит движение ионов (SO4 2- ) во внутренней цепи и электронов (2 ) во внешней, т.е. возникает электрический ток.
В скобках указываются знаки электродов, причем анод записывается слева, катод – справа. Стрелки указывают направление движения электронов во внешней цепи и ионов SO4 2- во внутренней.
Важной характеристикой гальванического элемента является его движущая сила (ЭДС), которая представляет собой разность потенциалов электродов при отсутствии тока во внешней цепи:
Потенциалы каждого электрода зависят от концентрации потенциалопределяющих ионов и вычисляются по уравнению Нернста (8.4).
Если условия стандартные ([ZnSO4] и [CuSO4 ] = 1 моль/л, температура Т = 298 К), то для медно–цинкового элемента стандартная ЭДС о равна:
ЭДС о = +0,34 – (–0,76) = 1,1 В.
Среди большого разнообразия гальванических элементов можно выделить три основных типа:
1. Два различных металла находятся в растворах своих солей.
К этому типу относится рассмотренный гальванический элемент Даниэля–Якоби.
2. Два различных металла находятся в одном электролите.
Примером такого элемента может служить элемент Вольта, состоящий из двух пластин (Zn и Cu), находящихся в растворе серной кислоты.
При его работе происходят следующие процессы:
Выделяющийся водород насыщает поверхность катода (меди), в результате чего получается электрод другого состава (не медный, а водородный). Схема гальванического элемента Вольта:
(−) Zn/Zn 2+ çH2SO4ç2H + /H2 (Cu) (+).
3. Два одинаковых электрода находятся в растворах своих солей с различной концентрацией ионов металла в электролите. Такой элемент называется концентрационным.
Схема медного концентрационного гальванического элемента:
(−) Cu/CuSO4 ççCuSO4/Cu (+).
Роль анода выполняет электрод, находящийся в более разбавленном растворе, так как его электродный потенциал имеет более низкое значение по сравнению со вторым электродом. ЭДС такого гальванического элемента зависит только от соотношения концентраций потенциалопределяющих ионов (в данном случае от концентрации CuSO4).
Как источники электрической энергии концентрационные гальванические элементы практического значения не имеют.
Электродвижущая сила и напряжение гальванического элемента. ЭДС – разность потенциалов между катодом и анодом в условиях обратимой работы ГЭ. Измерение ЭДС обычно проводят компенсационным методом при отсутствии тока в цепи.
Прямым измерением разности потенциалов на клеммах элемента с помощью обычного вольтметра можно получить значение напряжения U, которое не равно ЭДС элемента.
Напряжение – разность между электродами работающего гальванического элемента (в необратимых условиях работы). Напряжение элемента U и величину омического падения напряжения во внешней и внутренней цепях I (r1 + r2):
где – перенапряжение (поляризация элемента, равная сумме катодной К и анодной А поляризаций); I – ток; r1, r2 – сопротивления соответственно внешней и внутренней цепей электрохимической системы.
Поляризация – явление отклонения потенциала электрода от его равновесного значения при прохождении через систему электрического тока. В результате поляризации потенциал анода смещается в положительную сторону, потенциал катода – в отрицательную сторону и в соответствии с уравнением Нернста ЭДС элемента уменьшается.
Разница между ЭДС и напряжением обусловлена падением напряжения внутри элемента при прохождении тока и другими эффектами. Для увеличения напряжения на клеммах в гальванических элементах снижают поляризацию анода и катода и максимально уменьшают внутреннее сопротивление ХИТ.
Процесс уменьшения электродной поляризации называют деполяризацией. Ее уменьшают путем изменения условий протекания электродных процессов или применением специальных веществ – деполяризаторов, способных электрохимически окисляться или восстанавливаться, изменяя тем самым природу электродных процессов. Деполяризаторами-окислителями являются, например, H2Cr2O7, MnO2, кислород воздуха, деполяризаторами-восстановите-лями – Na2SO3, Na2PO3 и др.
Аккумуляторы – гальванические элементы, которые на основе обратимых электрохимических реакций могут многократно накапливать химическую энергию и отдавать ее для потребления в виде электрической энергии постоянного тока.
Аккумуляторы – устройства многоразового действия, сочетающие в себе гальванический элемент и электролизер. Под воздействием внешнего постоянного тока в них аккумулируется (накапливается) химическая энергия, которая затем превращается в электрическую энергию в результате окислительно-восстановительной реакции.
Процесс накопления химической энергии называют зарядом аккумулятора, процесс ее превращения в электрическую – разрядом аккумулятора. В первом случае аккумулятор работает как электролизер, во втором – как гальванический элемент.
Устройство и принцип действия всех аккумуляторов одинаковы. Основное отличие состоит в материале электродов и типе электролита. На аноде как при разряде, так и при заряде протекает процесс окисления, на катоде – процесс восстановления.
Наиболее распространенными являются кислотные и щелочные аккумуляторы.
Кислотный аккумулятор (свинцовый аккумулятор) представляет собой пластины в виде отливок из хартблея (твердого свинца с примесью сурьмы) ячеистой структуры, собранные в батареи и помещенные в баки из эбонита или полипропилена с электролитом. В ячейки пластин предварительно запрессовывается смесь оксида свинца (PbO) с глицерином, обладающая способностью затвердевать в виде глицерата свинца. Электролитом служит раствор серной кислоты с концентрацией 35-40 %. Анодная и катодная части разделены токонепроводящим сепаратором.
Cхема кислотного аккумулятора:
При взаимодействии оксида свинца с H2SO4 образуется PbSO4
При первичном и последующих зарядах аккумулятора, когда он работает как электрохимическая ячейка, PbSO4 на катоде превращается в свинец Pb, а на аноде – в диоксид свинца PbO2, которые и являются электродами.
При работе аккумулятора – его разряде, когда он работает как химический источник тока, на электродах протекают электродные процессы в обратном направлении.
Электродные реакции в свинцовом аккумуляторе можно представить в виде:
По мере его разряда расходуются материалы катода (PbО2) , анода (Pb) и электролит – серная кислота. Напряжение на зажимах аккумулятора падает, и его необходимо заряжать. Свинцовый аккумулятор не должен разряжаться до полного расходования активности веществ. Если это произойдет, то станет невозможной его перезарядка (аккумулятор можно разряжать до 1,8 В). Для заряда аккумулятор подключают к внешнему источнику тока, направление тока противоположно разрядному.
Во время заряда аккумулятора растет напряжение на его полюсах. В конце оно достигает такого значения, что начинается электролиз воды, сопровождающийся выделением водорода на катоде и кислорода – на аноде:
Так называемое «кипение» электролита является признаком окончания заряда свинцового аккумулятора.
Стандартные величины потенциалов для электродов свинцового аккумулятора имеют следующие значения: Е о = −0,356 В, Е о = +1,685 В.
ЭДС аккумулятора как химического источника тока рассчитывается по уравнению:
ЭДС аккумулятора зависит от концентрации (активности) серной кислоты, которая возрастает при заряде аккумулятора и уменьшается при его разряде. О степени разряда аккумулятора судят по концентрации электролита, т.е. концентрации H2SO4. На практике с помощью ареометра обычно измеряется не концентрация кислоты, а ее плотность.
При плотности =1,19 г/см 3 аккумулятор разряжен на 50%, при =1,11 г/см 3 аккумулятор разряжен полностью. Используя концентрированные растворы H2SO4, можно было бы увеличить ЭДС аккумулятора, однако при концентрации H2SO4 больше 39% резко уменьшается электропроводность растворов и увеличивается растворимость свинца, поэтому оптимальными являются 32-39 % − ные растворы H2SO4.
ЭДС заряженного аккумулятора приблизительно равна 2 В. Если последовательно соединить 6 элементов, то получится обычный автомобильный аккумулятор с ЭДС=12 В.
Заряженный аккумулятор может быть сразу использован по назначению. При хранении же из него выливают электролит и промывают водой. В таком виде он может находиться до 2−х лет, и для его использования достаточно лишь залить электролит. При хранении незаряженного аккумулятора с раствором серной кислоты происходит его «сульфатирование» – образование на пластинках большого количества PbSO4.
Когда кислотный аккумулятор работает, давая ток, PbSO4 осаждается в очень мелкозернистой форме на поверхности электродов. Когда же аккумулятор выключен, мелкозернистый слой рекристаллизуется и образуются более крупные кристаллы, которые могут закупорить поры электрода, уменьшая его поверхность, или отрываться от электрода и основной причиной выхода аккумулятора из строя, поэтому нужно следить, чтобы аккумулятор не простаивал частично в разряженном состоянии.
Преимущества свинцового аккумулятора – высокий КПД (около 80 %), высокая ЭДС и относительно малое ее изменение при разряде, большая электрическая емкость, устойчивость в работе.
Недостатки – большая масса и, следовательно, малая удельная емкость, саморазряд аккумулятора при хранении, малый срок службы (2-5 лет), а также токсичность свинца и сильные окислительные свойства H2SO4. Совершенствование свинцовых аккумуляторов идет по пути изыскания новых сплавов свинца для решеток, препятствующих образованию и выпадению шлама, кристаллизации сульфата свинца, облегченных и прочных материалов корпусов и улучшения качества сепараторов.
Щелочные аккумуляторы различаются по материалу пластин отрицательно заряженного электрода. Наиболее распространенные из них кадмий – никелевые (Cd − Ni) и железо – никелевые (Fe – Ni) аккумуляторы. Активная масса положительных пластин состоит в основном из гидратированного оксида никеля (III). Кроме того, в ней содержится графит, добавляемый для увеличения электропроводности. Электролитом служит раствор КОН (20 %), содержащий небольшое количество LiOH. ЭДС заряженного аккумулятора (Cd − Ni) приблизительно равна 1,3 В.
Окислительно-восстановительные процессы, протекающие при работе щелочного аккумулятора (Сd – Ni), могут быть представлены следующими уравнениями:
(−) A: Cd + 2OH - Cd (OH)2 + 2 ; (+) K: 2NiO(OH) + 2H2O + 2 2Ni(OH)2 + 2OH – ; 2NiO(OH) + 2H2O + Cd Cd(OH)2 + 2Ni(OH)2.
Cхемы щелочных аккумуляторов:
(−) Cd/ KOH, LiOH /NiO(OH), C (+);
(−) Fe/ KOH, LiOH /NiO(OH), C (+).
В отличие от свинцового аккумулятора срок службы щелочных аккумуляторов порядка 10 лет. Они хорошо выдерживают перегрузку и длительное время пребывания в разряженном состоянии. Однако меньшая ЭДС и более высокая стоимость не позволяют во многих случаях заменить ими свинцовые аккумуляторы. Щелочные аккумуляторы выпускаются промышленностью различной удельной емкости (0,5–120 А ч). В последние годы проводятся исследования по совершенствованию существующих и созданию новых аккумуляторов, что обусловлено необходимостью создания экологически чистых автомобилей.
Топливные элементы (ТЭ) – перспективные химические источники тока (электрохимические генераторы), способные непрерывно работать за счет постоянного подвода к электродам новых порций реагентов и отвода продуктов реакции.
Топливными элементами называются устройства, в которых химическая энергия окисления топлива превращается в электрическую энергию.
ТЭ относятся к первичным химическим источникам тока с непрерывной подачей реагентов (окислителя и восстановителя) и непрерывным удалением продуктов сгорания.
Сгорание топлива (окисление) практически во всех ТЭ происходит на поверхности инертных электродов (Сграфит, Pt, Ag, Ni и др.), содержащих катализаторы.
В качестве топлива (восстановителя) используют жидкие или газообразные водород, гидразин, гидриды металлов, оксид углерода, различные углеводороды, метиловый спирт и др. спирты. Твердое топливо – уголь, кокс, торф обладает малой реакционной способностью и может быть окислено при температуре выше 1000 о С. Электролитами являются водные растворы кислот или щелочей, расплавленные карбонаты или гидриды металлов. Как правило, природные виды топлива подвергаются предварительной обработке для получения электрохимически активных веществ.
На практике наиболее часто применяется водородно-кислородный топливный элемент со щелочным электролитом (30−40 % раствор KOH). Устройство элемента чрезвычайно простое. В герметически закрытом сосуде установлено два пористых, металлических (чаще всего никелевых) электрода, разделенных слоем раствора гидроксида калия (натрия). В ТЭ подаются газообразный водород и кислород.
Схема водородно-кислородного ТЭ имеет следующий вид:
где Ме – проводник первого рода, играющий роль катализатора электродного процесса и токоотвода (например, специально обработанные Ni, Co, металлы группы Pt).
Элемент работает при 50-70 о С, при атмосферном давлении. На электродах протекают следующие реакции:
на аноде – окисление водорода
на катоде – восстановление кислорода
(+) К: ½O2 + H2O + 2 2OH - .
Во внешней цепи происходит движение электронов от анода к катоду, а в растворе – движение ионов OH - от катода к аноду.
Уравнение токообразующей реакции имеет вид:
Таким образом, в водородно-кислородном ТЭ протекает процесс сгорания водорода с образованием воды. В результате протекания этой реакции в цепи генерируется постоянный ток и химическая энергия превращается в электрическую энергию постоянного тока.
Большая Энциклопедия Нефти и Газа
Этим пользуются в электростатических генераторах, применяемых в ядерной технике. На рис. 1.40 изображен схематический разрез генератора Ван-де - Граафа. Электрический заряд передается бесконечной непроводящей ленте, переносящей его внутрь большой металлической сферы . Там заряд снимается и переходит на наружную поверхность проводника. Таким образом удается постепенно сообщить сфере очень большой заряд и достигнуть разности потенциалов в несколько миллионов вольт. [46]
Две концентрические незаряженные металлические сферы, радиусы которых равны R1 и R3, причем R Rs, соединены тонкой проволокой. Проволока проходит сквозь маленькое отверстие в сфере, расположенной концентрически между первыми двумя. Эта сфера имеет радиус R2 и несет на себе заряд Q, расположенный по ней равномерно. Пренебрегая влиянием соединительной проволоки, определить заряд, индуцированный на внутренней металлической сфере . [47]
О 8.2.25. В генераторе Ван де Граафа носители заряда, приклеившиеся к непроводящей ленте, переносятся против поля. Внутри шара заряды снимаются с ленты сильным полем, локализованным на контактной щетке. Необходимую для движения ленты энергию может поставлять электродвигатель, бензиновый мотор или рука человека. Определите установившийся потенциал шара в двух случаях: а) лента движется с постоянной скоростью и; б) ленту двигают, прикладывая к ней постоянную силу F. О 8.2.26. Электрическая атомная батарея представляет собой металлическую сферу с изолированным от нее кусочком / 3-радиоактивного вещества. Число атомов, распадающихся в единицу времени, равно к Энергия вылетевших электронов W. [48]
О 8.2.25. В генераторе Ван де Граафа носители заряда, приклеившиеся к непроводящей ленте, переносятся против поля. Внутри шара заряды снимаются с ленты сильным полем, локализованным на контактной щетке. Необходимую для движения ленты энергию может поставлять электродвигатель, бензиновый мотор или рука человека. Определите установившийся потенциал шара в двух случаях: а) лента движется с постоянной скоростью и; б) ленту двигают, прикладывая к ней постоянную силу F. О 8.2.26. Электрическая атомная батарея представляет собой металлическую сферу с изолированным от нее кусочком 0-радиоактивного вещества. Число атомов, распадающихся в единицу времени, равно к Энергия вылетевших электронов W. [49]
Электростатический генератор Ван де Граафа. Применение электростатической машины для создания высокого напряжения, ускоряющего положительные ионы, впервые было предложено и осуществлено в 1929 г. Ван де Граафом из Массачусетского технологического института. В генераторе Ван де Граафа высокое напряжение создается и поддерживается на проводящей сфере посредством непрерывной передачи ей статического заряда от движущейся ленты. Изготовленная из шелка, резины, бумаги или некоторых других подходящих изоляционных материалов лента приводится в движение мотором и системой роликов. Она проходит сквозь щель АВ, соединенную с источником постоянного высокого напряжения ( от 10 до 30 кв), и устанавливается таким образом, чтобы на острие в точке В поддерживался непрерывный разряд. Таким образом, положительные ( или отрицательные) заряды стекают с острия иглы В на ленту, которая их уносит внутрь изолированной металлической сферы ; там в свою очередь имеется другое острие или острозубый гребень С, соединенный со сферой и снимающий с ленты заряды, которые затем распределяются по поверхности сферы. [50]
Другим источником высокого напряжения, применявшимся для ускорения заряженных частиц, является электростатический генератор, разработанный Ванде Граафом. Этот прибор состоит из непрерывной ленты, движущейся поверх двух шкивов, изготовленной из изолирующего материала, например из шелка, полотна или бумаги. Первый шкив заземлен и вращается электрическим мотором. Второй шкив располагается внутри полого металлического цилиндра или сферы большого радиуса. Этот цилиндр или сфера изолированы от остальной аппаратуры. При работе генератора части ленты, движущейся от нижнего шкива вверх, сообщается электрический заряд от источника сравнительно низкого напряжения. Лентой этот заряд переносится вовнутрь полой сферы и там с помощью тонкой металлической щетки переносится на сферу. В этом генераторе непрерывный поток зарядов переносится лентой от источника слабого напряжения на изолированную металлическую сферу . Потенциал сферы непосредственно определяется количеством электричества, находящегося на его поверхности. Условиями, ограничивающими количество электричества, которое может быть помещено на сферу, является близость других предметов, например стен и крыши лаборатории, а также разряд в воздухе вблизи сферы, обусловленный сильным электрическим полем, создаваемым сферой. Электростатические генераторы работали успешно при потенциале сферы, доходившем до 2 5 млн. вольт относительно потенциала земли. В некоторых генераторах напряжение, даваемое устройством, заряжающим ленту, не превышало 10 киловольт. [51]
ЗАКОН ОМА ДЛЯ ЗАМКНУТОЙ ЦЕПИ
ЦЕЛЬ УРОКА: На основе экспериментов и теоретического анализа механической модели замкнутой электрической цепи вывести формулу закона Ома и научить учащихся применять его в конкретных ситуациях.
ТИП УРОКА: комбинированный.
ОБОРУДОВАНИЕ: ванна электролитическая, раствор серной кислоты, вольтметр демонстрационный с добавочным сопротивлением 300 Ом, магазин сопротивлений, соединительные провода, модель замкнутой электрической цепи на магнитной доске, обобщающая таблица "3акон Ома".
ПЛАН УРОКА: 1. Вступительная часть 1-2 мин
3. Объяснение 20 мин
4. Закрепление 10 мин
5. Задание на дом 2-3 мин
II. Опрос фундаментальный: 1. ЭДС. 2. Химические источники тока.
1. Электрическая "атомная" батарея представляет собой металлическую сферу с изолированным от нее куском -радиоактивного вещества. Число атомов, распадающихся в единицу времени n, энергия вылетающих электронов Е. Определите напряжение на разомкнутых клеммах батареи. Какой наибольший ток может давать эта батарея?
Дополнительная информация: Размеры нанобатареек на основе радиоактивных изотопов меньше копеечной монеты, но они позволяют не менее полувека давать энергию для питания мобильного телефона.
2. Конденсатор емкостью 20000 мкФ подключен к источнику тока регулируемой ЭДС. Если ЭДС источника тока равномерно изменяется со скоростью 10 В/с, то какова сила тока в этой цепи?
3. В цепь, состоящую из медного провода сечением 5 мм 2 , надо включить свинцовый предохранитель. Какое сечение должен иметь предохранитель, чтобы при нагревании провода более чем на 10 0 С он расплавлялся? Начальная температура свинца 27 0 С, температура плавления 327 0 С. Вследствие кратковременности процесса потерями тепла на нагревание окружающей среды пренебречь.
III. Изготовим простейший гальванический элемент. Измерим напряжение на клеммах источника тока. Чему равна ЭДС источника тока? Далее, повторение с использованием механической модели.
Замкнем клеммы источника тока проводником (лампочка на 2,5 В). Чему теперь равно напряжение на клеммах источника тока? Почему оно стало меньше? В каком случае напряжение на клеммах источника тока равно ЭДС? А если внутренний участок электрической цепи обладает сопротивлением?! Каково соотношение между напряжением и ЭДС в этом случае? Где "потерялась" часть напряжения? Демонстрацию можно провести с выпрямителем ВС-24, вольтметром демонстрационным со шкалой на 5 В и магазином сопротивлений. Установив = 4 В, замыкают источник тока на внешнюю нагрузку. Почему U < ε? Чему равно Uвн? Как зависит U и U вн от R?.
ε=U+Uвн – экспериментальная проверка.
U = IR, Uвн= Ir, ε=U+Ir.
1) I=0; U=ε.
2) r=0; ε=U (идеальный источник тока).
1. Является ли гальванический элемент (источник тока) источником электрических зарядов?
2. Почему свет фар автомобиля тускнеет во время запуска двигателя?
3. Почему при включении в сеть электроутюга (электроплитки) накал ламп в квартире сразу же заметно падает, но вскоре возрастает, достигая примерно прежнего уровня?
Задача: Внутреннее сопротивление источника тока 0,5 Ом, а его ЭДС 1,5 В. Сопротивление потребителя 2,5 Ом. Сопротивление амперметра и подводящих проводов ничтожно мало, а сопротивление вольтметра очень велико. Определить показания амперметра и вольтметра для положений 1, 2 и 3 переключателя П.
Полная мощность: . КПД источника тока:
Вопрос: Два потребителя подключаются к электрической батарее: один раз последовательно, другой - параллельно. В каком случае КПД будет больше?
IV. Задачи:
1. При подключении к батарее гальванических элементов сопротивления 16 Ом сила тока в цепи была 1 А, а при подключении сопротивления 8 Ом, сила тока стала 1,8 А. Найти ЭДС и внутреннее сопротивление батареи.
2. Источник тока с ЭДС 50 В и внутренним сопротивлением 2 Ом должен питать дуговую лампу с сопротивлением 6 Ом, требующую для нормально горения напряжения 30 В. Определите сопротивление резистора, введенного последовательно в цепь лампы для ее нормального горения.
3. Резисторы, сопротивления которых 2 Ом и 8 Ом, поочередно подключаемые к батарее, потребляют одинаковую мощность 8 Вт. Какую максимальную мощность на внешней нагрузке можно получить от данного источника тока?
4. При подключении к батарее резистора на нем выделяется мощность 12 Вт. При этом КПД системы, состоящей из резистора и батареи, оказался равным 0,5. Найти КПД системы при подключении к батарее другого резистора, на котором выделяется мощность 9 Вт.
- Почему гальванический элемент с небольшой - порядка нескольких вольт - ЭДС может дать значительный ток, а электрофорная машина, ЭДС которой достигает десятков тысяч вольт, дает ток ничтожной силы?
- Является ли гальванический элемент (источник тока) источником электрических зарядов?
- Почему свет фар автомобиля тускнеет во время запуска двигателя?
- Почему при включении в сеть электроутюга (электроплитки) накал ламп в квартире сразу же заметно падает, но вскоре возрастает, достигая примерно прежнего уровня?
- При каких условиях от данного элемента можно получить максимальный ток?
- В двух цепях, содержащих каждая источник тока и резистор, максимальные силы тока одинаковы, а полезная максимальная мощность в одном случае в два раза больше, чем во втором. Какими параметрами отличаются эти цепи?
- Как будут изменяться показания приборов при перемещении движка реостата влево?
V. § 59 Упр. 10, №№ 5-7
2. Составить обобщающую таблицу "Закон Ома для замкнутой цепи", используя рисунки, чертежи и текстовый материал.
3. Определите ЭДС источника тока с помощью двух вольтметров, используя минимальное число электрических схем.
4. Соберите цепь по схеме, которая позволяла бы получить график, зависимости полезной мощности, развиваемой источником тока на реостате, от силы тока. Используя данные графика, найдите ЭДС и внутреннее сопротивление источника; постройте графики: Р = Рп (r) , Р = Р (R).
"Теория - обаятельная мать тяжелого, нудного эксперимента".
Харлан Мэйс
ЛАБОРАТОРНАЯ РАБОТА № 4: "ИЗМЕРЕНИЕ ЭДС И ВНУТРЕННЕГО СОПРОТИВЛЕНИЯ ИСТОЧНИКА ТОКА".
ЦЕЛЬ РАБОТЫ: Научить учеников измерять ЭДС и внутреннее сопротивление источника тока.
ТИП УРОКА: лабораторная работа.
ОБОРУДОВАНИЕ: аккумулятор (батарейка), амперметр и вольтметр лабораторные, реостат, резисторы на колодке, соединительные провода, эталонный источник тока.
2. Краткий инструктаж 5 мин
3. Выполнение работы 30 мин
4. Подведение итогов 5 мин
II. Инструктаж по выполняемой работе (рассказ ученика и дополнения с мест). Записать в тетради название работы, цель, оборудование, краткую теорию, зарисовать на доске электрическую схему установки. Измерение силы тока и напряжения, вычисление ЭДС и внутреннего сопротивления источника тока. .
№,п/п | U,В | ,В | ,В | I,А | ,А | R,Ом | ,Ом |
1. |
III. Можно предложить выполнить работу различными способами:
1. Измерение ЭДС вольтметром и затем определение внутреннего сопротивления источника тока (метод описан в учебнике).
2. Традиционный способ с помощью амперметра, вольтметра и реостата.
3. Амперметр и два резистора с известным сопротивлением, поочередно включаемые в электрическую цепь.
IV. Сравнение относительной погрешности результата измерения. Какой из методов измерения ЭДС и внутреннего сопротивления источника тока является наиболее точным?
Как работает батарейка: строение и состав
Батарейки являются наиболее распространенным источником питания. Современный мир не представляет себя без различной электроники, для нее необходима электроэнергия. Не всегда получается применять обычные сетевые источники, для этого и нужны гальванические элементы. Глядя на них наверняка каждый задавался вопросом из чего состоит батарейка и как она работает?
Что такое батарейка
Обыкновенная батарейка представляет собой некий источник электрического тока в котором несколько электрохимических элементов объединены между собой в пакет. Стоит обратить внимание, что батарея — это именно несколько объединенных между собой гальванических элементов. Электричество в батарейке вырабатывается вследствие протекающей химической реакции. Изобретателем батареек принято считать ученого Алессандро Вольта, который создал в 1800 г. «Вольтов столб» — первый в мире электрохимический источник тока, ставший прародителем современных батарей.
Устройство батарейки
Рассмотрим, как устроена батарейка в разрезе на примере щелочного элемента как наиболее распространенного. Работа щелочной батарейки основана на окислительно-восстановительной реакции между цинком и диоксидом марганца. Корпусом элемента и по совместительству плюсовым контактом «+» является никелированный стальной стакан. Катодная паста представляет собой смесь диоксида марганца (MnO2) и графита. Анодная паста – это смесь цинкового порошка (Zn) и густого щелочного электролита (как правило, гидроксид калия, КОН). Анодная и катодная масса разделены сепаратором. Сепаратор разделяет реагенты, исключая их перемешивание и нейтрализацию заряда. Сепаратор также пропитан электролитом. Отрицательный потенциал снимается с латунного токосъемника, который окружён анодной пастой. Стальная тарелка контактирует с латунным стержнем – токосъёмником и является отрицательным контактом элемента «—». Прокладка изолирует никелированный стальной стакан от стальной тарелки, препятствуя тем самым короткому замыканию. Кроме этого прокладка сдерживает давление газа, который в незначительном количестве образуется при химической реакции. Предохранительная мембрана служит для того, чтобы при чрезмерном давлении газа предотвратить взрыв батареи выпустив газ наружу. Как правило, это приводит к разгерметизации элемента и течи электролита. Протекший электролит, по сути, обычная щелочь. При попадании на контакты вызывает их коррозию, на одежду — разъедает ее, на руки — вплоть до ожога. Именно поэтому на упаковке с батарейками можно найти предупреждение о том, что севшие элементы нужно вынимать из электроприборов, а длительное хранение электроприборов с батарейками внутри недопустимо.
Иногда, забыв вынуть уже подсевшие батарейки, через некоторое время можно обнаружить, что в батарейном отсеке появилась какая-то жидкость. Это и есть потёкший электролит. Поэтому на упаковке с батарейками можно найти предупреждение о том, что севшие элементы нужно вынимать из электроприборов. Теперь вы знаете, зачем это нужно делать.
Итак, с устройством разобрались, теперь поговорим о том, как работает щелочной элемент.
Принцип работы батарейки
На аноде проходит реакция окисления цинка. Вначале образуется гидроксид цинка
Zn + 2OH − → Zn(OH)2 + 2e −
На катоде проходит реакция восстановления оксида марганца IV в оксид марганца III
Общая картина следующая
Zn + 2KOH + 2MnO2 + 2e − → 2e − + ZnO + 2KOH + Mn2O3
Из первой формулы видно, что на аноде имеется избыток электронов. Но ведь анод это «+»? Дело в том, что в физике принято считать за направление тока движение положительных зарядов, т.е. от плюса (анода) к минусу (катоду). Но электрический ток это упорядоченное движение электронов, которые имеют отрицательный заряд. Поэтому, ток течёт оттуда, где есть избыток электронов, в направлении, где есть нехватка отрицательных зарядов (это и есть плюс – недостаток электронов). При этом получается, что ток течёт в реальности от отрицательного контакта к положительному. В электрохимии анодом принято считать тот электрод, на котором происходит процесс окисления, катодом же считается электрод, где происходит реакция восстановления.
Интересно знать! В результате химических реакций внутри элемента питания происходит необратимое разрушение металлических элементов питания, батарейка теряет свою емкость.
Важно! Поскольку химические изменения в процессе разряда батарейки необратимы — они не подлежат восстановлению заряда.
Разновидности
По форме и размерам согласно мировым стандартам элементы питания разделяются на такие виды:
- АА- пальчиковая;
- ААА- мизинчиковая;
- АААА;
- С- дюймовочка;
- D- бочка;
- квадратная;
- РР3- крона;
- Источники питания миниатюрных размеров.
В настоящее время существует большое количество разнообразных источников питания. Между собой они отличаются материалами, применяемыми для изготовления электродов и электролита. Среди многочисленных батареек выделяют несколько основных видов:
- солевые;
- щелочные;
- ртутные;
- серебряные;
- литиевые.
Солевые
Такие гальванические элементы имеют низкую стоимость относительно аналогов, однако имеется один существенный недостаток это низкая внутренняя емкость таких батареек.
Щелочные
Состав батарейки такого вида отличается от своих аналогов применяемым электролитом, в них используется активная щелочь гидроксид калия KOH. Электрод выполнен из двуокиси таких металлов, как цинк и марганец. Нашли широкое применение в современной электронике, на корпусе элементов указывается маркировка «ALKALINE».
Основным плюсом такой батарейки является продолжительный срок службы, в процессе эксплуатации номинальное напряжение понижается с меньшей скоростью. К минусам относят повышенную стоимость.
Серебряные
В качестве электролита применяют КОН, в состав электродов включено серебро. В таких элементах отмечают значительно увеличение срока службы, повышенную энергетическую плотность, постоянное номинальное напряжение, а также полную безвредность. Недостатками являются высокая цена.
Ртутные
В строении таких батареек используется цинк в качестве металла для анода, катод выполняется из ртутного оксида. Электроды разделяются сепаратором пропитанным электролитом. Такой элемент питания способен выполнять функции аккумулятора, однако емкость будет постепенно понижаться с каждым циклом восстановления заряда. При разряде происходит слипание ртути, а при заряде образуются дендриты цинка. Во время эксплуатации не допускается разгерметизация корпуса в связи с повышенной вредностью паров ртути. К преимуществам относят сохранение длительных значений плотности энергии, емкости и напряжения.
Внимание! Ртутные источники питания являются потенциально опасными для здоровья человека и окружающей среды.
Литиевые
Данные элементы питания постепенно вытесняют все аналоги в своей области применения. Отрицательные электроды такой батарейки сделаны из лития. В них постоянно совершенствуются основные технические характеристики. К плюсам батареек с литиевым электродом относят увеличение срока хранения, широкий диапазон рабочих температур, повышенная внутренняя емкость. Основным минусом является повышенная стоимость.
Применение
Различные виды могут применяться по-разному, зависит это от их основных конструктивных свойств и характеристик:
- Элементы питания с твердым электролитом используют в устройствах с малым значением потребляемого тока. Например, часы фонарики с малой мощностью, а также пульты дистанционного управления.
- Щелочные батарейки применяют в электротехнике с повышенным значением тока, к ним можно отнести различные камеры и магнитофоны, а также игрушки с электродвигателем.
- Источники питания с серебряными электродами способны обеспечить электроэнергией в калькуляторах, переносных инструментах и аппаратах для улучшения слуха.
- Литиевые батарейки используют в портативной электронике, где необходимо стабильное значение емкости и потребляемого тока.
Выбор источника питания
Для правильного выбора элементов питания необходимо обратить внимание на следующие факторы:
- В аппаратах и оборудовании какого вида он будет применяться.
- Электролит какого состава используется в конструкции.
- Стоимость батарейки, иногда более выгодно приобрести несколько дешевых, чем один очень дорогой.
- Каждый элемент питания на корпусе имеет маркировку, по которой можно определить вид и состав источника питания.
- Необходимо ориентироваться по условиям окружающей среды в процессе эксплуатации.
- Рекомендуется приобретать источники питания, произведенные сравнительно недавно, так как с течением времени емкость может понижаться.
- Перед покупкой следует обратить внимание на целостность упаковки и самого корпуса элемента.
- Батарейка должна конструктивно соответствовать своему посадочному месту в электроприборе.
Правильный выбор и соблюдение требований к безопасной эксплуатации позволит продлить работу любого элемента питания. Для определенных видов техники необходим свой вид батарейки.
С приходом новых технологий, в каждом доме появились устройства, не имеющие постоянного источника питания.
Электричество окружает современного человека постоянно. Но даже на этом фоне удивительно, что напряжение присутствует
Батарейки имеют свойство, садится в самый неподходящий момент. Что делать, как оживить батарейку? Самый
Батарейки и аккумуляторы бытового применения оформлены ярко и броско. Внешний вид подчинён законам маркетинга.
Мощность ядерной батарейки увеличена на порядок
Российские физики уплотнили энергию ядерной батарейки в десять раз.
Как работает батарейка
Обычные батарейки, которые используют для питания часов, карманных фонариков, игрушек и других сравнительно небольших автономных электрических приборов, получают электрическую энергию с помощью химических реакций. В ходе этих реакций, которые называют окислительно-восстановительными, электроны «перетекают» через электролит с одного электрода на другой, и на электродах возникает разность потенциалов. Если соединить концы батарейки проводом, электроны придут в движение так, чтобы разность потенциалов исчезла — по проводу потечёт ток. Химические батарейки, которые также называют гальваническими элементами, обладают высокой удельной мощностью, то есть отношением мощности создаваемого тока к объёму батарейки, но сравнительно быстро разряжаются, и это заметно ограничивает их автономную работу. Конечно, при определённой конструкции химических элементов их можно перезаряжать (тогда их называют аккумуляторами). Однако даже в этом случае батарейку нужно вынимать из прибора, что может быть опасно или невозможно: например, если она обеспечивает питание кардиостимулятора или космического аппарата.
Немного истории
К счастью, электрическую энергию можно получать не только в химических реакциях. Более ста лет назад, в 1913 году Генри Мозли (Henry Moseley) представил первый радиоизотопный источник электрической энергии, представлявший собой посеребрённую изнутри стеклянную сферу, в центре которой на изолированном электроде располагался радиевый источник. Электроны бета-распада радия создавали разность потенциалов между серебряным слоем стеклянной сферы и центральным электродом. Такой источник обладает чрезвычайно высоким напряжением холостого хода — в десятки киловольт — и малым током, поэтому на практике его использование почти невозможно.
В 1953 году Пол Раппапорт (Paul Rappaport) предложил использовать полупроводниковую структуру для преобразования энергии бета-распада радиоактивных элементов. Бета-частицы (электроны или позитроны) ионизируют атомы полупроводника и создают неравновесные носители зарядов, которые при наличии статического поля барьерной p-n структуры упорядоченно движутся, создавая электрический ток. Основанные на этом принципе элементы назвали бета-вольтаическими. Главным преимуществом таких элементов перед гальваническими выступает их долговечность: период полураспада некоторых радиоактивных изотопов составляет десятки или сотни лет, следовательно, мощность элемента будет оставаться почти постоянной в течение всего этого периода. К сожалению, удельная мощность бета-вольтаических генераторов сильно уступает химическим батареям. Тем не менее, радиоактивные генераторы всё-таки использовали в 70-х годах для питания кардиостимуляторов, однако впоследствии их вытеснили литий-ионные аккумуляторы, дешевизна изготовления которых перевесила долговечность бета-вольтаических элементов.
Заметим, что бета-вольтаические батарейки не следует путать с радиоизотопными термоэлектрическими генераторами (сокращённо РИТЭГ), которые тоже иногда называют ядерными батареями. В этих устройствах энергия радиоактивных распадов используется для нагрева и создания потока тепла, который потом конвертируется в электрический ток с помощью термоэлектрических элементов. Эффективность РИТЭГов составляет всего несколько процентов и зависит от температуры. Тем не менее, из-за своей долговечности и относительно простого устройства радиоизотопные генераторы широко используются для питания космических аппаратов — например, зонда New Horizons или марсохода Curiosity. Ранее РИТЭГи также устанавливали на радиомаяках и метеостанциях, расположенных в труднодоступных областях, однако сейчас эту практику приостановили из-за трудностей утилизации и риска утечки радиоактивных веществ.
Мощность повысили на порядок
Рисунок 1. Схема устройства «ядерной батарейки». Дизайнер — Елена Хавина, пресс-служба МФТИ.
Образец «ядерной батарейки» состоял из двухсот алмазных преобразователей, чередуемых слоями фольги никеля-63 и стабильного никеля (рисунок выше). Мощность, генерируемая преобразователем, зависит от толщины никелевой фольги и самого преобразователя, который поглощает бета-частицы. Все известные на данный момент прототипы ядерных батарей плохо оптимизированы, так как имеют лишний объём. Если толщина бета-источника слишком велика, электроны, рождающиеся внутри него, не смогут покинуть его. Этот эффект называется самопоглощением. С другой стороны, сильно уменьшать толщину источника тоже невыгодно, поскольку вместе с ней уменьшается число бета-распадов в единицу времени. Аналогичные рассуждения применимы и к толщине преобразователя.
Фото. Ядерная батарейка, образец. Предоставлено ТИСНУМ.
Сначала расчёты
Перед учёными стояла цель: создать батарею на никеле-63 с максимальной удельной мощностью, то есть без лишнего объёма. Для этого они численно смоделировали движение электронов в бета-источнике и прилегающих преобразователях и нашли их оптимальные толщины: оказалось, что эффективнее всего бета-источник на основе никеля-63 «работает» при толщине около двух микрометров, а алмазный преобразователь на основе барьера Шоттки — при толщине около 10 микрометров.
Технология изготовления
Наиболее сложной задачей было изготовление большого количества алмазных преобразователей со сложной внутренней структурой толщиной всего в несколько десятков микрон (как полиэтиленовый пакет из супермаркета). Традиционные механические и ионные методы уменьшения толщины алмаза не подходили для решения такой задачи. Сотрудники ТИСНУМ и МФТИ разработали технологию синтеза и отщепления тонких алмазных пластин от многоразовых алмазных подложек для массового создания сверхтонких преобразователей.
В качестве исходного материала были использованы 20 толстых подложек из легированного бором алмаза, выращенного методом температурного градиента. При помощи ионной имплантации в подложках создавался дефектный слой толщиной около 100 нанометров на глубине около 700 нанометров. Поверх этого слоя методом осаждения из газовой фазы синтезировался гомоэпитаксиальный (наследующий кристаллическую структуру подложки) слой слабо легированного бором алмаза толщиной 15 мкм. Затем методом высокотемпературного отжига дефектный слой подвергался графитизации, после чего удалялся методом электрохимического травления. После удаления дефектного слоя заготовку преобразователя снимали с подложки и покрывали контактами: омическим и Шоттки.
В ходе всего описанного процесса подложка теряла менее 1 мкм толщины, после чего операции повторялись. Таким образом на 20 подложках были выращены 200 преобразователей. Разработанная технология чрезвычайно важна с экономической точки зрения: высококачественные алмазные подложки стоят очень дорого, поэтому не подходят для массового производства преобразователей методом уменьшения толщины.
Все преобразователи были объединены параллельно согласно схеме, показанной на рисунке 1. Технология изготовления фольги никеля-63 толщиной 2 микрона была разработана в НПО «Луч». Батарею залили эпоксидным компаундом для герметичности.
Батарея обладает характерной вольт-амперной характеристикой (рисунок ниже). Напряжение короткого замыкания составило около 1 вольта, а ток короткого замыкания — около 1 мкА. Наибольшая электрическая мощность W ≈ 0,93 микроватт достигалась при напряжении V ≈ 0,93 вольт. Такая мощность отвечает плотности энергии около 3300 милливатт-часов на грамм, что в десять раз превышает плотность энергии созданной ранее в ТИСНУМ «ядерной батарейки» на основе никеля-63 и во столько же раз превосходит обычные химические батарейки.
В 2016 году учёные уже сообщали о разработке прототипа ядерной батарейки на основе никеля-63. В июне 2017 года работающий образец ядерной батарейки мощностью 1 микроватт с полезным объёмом 1,5 кубических сантиметра был показан ТИСНУМ и НПО «Луч» на форуме «Атомэкспо-2017».
Основным фактором, ограничивающим изготовление ядерных батареек в России, является отсутствие промышленного производства и обогащения изотопа никеля-63. Такое производство планируется создать к середине 2020-х годов.
Альтернативный способ создания ядерной батарейки на основе алмаза — изготовление алмазных преобразователей из радиоактивного углерода-14, обладающего чрезвычайно большим периодом полураспада, — 5700 лет. О разработке таких генераторов сообщали физики из университета Бристоля.
Будущее ядерных батареек
Полученный результат открывает новые перспективы для медицинских применений. Современные кардиостимуляторы имеют размер более 10 кубических сантиметров и потребляют мощность около 10 микроватт. Разработанная батарея может быть использована в качестве источника питания такого кардиостимулятора практически без серьёзных изменений его конструкции и объёма. «Вечный» кардиостимулятор значительно повысит качество жизни пациентов, так как исчезнет потребность в его обслуживании и замене батарей.
Также в разработке компактных ядерных батарей заинтересована космическая промышленность. В частности, в настоящее время существует потребность в автономных беспроводных внешних датчиках и микросхемах памяти со встроенной системой питания для космических аппаратов. Алмаз является одним из наиболее радиационно стойких полупроводников, и за счёт большой ширины запрещённой зоны может функционировать в широком диапазоне температур, что делает его идеальным материалом для создания ядерных батарей космических аппаратов.
Учёные планируют продолжить свои исследования в области ядерных батарей и предлагают основные направления развития данной тематики. Во-первых, это повышение обогащения никеля-63 в батарее, что приведёт к линейному росту мощности. Во-вторых — разработка алмазной p-i-n структуры с контролируемым профилем легирования, которая позволит увеличить напряжение, а значит, и полезную мощность батареи в 3 и более раза. В-третьих — увеличение площади поверхности преобразователя, что позволит разместить больше атомов никеля-63 на одном преобразователе.
Владимир Бланк, директор ТИСНУМ и заведующий кафедрой «Физика и химия наноструктур» МФТИ, прокомментировал:
«Мы уже достигли выдающегося результата, который может быть применён в медицине и космической технике, но не собираемся останавливаться на этом. За последние годы наш институт достиг значительных успехов в создании высококачественных легированных алмазов, в частности, алмазов с проводимостью n-типа. Это позволит нам перейти от барьера Шоттки к p-i-n структуре и повысить удельную мощность батареи в 3 раза. А чем больше удельная мощность, тем большее количество применений может найти наша разработка. Мы имеем хороший задел в области синтеза алмазов высокого качества и планируем использовать сочетание уникальных свойств этого материала для расширения компонентной базы радиационно стойкой электроники и создания инновационных электронных и оптических устройств на его основе».
Читайте также: