Армирование ростверка под металлическую колонну

Обновлено: 22.01.2025

1.1. Пособие по проектированию железобетонных ростверков свайных фундаментов под колонны зданий и сооружений составлено к СНиП 2.03.01-84 „Бетонные и железобетонные конструкции” и распространяется на проектирование монолитных ростверков квадратной и прямоугольной формы в плане, с кустами из двух, четырех и более свай, под сборные и монолитные железобетонные колонны и под стальные колонны.

Примечание. Свайные фундаменты с кустами из двух свай рекомендуется применять только в каркасных бескрановых зданиях при условии расположения свай в створе пролета здания и величине эксцентриситета приложения нагрузки в перпендикулярном направлении не превышающей 5 см.

При проектировании ростверков, предназначенных для эксплуатации в сейсмических районах, а также в агрессивных средах должны соблюдаться дополнительные требования, регламентированные соответствующими нормативными документами.

1.2. Ростверк является элементом свайного фундамента, опирающимся на куст свай (черт. 1.). Проектировать куст свай следует в соответствии со СНиП II-17-77 „Свайные фундаменты”.

Сопряжение ростверков со сборными железобетонными колоннами предусматривается стаканным (с подколонником или без него) с монолитными железобетонными колоннами - монолитным, со стальными колоннами - с помощью анкерных болтов.

Черт. 1. Схема образования пирамиды продавливания под сборной железобетонной колонной прямоугольного сечения

1.3. Расчет ростверков производится по предельным состояниям первой группы (по прочности) и по предельным состояниям второй группы (по раскрытию трещин).

Величины нагрузок и воздействий, значения коэффициентов надежности по нагрузке и коэффициентов сочетаний, а также подразделения нагрузок на постоянные и временные - длительные, кратковременные, особые - должны приниматься в соответствии с требованиями СНиП 2.01.07-85 "Нагрузки и воздействия" и СНиП 2.03.01-84 "Бетонные и железобетонные конструкции", а значения коэффициентов надежности по назначению - согласно „Правилам учета степени ответственности зданий и сооружений при проектировании конструкций”.

При определении нагрузок от колонн на ростверки следует учитывать увеличение моментов в месте заделки колонн от действия вертикальных нагрузок при прогибе колонн.

При расчете ростверков расчетные сопротивления бетона следует умножать на коэффициент условий работы бетона g b2, принимаемый равным 1,1 или 0,9 в зависимости от длительности действия нагрузок. Коэффициент условий работы бетона g b2 принимается равным 1.

1.4. Расчет ростверков на сваях сплошного круглого сечения производится так же, как и на сваях квадратного сечения. При этом в расчете ростверка сечения круглых свай условно приводятся к сваям квадратного сечения, эквивалентного круглым сваям по площади, т.е. с размером стороны сечения, равным 0,89 dsv, где dsv - диаметр свай.

2. РАСЧЕТ РОСТВЕРКОВ ПО ПРОЧНОСТИ

А. РАСЧЕТ ПО ПРОЧНОСТИ РОСТВЕРКОВ ПОД СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ

2.1. Расчет по прочности плитной части ростверков под сборные железобетонные колонны производится: на продавливание колонной; продавливание угловой сваей; по прочности наклонных сечений на действие поперечной силы; на изгиб по нормальному и наклонному сечениям; на местное сжатие (смятие) под торцами колонн. Помимо этого проверяется прочность стакана ростверка.

Расчет ростверков на продавливание колонной

2.2. Расчет на продавливание колонной центрально-нагруженных ростверков свайных фундаментов с кустами из четырех и более свай производится по формуле (1) из условия, что продавливание происходит по боковой поверхности пирамиды, высота которой равна расстоянию по вертикали от рабочей арматуры плиты до низа колонны, меньшим основанием служит площадь сечения колонны, а боковые грани, проходящие от наружных граней колонны до внутренних граней свай, наклонены к горизонтали под углом не менее 45° и не более угла, соответствующего пирамиде с c=0,4h0 (см. черт. 1):

где Fper - расчетная продавливающая сила, равная сумме реакций всех свай, расположенных за пределами нижнего основания пирамиды продавливания, определяемая из условия

При этом реакции свай подсчитываются только от продольной силы N, действующей в сечении колонны у верхней горизонтальной грани ростверка;

здесь n - число свай в ростверке;

n1 - число свай, расположенных за пределами нижнего основания пирамиды продавливания;

Rbt - расчетное сопротивление бетона растяжению для железобетонных конструкций с учетом коэффициента условий работы бетона;

h0 - рабочая высота сечения ростверка на проверяемом участке, равная расстоянию от рабочей арматуры плиты до низа колонны, условно расположенного на 5 см выше дна стакана;

иi - полусумма оснований i-й боковой грани фигуры продавливания с числом граней m;

сi - расстояние от грани колонны до боковой грани сваи, расположенной за пределами фигуры продавливания;

a - коэффициент, учитывающий частичную передачу продольной силы на плитную часть через стенки стакана, определяемый по формуле

здесь Af - площадь боковой поверхности колонны, заделанной в стакан фундамента, определяемая по формуле

здесь bcol, hcol - размеры сечения колонны;

hапс - длина заделки колонны в стакан фундамента.

При расчете на продавливание центрально-нагруженных ростверков колонной прямоугольного сечения формула (1) приобретает следующий вид:

c1 - расстояние от грани колонны с размером bcol до параллельной ей плоскости, проходящей по внутренней грани ближайшего ряда свай, расположенных за пределами нижнего основания пирамиды продавливания;

c2 - расстояние от грани колонны с размером hcol до параллельной ей плоскости, проходящей по внутренней грани ближайшего ряда свай, расположенных за пределами нижнего основания пирамиды продавливания.

Отношение принимается не менее 1 и не более 2,5.

При сi>h0 ci принимается равным h0; при сih0 сi принимается равным 0,4h0.

При расчете на продавливание колонной квадратного сечения центрально нагруженных ростверков при c1=с2 формула (4) будет иметь следующий вид:

При установке в пределах пирамиды продавливания поперечной арматуры расчет должен производиться из условия

но не более 2Fb. Сила Fb принимается равной правой части условия (1).

Сила Fsw определяется как сумма всех поперечных усилий, воспринимаемых хомутами, пересекающими боковые грани пирамиды продавливания, по формуле

где Rsw - расчетное сопротивление поперечной арматуры растяжению при расчете наклонных сечений на действие поперечной силы;

Asw - суммарная площадь сечения поперечной арматуры, пересекающей боковые грани пирамиды продавливания.

В этом случае реакции свай подсчитываются от продольной силы и момента, действующих в сечении колонны у верхней горизонтальной грани ростверка.

При моментах, действующих в поперечном и продольном направлениях, величина , определяется в каждом направлении отдельно; в расчет принимается большая из этих величин.

Примечание. При стаканном сопряжении колонны с ростверком и эксцентриситете продольной силы в колонне величину , допускается определять, принимая величину момента, передающегося на ростверк от колонны, равной Если при этом дно стакана располагается выше плитной части ростверка, должна быть дополнительно выполнена проверка ростверка на продавливание при полном моменте и соответствующей ему сумме реакций свай из условия, что меньшим основанием пирамиды продавливания служит площадь подколонника.

2.4. При сборных железобетонных двухветвевых колоннах, имеющих общий стакан, расчет ростверка на продавливание выполняется как при колонне со сплошным прямоугольным сечением, соответствующим внешним габаритам двухветвевой колонны (черт. 2).

Черт. 2. Схема образования пирамиды продавливания под сборной железобетонной двухветвевой колонной

2.5. При многорядном расположении свай (черт. 3) помимо расчета на продавливание колонной по пирамиде продавливания, боковые стороны которой проходят от наружной грани колонны до ближайших граней свай, должна быть проведена проверка на продавливание ростверка колонной в предположении, что продавливание происходит по поверхности пирамиды, две или все четыре боковые стороны которой наклонены под углом 45°; при этом реакции свай, находящихся в пределах площади нижнего основания пирамиды продавливания, не учитываются.

Черт. 3. Схема образования пирамид продавливания под сборной железобетонной колонной при многорядном расположении свай за наружными гранями колонны

2.6. Расчет на продавливание колонной центрально-нагруженных ростверков свайных фундаментов с кустами из двух свай (черт. 4) производится из условия

где Fper - расчетная продавливающая сила, равная сумме реакций обеих свай от продольной силы N, действующей в колонне;

Rbt, h0; c1; bcol, hcol, a - обозначения те же, что в формулах (1) и (3);

с2 - расстояние от плоскости грани колонны с размером hcol до наружной грани штатной части ростверка.

Черт. 4. Схема образования пирамиды продавливания под сборной железобетонной колонной в двухсвайном фундаменте

2.7. Расчет на продавливание колонной внецентренно нагруженных ростверков свайных фундаментов с кустами из двух свай также производится по формуле (8), но при этом расчетная величина продавливающей силы принимается равной Fper=2Fi, где Fi - реакция наиболее нагруженной сваи от продольной силы N и момента М, действующих в колонне.

2.8. При стаканном сопряжении колонны с ростверком, когда стенки стакана подколонника имеют большую толщину (ds>0,75hp), или в штатных ростверках (черт. 5) при заглублении колонны в штатную часть ростверка не менее чем на 1/3 ее высоты, помимо расчета ростверка на продавливание в соответствии с пп. 2.2 - 2.7 следует производить расчет ростверка на раскалывание колонной от силы N по формуле

где N - продольная сила, действующая в сечении колонны у верхней горизонтальной грани ростверка;

m - коэффициент, вычисляемый по формуле

здесь s sid - напряжение бокового обжатия, МПа, определяемое по формуле

здесь Ab - наименьшая площадь вертикального сечения ростверка по оси колонны за вычетом вертикальной площади сечения стакана и площади трапеции, расположенной под колонной, с наклоненными под углом 45° сторонами (на черт. 5 площадь трапеции показана пунктирными линиями);

Rbt, a - обозначения те же, что в формуле (1);

а - условное обозначение вводимой в расчет стороны сечения колонны (bcol или hcol);

Допускается принимать m =0,75.

Найденная по формуле (9) несущая способность ростверка по раскалыванию сравнивается с его несущей способностью на продавливание ( ) и принимается большая из этих величин.

Черт. 5. Схема свайного фундамента с плитным ростверком

При этом несущая способность ростверка, определенная по формуле (9), должна приниматься не более его несущей способности на продавливание колонной от верха ростверка от продольной силы и момента, действующих в этом сечении. Расчет на продавливание от верха ростверка производится по пп. 2.2 - 2.7 с введением в правую часть формул (1); (4); (5); (8) коэффициента 0,75 и принимая h0 равным расстоянию от рабочей арматуры плиты до верхней горизонтальной грани ростверка.

Расчет ростверков на продавливание угловой сваей

где Fai - расчетная нагрузка на угловую сваю с учетом моментов в двух направлениях, включая влияние местной нагрузки (например, от стенового заполнения);

h01 - рабочая высота сечения на проверяемом участке, равная расстоянию от верха свай до верхней горизонтальной грани плиты ростверка или его нижней ступени.

иi - полусумма оснований i-й боковой грани фигуры продавливания высотой h01, образующейся при продавливании плиты-ростверка угловой сваей;

b i - коэффициент, определяемый по формуле

здесь k - коэффициент, учитывающий снижение несущей способности плиты ростверка в угловой зоне.

В преобразованном виде формула (12) будет иметь вид

b01; b02 - расстояния от внутренних граней угловых свай до наружных граней плиты ростверка (черт. 6);

c01; c02 - расстояния от внутренних граней угловых свай до ближайших граней подколонника ростверка или до ближайших граней ступени при ступенчатом ростверке;

b 1 и b 2 - значения этих коэффициентов принимаются по табл. 1.

Армирование монолитных ростверков

Согласно пособиям, рекомендациям и т. п. Армирование плитной части монолитного ростверка требуется только в нижней зоне. Как правило сетка укладывается прямо на оголовки свай.
Я видел несколько проектов, в которых в ростверках есть конструктивное армирование. Ростверки практически нашпигованы арматурой. При этом ни косвенная (местное смятие) ни поперечная (на продавливание) арматура не требуется. Сами проектанты внятно объяснить зачем они это делают не могут. Ссылаются на усадку бетона, возникновение трещин.
Подскажите где это можно посмотреть. И нужно ли это вообще делать.

Насколько я помню арматура ставится в растянутой зоне бетона. Сверху, над сваями как раз такая зона. + длина анкеровки.

О каких ростверках идет речь? Под куст свай, под свайное поле, ленточный ростверк? В каждом случае свое армирование.

Я видел несколько проектов, в которых в ростверках есть конструктивное армирование. Ростверки практически нашпигованы арматурой. При этом ни косвенная (местное смятие) ни поперечная (на продавливание) арматура не требуется. Сами проектанты внятно объяснить зачем они это делают не могут. Ссылаются на усадку бетона, возникновение трещин.

Да мало ли кто что видел. , - я видел, как в проекте "втыкали" 100-150 стержней AIII d.16 вокруг колонны - типа против продавливания в плите размерами 5мх5м при толщине ж/б плиты 200 мм и нагрузке расчетной 240кг/м2.
Ну и что из этого .
Ничего с ростверками не случиться.

Утверждение об установке арматуры только внизу плитной части росверка (поверх свай) в корне неверное. При работе свай на выдергивание и неспособности бетонного сечения воспринять момент, необходимо устанавливать верхнюю сетку. При расчете на продавливание и на поперечную силу, если требуется арматура, то ее нужно ставить, но рекомендуется этого не делать, а увеличить бетонное сечение, чтобы его было достаточно без установки арматуры для восприятия продавливающе и поперечной силы.

яа райсуя чартяжы ыкк.

Роман_123 а если свая короткая ? битую грунтовую оболочку замочило, отморозило, и отжало от сваи - а по весне грунт оттаял и распушился, вывесив сваю.

вопрос : есть ли у инженера романа, подписавшегося на листе, квартира в собствености ? и можно ли подавать в суд на авторов Пособий будучи бомжом

Армирование столбчатого фундамента под стальную колонну

В зданиях без мостовых кранов устраивают колонны без консолей, а в зданиях с мостовыми кранами — колонны с консолями, на которые опирают подкрановые балки. По расположению в плане различают колонны крайних и средних рядов: первые устанавливают также в рядах, примыкающих к продольным температурным швам.

Железобетонные колонны могут иметь прямоугольное и двутавровое сечения, а также быть двухветвевыми. По сравнению с колоннами прямоугольного сечения двухветвевые колонны имеют повышенную жесткость, но они более трудоемки в изготовлении. Применяют их в здании с высотой более 10.8 м.

В зданиях, оборудованных более чем двумя мостовыми кранами в пролете, по условиям безопасности обслуживающего персонала предусматривают сквозные проходные галереи вдоль подкрановых путей. В этих случаях применяют двухветвевые колонны с лазами, расположенными в уровне верха подкрановых балок.

Ветви колонн сквозного сечения связаны распорками через 1.5-3.0 м по высоте.

В железобетонных колоннах предусматривают стальные закладные элементы, с помощью которых крепят стропильные конструкции, подкрановые балки, стеновые панели (в колоннах крайних рядов) и вертикальные связи. В У1естах опирания стропильных конструкций и подкрановых балок укладывают стальные листы: крепят их анкерными болтами. При

безанкерном креплении стропильных конструкций к колоннам в головки их заделывают стальные пластины.

Для повышения устойчивости зданий в продольном направлении предусматривают систему вертикальных связей между колоннами и в покрытиях. В зданиях без мостовых кранов и с подвесным транспортом межколонные связи ставят только при высоте помещений более 9.6 м. В целях снижения усилий в элементах каркаса от температурных и других воздействий вертикальные связи располагают в середине температурных блоков в каждом ряду колонн.

Рядовые колонны соединяют с связевыми колоннами распорками, размещаемыми по верху колонн, а в зданиях с мостовыми кранами — подкрановыми балками. Связи выполняют из уголков или швеллеров и крепят к колоннам с помощью косынок на сварке.

Фундамент для колонн

Особенность этой категории основы заключается в том, что она устанавливается под отдельными элементами строения (непосредственно под колонной).

Устройство такой основы состоит из одно- или многоступенчатого башмака, а также стакана, в который помещается колонна. Для армирования необходимо использовать сваренную стальную сетку.

Монолитная основа

Данный тип основания для колонны имеет монолитную структуру. Для его заливки в земле выкапывается яма необходимых размеров, и монтируется опалубка. Высота каждой ступени не должна быть меньше 300 миллиметров. Монолитный вариант более прост и надежен в монтаже и эксплуатации

Важно, чтобы все грани отдельных ступеней были симметричными. Полная глубина такого фундамента (до стакана для колонны) может составлять от 1,2 до трех метров

Сборная основа

Устройство такого основания проще изготавливать. Для этого делается опалубка, и заливается бетонная плита необходимых размеров. Толщина изделия не должна быть меньше 30 сантиметров. Элементы не нуждаются в дополнительной фиксации. Вес отдельной колонны, а также элементов конструкции здания, закрепленных на ней, не позволит им смещаться. Посмотрите видео, как установить колонну на основание.

Колонна может крепиться несколькими способами. Первый – в специальный паз, отлитый во время создания плиты (с последующей подливкой цементного раствора после установки опоры). Второй – крепление к закладным (металлические балки, уголки, или швеллеры), залитых бетоном.

Если на промышленном предприятии используются металлические колонны, тогда они крепятся особенным способом. Во время заливки основания к армирующему слою крепятся шпильки с нарезанной резьбой. После застывания к конструкции подсоединяется металлическая опора. Она фиксируется либо при помощи сварки, либо винтовым методом к приваренной пластине внизу столба.

Создавая основание для вертикальных элементов здания, важно выдерживать идеально прямой угол (90 градусов). В этом случае все элементы здания будут надежно закреплены на своих местах

Особенности конструкции

Обычный столбчатый фундамент представляет собой конструкцию в виде отдельных столбов, чаще прямоугольной формы, которые устанавливаются под такими несущими элементами здания, как колонны или стойки. Традиционный ленточный фундамент устраивается в виде протяженной ленты, на которую опираются несущие стены. Если совместить эти два типа фундаментов, то получится конструкция, похожая на свайный фундамент с ростверком, объединяющим сваи. Однако столбчато-ленточный фундамент имеет принципиальные отличия от свайного, которые заключаются в следующем:

  • Cвайные фундаменты используются преимущественно в грунтовых условиях со слабыми грунтами, имеющими невысокую несущую способность. Функция сваи заключается в том, что она должна пройти сквозь слой слабого грунта и найти опору в слое с высокой несущей способностью. Чтобы найти этот слой делают геологическое исследование. Поэтому длина свай может достигать 10-ти и более метров. Столбчато-ленточные фундаменты применяются в грунтовых условиях с нормальной несущей способностью основания, при этом заглубление столбов в грунт должно составлять величину, которая всего лишь на 200—250 мм превышает глубину сезонного промерзания грунта, то есть в пределах 1,5 – 2,0 метров.
  • Сваи передают нагрузку от здания через нижнюю и боковую поверхность. В отличие от свай, столбы в столбчато-ленточном фундаменте передают нагрузку только через подошву.
  • Поперечное сечение свай в большинстве случаев гораздо меньше, чем поперечное сечение подошвы столбов.
  • Свайные фундаменты могут применяться практически для любых зданий и сооружений, ленточно-столбчатые фундаменты используются преимущественно для легких строений – одно и двухэтажных жилых домов – каркасных и каркасно-щитовых, деревянных из бруса или бревна, из СИП-панелей, для домов из газобетона, газобетонных и пенобетонных блоков, бань, гаражей, заборов и т.п.


Единственное общее у этих двух типов фундаментов – это ростверк или лента, которые связывают отдельные опорные элементы конструкции. При этом в ленточно-столбчатом фундаменте лента выполняет те же функции, что и ростверк в свайном – играет роль многопролетной балки на опорах, передающей нагрузку от стен здания на столбы, которые в свою очередь передают нагрузку на грунт. В этом и кроется одно распространенное заблуждение: ленту в ленточно-столбчатом фундаменте считают элементом, который передает часть нагрузки на грунт наряду со столбами.

С тем, что лента в столбчато-ленточном фундаменте играет роль висячего ростверка, связан и характер ее армирования. Лента армируется пространственным каркасом, в котором и верхние и нижние арматурные стержни рабочие.

Монтаж монолитного ростверка

Для заливки бетонного раствора необходимо смонтировать качественную опалубку

Для заливки бетонного раствора необходимо смонтировать качественную опалубку. Начинают с нижних удерживающих щитов. Для этого необходимо нарезать доски, равные шагу между колоннами фундамента. Для их крепления рекомендуется вбить в грунт удерживающие колья. Доски опалубки укладывают на колья вровень с верхним краем столбов.

Боковые щиты опалубки крепят по краям и надежно фиксируют. Боковые планки опалубки можно устелить рубероидом.

Следующим этапом проводят армирование всей конструкции. Здесь стандартно используют армопояс из горизонтальных прутьев сечением 12-16 мм и продольных элементов сечением 6-8 мм

Важно в местах столбов связать арматуру с выступающими из колонн прутьями

Заливку раствора для ростверка нужно проводить в один этап. Поэтому лучше заказать строительный миксер или бетономешалку нужного объема. При заливке бетона необходимо трамбовать раствор через каждые 30 см. Общая толщина (высота) ростверка, как правило, не превышает 60 см.

Через 7-10 дней при условии хорошей сухой погоды бетон считается полностью застывшим. Теперь можно снимать опалубку и давать фундаменту устояться. Все поверхности ростверка также покрывают гидроизоляционными материалами.

После полного высыхания конструкции необходимо провести обратную засыпку котлована с трамбовкой грунта вокруг колонн. Котлован засыпают вровень с отметкой надземной части колонн фундамента. Для декорирования опорных столбов и снижения уровня теплопотерь можно использовать декоративную обшивку столбов сайдингом или же произвести кладку природного камня.

Особенности фундамента под железобетонные колонны

Основания под столпы из железобетона выбираются исходя из положительных и отрицательных характеристик каждого вида в отдельности. В указанном случае самым оптимальным будет использование стаканного основания, имеющего следующие положительные характеристики:

  • Они надежны;
  • Имеют повышенную прочность.

В строительстве применяется два вида оснований:

Этапы строительства

Соблюдение правил при строительстве фундамента под железобетонные колонны, способствует увеличению срока службы конструкции, качества.

  • Столпы устанавливаются в грунт на глубину не меньше 70 сантиметров;
  • На участке строительства почва не должна быть подвижной или подвергаться температурному пучению;
  • Грунтовые воды должны залегать не менее, чем на 1,5 метра вглубь;
  • Рекомендуется выравнивать площадку, чтобы она не имела резких наклонов и поворотов;
  • Чтобы обеспечить прочность фундамента, ростверк должен быть смонтирован из железобетона. Конечно, устройство ростверка потребует финансовых затрат, но это сделает каркас более долговечным;
  • Для стен рекомендуется использовать строительные материалы, относящиеся к легким: пеноблоки, брус, панели, бревно.

Предварительное проектирование позволяет сделать основание крепким, но должны соблюдаться нормы:

  • Сечение колонн – 20х20 см. Практика показывает использование столпов с сечением 25х25см;
  • Рекомендуется делать башмак под каждую колонну. Это значит расширить нижнюю часть скважины под сваю. В результате получают распределение и снижение нагрузки от здания;
  • Колонны размещать на расстоянии от 1 до 2 метров. При этом столпы должны находиться по углам строения, в местах стыка стен, под выступами: камин, печь.

Для увеличения прочности столпы армируют прутами с сечением от 12 до 16 мм. В зависимости от материала для ростверка, регулируется высота арматуры:

  • Для деревянной связки прутья не должны достигать верхней части 1-2 см;
  • Когда планируется железобетонный ростверк, то арматура должна выступать на 40 см.

Работать с арматурой следует только после того, как бетон наберет нужной прочности.

Монтаж башмака

Как уже было сказано, в скважинах рекомендуется делать увеличение нижней части для создания башмака. На песчано-щебневой подушке устанавливается опалубка из фанеры. Высота 20-30 см. Диаметр подготавливаемой опалубки должна быть в 1,5 раза больше, чем диаметр будущих столпов. Теперь в подготовленную емкость заливается раствор. В течение 10 дней бетон застывает, при условии, что стоит теплая сухая погода.

Монтаж колонн

Следующим шагом идет монтаж непосредственно опалубки под столпы. Деревянные доски необходимой длины скрепляют хомутами. Внутренние стенки рекомендуется укрыть рубероидом. В результате выполненных мероприятий стены колонн получаются гладкие, а главное, что при снятии опалубки отсутствуют повреждения.

Теперь установить арматуру и можно заливать раствор бетона марки 200М. Если строительство происходит в зимний период, то лучше добавить пластифицирующие добавки, улучшающие застывание раствора. Специалисты рекомендуют такие работы проводить, когда температура воздуха держится выше 15 градусов тепла. С помощью металлического штыря из жидкого бетона удаляется воздух. При температуре внешнего воздуха 20 градусов и сухой погоде, раствор застывает в течение 7 дней.

Необходимо дождаться полного высыхания и только тогда снимать опалубку. Теперь по всей высоте колонн и башмака наносят гидроизоляцию.

Ростверк

Самый надежной считается монолитная конструкция. Но есть и другие варианты связки фундамента и здания:

  • Крепление с помощью швеллера или двутавра. В этом случае элемент укладывается полкой вниз и крепится с помощью болтов. Такой связке не страшны большие нагрузки;
  • Железобетонный или монолитный ростверк. Для его сооружения потребуется опалубка и установка армирующей конструкции. Как правило, монолитный ростверк применяется для панельного дома, каркасного строительства, деревянного сруба;0
  • Деревянный ростверк. Использование бруса считается самым дешевым вариантом для связки столбчатого фундамента.

Кондуктор-шаблон для анкерных соединений

При заливке бетонного основания под металлические колонны используют специальный кондуктор, с помощью которого контролируется глубина и высота установки анкерных болтов. По сути, это своего рода шаблон для установки анкеров. Чаще всего изготовление кондуктора проводится из металла, на верхней поверхности которого нанесены риски для совмещения с осями и последующей проверке правильности установки с помощью теодолита. Отверстия для крепления болтов делаются в соответствии с диаметром анкеров.

Перед заливкой бетоном болты привариваются к арматурному каркасу основания, а после заливки бетоном, до того момента как он наберет свою техническую твердость проводится проверка правильности расположения болтов. Следующим этапом проводится контроль жесткости опалубки и анкеров. В завершении данной контрольной операции проверяется высотно-плановый показатель расположения.

Кондуктор-шаблон для анкерных соединений

Под тяжелые стальные конструкции используются тяжелые или усиленные варианты анкерных болтов. Размеры как диаметра болта, так его длины и шага резьбы существенно отличаются от легких анкерных соединений. Установка усиленных тяжелых болтов проводится с помощью шаблонов, в нужном положении до заливки основания бетоном. Для большей фиксации таких шаблонов используют дополнительную фиксацию каркасными стойками, придающих конструкции более жесткий вид.

После заливки бетоном, шаблоны анкерных болтов убираются, при этом, как правило, каркас остается на месте установки

При проведении этого этапа работ особое внимание уделяется правильному расположению болтов, обязательно контролируются буквально все параметры – высота, глубина вертикальность установки. Это один из самых трудоемких процессов, но от него зависит насколько верно проведено установка фундамента

Для облегчения работ на этом этапе используется несколько эталонных шаблонов-кондукторов. Сваренный из металлического швеллера или иного металлического профиля большой толщины с нанесенными координатами осей он должен обладать большой массой и жесткостью. В намеченных местах просверливаются отверстия под диаметр анкерных болтов. Для легких болтов, как правило, используется обычный деревянный брус.

Перед установкой болтов проверяется правильность установки кондуктора. Он совмещается по осям координат, а по высоте устанавливается согласно меток, на стойках каркаса.

Армирование ростверка на одиночной свае

Видео-курсы от Ирины Михалевской

На эту статью меня вдохновил вопрос Владимира Б., присланный на почту. В исходных данных был вот такой фундамент, требовалось правильно заармировать ростверк.

Скажу сразу, что при наличии изгибающего момента, ростверк нужно проектировать на двух сваях – тогда момент раскладывается на пару сил, и сваи испытывают только сжимающую и выдергивающую нагрузку, их просто посчитать и законструировать. Работа же сваи под действием момента вызывает сомнения, лучше такого варианта избегать. Но вопрос меня все равно заинтересовал, и я решила написать статью для развития конструкторского мышления (с допущением, что наша свая уже рассчитана, законструирована, и выдерживает все нагрузки с запасом). Буду рада обсуждению в комментариях.

Ростверк на одиночной свае

Итак, в исходных данных у нас монолитный ростверк 800х600 мм, высотой 500 мм, опирающийся на одиночную железобетонную сваю сечением 300х300 мм. Сверху на ростверк опирается металлическая колонна. Вертикальная нагрузка от колонны N = 18 т, момент вдоль оси 2 Mx = 4.5 тм, поперечная сила вдоль оси 2 Qy = 1 т. База колонны и расстояние между болтами показаны на рисунке ниже.

База колонны

Давайте рассмотрим, какую расчетную схему следует принять для ростверка. У нас имеется жесткое опирание на сваю. Нагрузка от колонны передается точно по оси сваи, без сбивок. Но у нас имеется изгибающий момент, который передается через фундаментные болты, положение которых выходит за пределы сваи. По сути, если изобразить расчетную схему для ростверка, мы увидим следующее.

Нагрузка на ростверк

Вертикальная сила N = 18 т распределяется по длине пластины базы колонны 0,62 м и превращается в равномерно распределенную нагрузку q = 18/0,62 = 29 т/м.

Изгибающий момент Мх = 4,5 т∙м раскладывается на пару сил Р, находящихся на расстоянии 0,5 м, и действующих одна – вверх, другая – вниз. Каждая сила Р = 4,5/0,5 = 9 т.

Учитывая то, что расчетная длина консоли равна свесу консоли, мы получим для каждой консоли следующую расчетную схему с защемлением посередине:

Расчетная схема для ростверка

У нас будет три нагрузки:

1) равномерно-распределенная qс.в. = 0,5∙0,6∙2,5 = 0,75 т/м – нагрузка от собственного веса ростверка сечением 0,5х0,6 м (2,5 т/м 3 – собственный вес бетона);

2) равномерно распределенная q – нагрузка от колонны (от вертикальной силы N);

3) вертикальная сила Р (вниз и вверх) – нагрузка от колонны (от изгибающего момента Мх).

Длина каждой консоли равна длине свеса ростверка. Привязка вертикальной силы Р и распределенной нагрузки q – согласно реальным привязкам пластины и болтов.

Теперь нам нужно найти максимальный изгибающий момент М и максимальную поперечную силу Q в консоли.

Для расчета армирования нам понадобятся нормативное и расчетное значение М и Q, причем с выделением постоянных и временных нагрузок. Нагрузка от собственного веса – постоянная. Нагрузки N и Мх включают в себя постоянную и временную части, для уточнения задания следует обратиться к расчетчику металлоконструкций, но мы для примера просто придумаем, что кратковременная часть нагрузки составляет 30%.

Для удобства расчета консоли нагрузки на нее сведем в таблицу:

Коэффициент надежности по нагрузке

Постоянная нагрузка от собственного веса qс.в

Нагрузка q (постоянная часть, 70%)

Нагрузка q (кратковременная часть, 30%)

Нагрузка ±Р (постоянная часть, 70%)

Нагрузка ±Р (кратковременная часть, 30%)

В результате расчета мы получим следующие эпюры М и Q:

Эпюры М и Q

Что означают эти эпюры? Как их прочитать?

По эпюре моментов мы видим, что при такой нагрузке, как у нас в примере (когда момент пытается повернуть колонну против часовой стрелки, и она давит через болты на левую часть ростверка, а правую при этом пытается поднять вверх), максимальный момент в левой части ростверка, причем он на эпюре поднимается вверх над нулевой линией – а значит требует установить верхнюю рабочую арматуру вдоль ростверка, чтобы она восприняла растяжение от изгиба. Момент на эпюре сверху – значит, растянута верхняя часть сечения. Точно так же в правой части ростверка мы видим, что эпюра момента сначала уходит вниз (требуется нижняя рабочая арматура), а потом в месте установки болта выныривает вверх – там появляется растяжение, требующее уже верхнюю арматуру. Таким образом, нам нужно установить в ростверке и верхнюю, и нижнюю рабочую арматуру. Верхнюю мы рассчитаем, исходя из величины М1 (он больше, чем М3), а нижнюю – исходя из величины М2.

Из эпюры поперечной силы мы можем увидеть потребность в поперечной арматуре. Очень напряженные участки у нас Q1-Q3 и Q2-Q5, на них будет максимальная поперечная арматура. Это и логично, т.к. в точках Q3 и Q5 у нас расположены сосредоточенные силы от болтов, и по правилам конструирования мы должны поставить надежную поперечную арматуру от опоры до места приложения сосредоточенной нагрузки – это и подтвердилось расчетом.

Рассмотрим же, какие усилия получились в нашем ростверке.

Значения эпюр сведены в таблицу:

Нормативная постоянная нагрузка

Нормативная кратковременная нагрузка

Расчетная постоянная нагрузка

Расчетная кратковременная нагрузка

Как мы видим, максимальный момент М1, максимальная поперечная сила Q1.

Имея на руках результаты расчета, мы можем посчитать арматуру и заняться конструированием ростверка. Процент армирования по результатам расчета получился маленьким – всего лишь 0,05%, но минимальный процент армирования ростверков не нормируется.

У нас получилась по расчету верхняя рабочая арматура площадью 1,5 см², нижняя рабочая арматура площадью 0,6 см² (и это логично, момент М1 больше момента М2), поперечная арматура площадью 0,28 см² при шаге 200 мм. Теперь нам нужно законструировать ростверк.

Рекомендуемый шаг арматуры в ростверке – 200 мм. Еще ростверк рекомендуется армировать сварными сетками (сварка обязательно должна быть контактной, и ни в коем случае – ручной дуговой!), если же сетки вязанные, то по периметру ростверка два ряда пересечений стержней должны быть соединены сваркой. Помимо этого для анкеровки рабочих стержней на расстоянии 25 мм от их края должен быть приварен перпендикулярный стержень половинного (по сравнению с рабочими стержнями) диаметра. Все эти требования взяты из пособия «Армирование элементов монолитных железобетонных зданий», Тихонов И.Н.

Обратите внимание, т.к. ростверк – не плитный, а балочный, мы не должны пренебрегать конструктивными требованиями к армированию балок (их можно изучить в том же пособии).

Итак, верхнюю и нижнюю сетки ростверка мы принимаем сварными, рабочая арматура – продольная (вдоль ростверка), диаметром 12 мм с шагом 200 мм, класс арматуры А400С – всего получится 4 стержня арматуры, площадь армирования 4,52 см² (это значительно больше, чем 1,5 см² и 0,6 см², но арматуру меньших диаметров в балочном ростверке лучше все-таки не устанавливать). Перпендикулярно этой арматуре установим стержни диаметром 6 мм (как раз выдерживается требование по половинному диаметру – 12/2 = 6 мм) с шагом 200 мм, класс арматуры А400С или А240С.

Теперь разберемся с поперечной арматурой, ростверк мы будем армировать сварными каркасами, в которых установим поперечную арматуру с нужным нам шагом. При шаге 200 мм площадь сечения всех стержней должна быть не менее 0,28 см² - выходит, нам достаточно одного стержня диаметром 6 мм в сечении. Но теперь заглянем в рисунок 3.1 пособия. При ширине балки более 350 мм мы должны установить даже не два, а три каркаса с поперечной арматурой. Далее, уточним шаг арматуры. Согласно рисунку 3.10 пособия и пояснениям под ним, на длине Lsup мы должны установить поперечную арматуру с шагом Sw1, который не должен превышать 500 мм или треть высоты сечения балки (500/3 = 160 мм). В нашем случае Lsup равна расстоянию от опоры до места приложения сосредоточенной нагрузки (т.е. до фундаментного болта). На остатке консоли мы можем установить арматуру с шагом 3h/4 = 3∙500/4 = 375 мм, но при нашей длине консоли такой шаг будет слишком велик, от фундаментного болта до края ростверка у нас остается всего 150 мм, поэтому мы принимаем для всей балки шаг поперечных стержней 150 мм (что меньше 160 мм, т.е. допустимо). Такие величины, как 160 мм лучше не применять, а придерживаться размеров, кратных 50 мм.

Продольную арматуру каркасов примем такую же, как и поперечная – диаметром 6 мм, это будет два стержня – вверху и внизу каркаса.

Итак, мы определились с армированием ростверка. У нас есть две сетки с рабочей арматурой и три каркаса – с поперечной. Между собой в объемный каркас строители соединят их вязальной арматурой.

Вертикальная сила N = 18 т распределяется по длине пластины базы колонны 0,62 м и превращается в равномерно распределенную нагрузку q = 18/0,62 = 29 т/м.
Что-то мне кажется, что распределенная нагрузка
q = 18 х 0,62 = 11,16 т/м и далее

А Вы с единицами измерения произведите действия.
N/L = т/м
N*L = т*м
Если Вы будете умножать силу на длину, получите момент, а не распределенную нагрузку

Да и чисто по логике. Что значит 29 т/м? Это значит, что на каждый 1 метр длины балки приходится 29 тонн. А у нас не 1 м, а 0,62 м. Найдем нагрузку, приложенную на участке длиной 0,62м: 29т/м*0,62м=18т . Обратная задачка тоже решается

Ирина,здравствуйте!
Очень понравилась Ваша статья "Армирование ростверка на одиночной свае" для установки металлической колонны. А попал к Вам на огонёк, потому что искал то же самое, только под железобетонную колонну квадратного сечения 40х40 см, которую хочу установить на буронабивную сваю d40. Друг просит ему помочь в постройке дома на склоне с перепадом по диагонале 2,5 м без цокольной части. Я не сильный спец по конструкциям, но логика подсказывает, что дешевле забурить сваи, установить на оголовник сваи ростверк 80х80, заармировав по типовым узлам, а затем выставить колонны разной высоты и связать на нулевой отметке единым ростверком под дальнейшую установку плит перекрытия и монолитных полов по скошенным углам дома. Грунты крепкие и сухие, под слоем чернозёма 1,1-1,3 м толстый слой крепкой глины с мелким известковым гравием, глубины в 3-4 м для свай будет достаточно. Размер дома 17х17 м, свайное поле из 28 свай, можно сделать и 38 с средним расстоянием между осями свай 2,2-3,0 м.
Если сталкивались с подобным вариантом, подскажите, прав я или нужно делать всё-таки типовые фундаменты под колонны.
Заранее благодарен, с уважением к Вам за правильное и полезное ведение сайта, которое несомненно поможет другим, как специалистам, так и .
Бог Вам в помощь, добра и счастья Вашей семье!

А может довести все сваи до отметки ноль, объединить их ленточным монолитным ростверком, а по нему уже возводить стены?

Ирина,здравствуйте!
Участок уходит вниз по склону, - на плане дома перепад 2,5 м. Производство работ по этапам:
1)-земляные: планировка и выравнивание рельефа, формирование 4-х осей дома под капитальные стены вниз по склону шириной 80 см, бурение скважин под сваи d400 с последующим бетонированием и одновременной установкой на оголовки свай ростверков-площ адок 800х800х250 с выпуском вертикальной арматуры под будущие колонны 400х400.
2)-установка опалубки и бетонирование колонн под отметку -0,2 м ленточного монолитного ростверка с поперечными балками между осями.
Кстати, в этом пункте можно использовать Ваш вариант с металлической колонной.
3)-установка опалубки монолитного ростверка, армирование и бетонирование.
4)-монтаж плит перекрытия и монолит пола.
Все эти этапы разбиты по времени и средствам+дом за городом в станице-сохранн ость материалов не гарантирована.
Спасибо, что ответили! С уважением, Евгений.

Евгений, Вы прочли мой вопрос? Обдумали? Я не понимаю, зачем в промежутке, где-то в воздухе использовать огромную монолитную штуку, чтобы перейти от сваи к колонне, а потом по колоннам снова делать монолитную обвязку. Зачем это Вам? Забурите сваи (к тому же, они одного диаметра с колоннами), установите арматурные каркасы от низа сваи до нуля, над уровнем земли выставьте обсадные трубы (несъемную опалубку) и бетонируйте одним махом.
Довольно часто такое решение применяется, когда сваи выныривают из земли и служат опорами для чего-то. Единственное, конечно, нужен расчет этих свай. Но он в любом случае нужен.

Читайте также: