Аморфные металлы структура получение свойства реферат

Обновлено: 07.01.2025

В последнее время об аморфных металлах много говорят как о совершенно новых материалах, причем это касается не только их уникальных свойств, ио и возможностей для практического приложения этих свойств. Следует, однако, прежде всего подчеркнуть, что аморфные материалы вообще известны очень давно. С древнейших времен человечество использует силикатное стекло. Известны также многие органические аморфные соединения и полимеры. Изуче-, ние этих веществ в основном завершено. Почему же в последние годы так резко возрос интерес к аморфным материалам? Это объясняется главным образом появлением в 70-х годах нашего столетия двух новых классов материалов —аморфных полупроводников и аморфных металлов, вызванных к жизни .самими потребностями современного технического тарогресса.

Работа содержит 1 файл

ОБЩИЕ ПРЕДСТАВЛЕНИЯ ОБ АМОРФНЫХ МЕТАЛЛАХ.doc

Министерство науки и образования Украины

Приазовский государственный технический университет

По дисциплине «Материалловедение»

на тему «Общие сведения об аморфных металлах»

Мариуполь, 2006

Содержание

Введение

В последнее время об аморфных металлах много говорят как о совершенно новых материалах, причем это касается не только их уникальных свойств, ио и возможностей для практического приложения этих свойств. Следует, однако, прежде всего подчеркнуть, что аморфные материалы вообще известны очень давно. С древнейших времен человечество использует силикатное стекло. Известны также многие органические аморфные соединения и полимеры. Изуче-, ние этих веществ в основном завершено. Почему же в последние годы так резко возрос интерес к аморфным материалам? Это объясняется главным образом появлением в 70-х годах нашего столетия двух новых классов материалов —аморфных полупроводников и аморфных металлов, вызванных к жизни .самими потребностями современного технического тарогресса.

ОБЩИЕ ПРЕДСТАВЛЕНИЯ ОБ АМОРФНЫХ МЕТАЛЛАХ

Рис. 1.1. Рост ежегодного числа иаучных публикаций, посвященных аморфным металлам: 1 — открытие сплавов золото — кремний; 2 — открытие высокой прочности и вязкости аморфных металлов; 3- разработка технологии непрерывной закалки лент; 4 — открытие высокой коррозионной стойкости и высокой магнитной проницаемости

Исследования аморфных полупроводников начались в 1968 г., когда Овшинский [1] впервые получил подобное вещество. Оказалось, и это вызвало серьезный интерес, что аморфные полупроводники могут с успехом заменить и даже превзойти обычный аморфный диоксид кремния в таких важных на сегодняшний день конструкциях, как солнечные батареи. Изучение же аморфных металлов интенсивно развивается с 1970 г., когда масумото и Мад-дин [2] получили аморфную ленту из палладиевого .сплава и обнаружили, что эта лента имеет высокие прочность и пластичность. Вскоре были обнаружены такие замечательные свойства аморфных металлов, как высокая коррозионная 'стойкость, высокая магнитная проницаемость и ряд других. На рис. 1.1 приведена диаграмма, иллюстрирующая рост числа иаучных публикаций, посвященных аморфным металлам.

То, что металлы могут существовать в аморфном состоянии — факт далеко не новый. Уже в 40-х годах было известно, что полученные лри вакуумном низкотемпературном напылении пленки не имеют кристаллического строе ния. Здесь можно назвать полученные металлизацией пленки Ni— Р и висмутовые плевки, полученные вакуумным напылением. В 1960 г. профессор Дювез с группой сотрудников Калифорнийского технологического института наблюдали аморфное состояние в закаленном из расплава эвтектическом сплаве Au—Si, что положило начало изучению аморфных металлов, получаемых ,по технологии закалки из жидкого состояния. Однако, как видно из рис. 1.1, в течение десяти лет здесь практически не было никакого прогресса. Это время в шутку иногда называют инкубационным периодом в исследовании аморфных металлов. А примерно в 1970 г. начался бум: число научных публикаций по этому вопросу стало расти по экспоненте. Косвенными причинами столь бурного развития исследований, с одной стороны, явилась сама новизна проблемы, а с другой—страстное стремление к получению новых материалов. Непосредственная же и основная причина состоит в разработке методов изготовления непрерывных тонких аморфных лент и в возможности применения этих методов ко: многим системам сплавов, в частности, к уже реально используемым на практике сплавам на основе железа, .кобальта ,и никеля.

Полученные в ходе многих успешных экспериментов характеристики свойств аморфных металлов обусловили повышенный интерес к практическому применению этих материалов. Это видно по табл. 1.1, где сделана попытка проследить историю развития исследований аморфных металлов. В 1970 г. появилась основная технология получения непрерывных аморфных металлических лент: методы центробежной закалки [2, 4] и закалки в валках (прокатки расплава) [5]. До этого удавалось получать лишь небольшие аморфные пластинки. Именно тогда, с появлением возможности изготовления лент, было установлено, что сплавы, хрупкие в кристаллическом состоянии, при аморфизации приобретают высокую пластичность и прочность [2, 6]. То, что до тех пор интересовало лишь экспериментаторов-одиночек, вдруг оказалось в центре всеобщего внимания. После 1970 г. появились многочисленные разработки аморфных сплавов, были открыты многие другие их интересные свойства. Так, в 1974 г. были обнаружены сверхвысокая коррозионная стойкость [7] и высокая магнитная проницаемость [8, 9] аморфных сплавов. Сегодня эти новые материалы из мечты превратились • в реальность.

Нужно отметить, что исследования аморфных металлов вносят большой вклад в науку о металлах вообще. Сегодня уже оформилась своеобразная отрасль исследований — металлургия аморфных металлов. Это отражено на рис. 1.1., где видно, что с 1975 г. наблюдается значительный рост числа научных публикаций. Вначале эти исследования были сосредоточены в США и Японии, затем они распространились на Великобританию и другие страны Европы, Советский Союз, КНР, и в настоящее время практически во всех передовых странах энергично ведутся работы по изучению аморфных металлов. В августе 1981 г. в Японии (Сендай) проходила IV международная конференция по быстрозакаленным металлам, в которой приняли участие ученые из 25 стран. Было сделано 416 докладов. Тематика этих докладов в процентном отношении приведена ниже, %:

Аморфные металлы

Аморфные металлы - металлы и сплавы с аморфной структурой, образующейся при очень быстром охлаждении расплава. Это вещества с характерным строением, которое близко к структуре расплавленного металла или стекла. Заметное упорядочение в аморфных металлах распространяется только на несколько межатомных расстояний, как у обычных стекол. Такую структуру металлы приобретают при охлаждении со скоростью более 1 миллиона градусов Цельсия в секунду.
Затвердевание с образованием аморфной структуры принципиально возможно для всех металлов и сплавов. Для практического применения обычно используют сплавы переходных металлов (Fe, Co, Mn, Cr, Ni и др), в которые для образования аморфной структуры добавляют аморфообразующие элементы (В, С, Si, P, S). Такие аморфные сплавы обычно содержат около 80% (ат.) одного или нескольких переходных металлов и 20% неметаллов, добавляемых для образования и стабилизации аморфной структуры.

Содержание работы
Файлы: 1 файл

Аморфные металлы.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ и НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МАГНИТОГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

по дисциплине «Основы нано технологий»

на тему: «Аморфные металлы»

Выполнила: Недворягина Е.В. студентка 2 курса, группы ТФБ-11

Проверила: Полякова М.А.

Закалка из жидкого состояния……………………………………………

Аморфные металлы - металлы и сплавы с аморфной структурой, образующейся при очень быстром охлаждении расплава. Это вещества с характерным строением, которое близко к структуре расплавленного металла или стекла. Заметное упорядочение в аморфных металлах распространяется только на несколько межатомных расстояний, как у обычных стекол. Такую структуру металлы приобретают при охлаждении со скоростью более 1 миллиона градусов Цельсия в секунду.

Затвердевание с образованием аморфной структуры принципиально возможно для всех металлов и сплавов. Для практического применения обычно используют сплавы переходных металлов (Fe, Co, Mn, Cr, Ni и др), в которые для образования аморфной структуры добавляют аморфообразующие элементы (В, С, Si, P, S). Такие аморфные сплавы обычно содержат около 80% (ат.) одного или нескольких переходных металлов и 20% неметаллов, добавляемых для образования и стабилизации аморфной структуры.

Аморфные металлы привлекали усиленное внимание ученых со времени их открытия в 1960 году. Первым из полученных аморфных металлов был сплав золото-кремний. Затем удалось получить в аморфном состоянии не только сплавы, но и многие чистые металлы, в том числе железо, алюминий, хром, никель, ванадий, германий и др. Для этого потребовались скорости охлаждения до 10 миллиардов градусов в секунду.
Однако аморфное состояние чистых металлов неустойчиво – при нагревании начинается кристаллизация. Намного устойчивее сплавы, содержащие такие переходные элементы, как никель, палладий, цирконий, лантан, а также некоторые неметаллы – кремний, бор, углерод, фосфор.

Структура аморфных сплавов подобна структуре замороженной жидкости. Затвердевание происходит настолько быстро, что атомы вещества оказываются замороженными в тех положениях, которые они занимали, будучи в жидком состоянии. Аморфная структура характеризуется отсутствием дальнего порядка в расположении атомов, благодаря чему в ней нет кристаллической анизотропии, отсутствуют границы блоков, зерен и другие дефекты структуры, типичные для поликристаллических сплавов.

Благодаря характерной структуре аморфные металлы обладают рядом особых свойств: они становятся в несколько раз прочнее, изменяются модули их упругости, электромагнитные свойства, повышается стойкость к коррозии. В противоположность обычным стеклам они проявляют заметную пластичность. Эти свойства определяют особое место аморфных металлов среди прочих материалов и привлекают к себе внимание специалистов. Они представляют собой многообещающие материалы для техники будущего.
Интерес, проявляемый специалистами к аморфным металлам, обусловлен еще и тем, что они значительно дешевле традиционных материалов.

Плотность аморфных сплавов лишь на 1-2% меньше плотности соответствующих кристаллических тел.

Закалка из жидкого состояния

Закалка из жидкого состояния является основным способом получения металлических стёкол. Этот метод заключается в сверхбыстром охлаждении расплава, в результате которого он переходит в твёрдое состояние, избежав кристаллизации — структура материала остаётся практически такой же, как в жидком состоянии. Он включает в себя несколько методов, которые позволяют получать аморфные металлы в формах порошка, тонкой проволоки, тонкой ленты, пластинок. Также были разработаны сплавы с малой критической скоростью охлаждения, что позволило создавать объёмные металлические стёкла.

Сверхвысокие скорости охлаждения для получения аморфной структуры можно реализовать различными способами. Общим в них является необходимость обеспечения скорости охлаждения не ниже 106 К/с. Известны методы:

o катапультирования капли на холодную пластину,

o распыление струи газом или жидкостью,

o центрифугирование капли или струи,

o расплавление тонкой пленки поверхности металла лазером с быстрым отводом тепла массой основного металла,

  • сверхбыстрое охлаждение из газовой среды и др. Использование этих методов позволяет получать ленту различной ширины и толщины, проволоку и порошки.

Благодаря своим магнитным свойствам аморфные металлы используются при производстве магнитных экранов, считывающих головок аудио- и видеомагнитофонов, устройств записи и хранения информации в компьютерной технике, трансформаторов и других устройств.

Низкая зависимость сопротивления некоторых аморфных металлов от температуры позволяет использовать их в качестве эталонных резисторов.

Аморфные материалы используют для армирования трубок высокого давления, изготовления металлокорда шин и др. Высокая прочность в сочетании с коррозионной стойкостью позволяют использовать аморфные сплавы для изготовления кабелей, работающих в контакте с морской водой, изделий, условия эксплуатации которых связаны с воздействием агрессивных сред. Из аморфной ленты изготавливают предметы бытового назначения - бритвенные лезвия, рулетки и др.

Широкому применению аморфных металлов препятствуют высокая себестоимость, сравнительно низкая термическая устойчивость, а также малые размеры получаемых лент, проволоки, гранул. Кроме того, применение аморфных сплавов в конструкциях ограничено из-за их низкой свариваемости.

Таблица 1. Свойства и области применения аморфных металлических материалов

Высокая прочность, высокая вязкость

Высокая коррозионная стойкость

Высокая магнитная индукция насыщения, низкие потери

Высокая магнитная проницае-мость, низкая коэрцитивная сила

Постоянство модулей упругости и температурного коэффициента линейного расширения

Проволока, армирующие материалы, пружины, режущий инструмент

Электродные материалы, фильтры для работы в растворах кислот, морской воде, сточных водах

Аморфные сплавы

Большинство металлов и сплавов, используемых в промышленности, имеют кристаллическую структуру. Им присуще упорядоченное строение кристаллических образований (рис. 1, а). В процессах кристаллизации расплавов металлов их охлаждение происходит за какой-то промежуток времени, с которым связаны два основных параметра: скорость зарождения центров кристаллизации и скорость роста кристаллов. При этом образуются кристаллические структуры с анизотропией свойств, связанной с тем, что блоки, зерна имеют границы, на которых концентрируются дефекты и другие явления.

Во второй половине XX века было установлено, что при сверхвысоких скоростях охлаждения вещества из жидкого состояния (со скоростью > 106 °С/с) диффузионные процессы и зарождение центров кристаллизации в нем настолько замедляются вследствие быстрого нарастания вязкости расплава, из-за чего подавляется образование зародышей и рост кристаллов. В этом случае при затвердевании образуются неупорядоченные структуры (рис. 1, б).

Сплавы с такой структурой получили название аморфные металлические сплавы или металлические стекла. Аморфные металлические сплавы полностью изотропны, их свойства во всех направлениях совершенно одинаковы.

Аморфное состояние обеспечивает металлическим материалам свойства, значительно отличающиеся от свойств соответствующих материалов с кристаллической структурой.

Сплавы в аморфном состоянии обладают высокой твердостью и коррозионной стойкостью, а их пластическая деформация не сопровождается скольжением или двойникованием и имеет характер вязкого, очень затрудненного течения. Следует отметить, что уровень электромагнитных потерь в аморфных сплавах с высокой магнитной индукцией оказывается существенно ниже, чем во всех известных кристаллических сплавах.

Модели структур сплавов

Рис. 1. Модели структур сплавов: а — кристаллическая; б — аморфная

Сверхвысокие скорости охлаждения жидкого сплава для получения его аморфной структуры можно реализовать различными способами. Общим в них является необходимость обеспечения скорости охлаждения не ниже 10 6 °С/с.

Существует много методов получения аморфных сплавов (катапультирование капли на холодную пластину, распыление струи газом или жидкостью, центрифугирование капли или струи, расплавление тонкой пленки поверхности металла лазером с быстрым отводом тепла массой основного металла, сверхбыстрое охлаждение из газовой среды и др.). Эти сплавы можно получать из газовой, жидкой и твердой фаз. Следует отметить, что подавляющее большинство аморфных сплавов получают путем быстрой закалки из расплава (технология быстрого затвердевания).

Использование этих методов позволяет получать ленту (различной толщины), проволоку и порошки с аморфной структурой.

Наиболее эффективными способами промышленного производства аморфной ленты являются охлаждение струи жидкого металла на внешней (закалка на диске) или внутренней (центробежная закалка) поверхности вращающихся барабанов и прокатка расплава между холодными валками, изготовленными из материалов с высокой теплопроводностью.

На рисунке 2 приведены принципиальные схемы этих методов. Расплав, полученный в индукционной печи, выдавливается нейтральным газом из сопла и затвердевает при соприкосновении с поверхностью вращающегося охлаждаемого тела (холодильника). Различие в методах состоит в том, что при центробежной закалке и закалке на диске расплав охлаждается только с одной стороны. Основной проблемой здесь является получение достаточной степени чистоты внешней поверхности, которая не соприкасается с холодильником. Метод прокатки расплава позволяет получить хорошее качество обеих поверхностей ленты, что особенно важно для аморфных лент, используемых для головок магнитной записи. Для каждого метода имеются свои ограничения по размерам лент, поскольку имеются различия и в протекании процесса затвердевания, и в аппаратурном оформлении методов. Если при центробежной закалке ширина ленты составляет до 5 мм, то прокаткой получают ленты шириной 10 мм и более. Метод закалки на диске, для которого требуется более простая аппаратура, позволяет в широких пределах изменять ширину ленты в зависимости от размеров плавильных тиглей. Данный метод позволяет изготавливать как узкие (шириной 0,1…0,2 мм), так и широкие (до 100 мм) ленты, причем точность поддержания их ширины может составлять ± 3 мкм.

Методы получения тонкой ленты путем закалки из расплава

Рис. 2. Методы получения тонкой ленты путем закалки из расплава: а — центробежная закалка; б — закалка на диске; в — прокатка расплава; г — центробежная закалка; д — планетарная закалка

Во всех установках для закалки из жидкого состояния сплав быстро затвердевает, растекаясь тонким слоем по поверхности вращающегося холодильника. При постоянстве состава сплава скорость охлаждения расплава зависит от его толщины и характеристик холодильника. Толщина расплава на холодильнике определяется скоростью его вращения и скоростью истечения расплава, т. е. зависит от диаметра сопла и давления газа на расплав. Большое значение имеет правильный выбор угла подачи расплава на диск, позволяющий увеличить длительность контакта сплава с холодильником. Скорость охлаждения зависит также от свойств самого расплава (теплопроводности, теплоемкости, вязкости, плотности).

Для получения тонкой аморфной проволоки используют различные методы вытягивания волокон из расплава.

В методе, представленном на рисунке 3, а, расплавленный сплав протягивается в трубке круглого сечения через водный раствор солей. В методе вытягивания нити из вращающегося барабана (рис. 3, б) струя расплавленного сплава падает в жидкость, удерживаемую центробежной силой на внутренней поверхности вращающегося барабана: затвердевшая нить затем сматывается из вращающейся жидкости.

Методы получения тонкой проволоки, из расплава

Рис. 3. Методы получения тонкой проволоки, из расплава: а — протягивание расплава через охлаждающую жидкость (экструзия расплава); б — вытягивание нити из вращающегося барабана; в — вытягивание расплава в стеклянном капилляре; 1 — расплав; 2 — охлаждающая жидкость; 3 — стекло; 4 — форсунка; 5 — барабан

Известен метод, состоящий в получении аморфной проволоки путем максимально быстрого вытягивания расплава в стеклянном

капилляре (рис. 3, в). Этот метод также называют методом Тейлора. Волокно получается при протягивании расплава одновременно со стеклянной трубкой. При этом диаметр волокна составляет 2…5 мкм. Недостатком метода является сложность отделения волокна от покрывающего его стекла, что ограничивает составы сплавов, которые аморфизируются данным методом. (рис. 3)

Следует отметить, что для производства порошков аморфных сплавов можно воспользоваться методами и оборудованием, применяемыми для изготовления обычных металлических порошков.

На рисунке 4 схематично показано несколько методов, позволяющих в больших количествах получать аморфные порошки. Среди них, в первую очередь, следует отметить хорошо зарекомендовавшие себя методы распыления (рис. 4, а).

Методы получения аморфных порошков

Рис. 4. Методы получения аморфных порошков: а — метод распыления (спрей-метод); б — кавитационный метод; в — метод распыления расплава вращающимся диском; 1 — порошок; 2 — исходное сырье; 3 — форсунка; 4 — охлаждающая жидкость; 5 — охлаждаемая плита

Изготовление аморфных порошков осуществляется также кавитационным методом, реализуемым прокаткой расплава в валках, и методом распыления расплава вращающимся диском.

При кавитационном методе (рис. 4, б) расплавленный металл выдавливается в зазор (0,2…0,5 мм) между двумя валками, изготовленными, например, из графита или нитрида бора. Происходит кавитация — расплав выбрасывается валками в виде порошка, который попадает на охлажденную плиту или в охлаждающий водный раствор. Кавитация возникает в зазоре между валками, вследствие чего исчезают пузырьки газа, имеющиеся в металле.

Метод распыления вращающимся диском (рис. 4, в) аналогичен методу изготовления тонкой проволоки, но здесь расплавленный металл, попадая в жидкость, разбрызгивается за счет ее турбулентного движения. При помощи этого метода получается порошок в виде гранул диаметром около 100 мкм. (сюда рис. 4)

Превращение поверхностного слоя расплава в аморфное состояние затруднено наличием кристаллической подложки, способной инициировать процесс кристаллизации. Поэтому для обеспечения аморфизации расплава следует увеличивать скорость его охлаждения, что достигается уменьшением глубины проплавления, которая обычно не превышает 50 мкм. Скорости охлаждения, достигаемые при лазерной аморфизации, составляют 10 6 °С/с и более.

Для поверхностной аморфизации сплавов применяют не только лазерный луч, но и электронный, сфокусированный магнитным полем. При этом можно получить очень высокую плотность энергии, но обработку необходимо проводить в вакуумных камерах. Такая обработка наиболее широко применяется для сталей, особенно инструментальных.

В настоящее время известно множество аморфных сплавов на основе Fе, Ni, Тi, Сu и т. д. Как правило, гораздо легче аморфизируются сплавы, содержащие аморфизующие добавки некоторых неметаллических элементов (металлоидов типа Р, Si, В, С и др.). Это сплавы составов Fe80B20, Fe10Cr10B20, Ni75Si8B17, Co75Si15B10, Pd80Si20 и др. Из сплавов, содержащих только металлические элементы, легче аморфизируются те, которые состоят из элементов с сильно различающимися размерами атомов и их значениями электроотрицательности (Ni35Nd65, Ni55Ta45, Cu50Zr50, Co60Zr40 и др.). Аморфизацию сталей в настоящее время проводить затруднительно, поскольку для этого необходимы очень большие скорости охлаждения.

Следует отметить, что сортамент выпускаемых аморфных материалов ограничен (изготовляются только тонкие ленты, фольга и нити), а получить массивные заготовки и изделия можно методами порошковой металлургии. Вместе с тем обычная технология (спекание порошковых заготовок) неприемлема из-за низкой термической стабильности аморфных материалов. Экспериментально аморфные порошки изготовляют взрывным прессованием.

Срок службы аморфного сплава зависит от температуры его эксплуатации. Термическая стойкость аморфных сплавов низка. Однако имеются материалы с tкрист более 725 °С. К ним, в частности, относится сплав Тi40Ni40Si20, который обладает высокими механическими свойствами.

Высокопрочные нити из аморфных сплавов могут использоваться в композиционных материалах, а ленты — в виде намотки для упрочнения сосудов высокого давления.

Аморфные металлические сплавы являются перспективным материалом для изготовления упругих элементов.

Высокие твердость, износостойкость и коррозионная стойкость этих сплавов позволяют получать из них высококачественный тонколезвийный инструмент (например, бритвенные лезвия).

Методами быстрого затвердевания расплава при определенных условиях можно получать не только аморфные, но и микрокристаллические сплавы, обладающие высокими механическими свойствами при повышенных температурах. Размер зерна в таких сплавах обычно составляет 1…5 мкм, а иногда и менее.

Микрокристаллические сплавы можно также получать путем кристаллизации аморфных сплавов. Аморфное состояние в сплавах является термически неравновесным, поэтому при нагревании выше определенной температуры, зависящей от состава сплава, происходит его переход в кристаллическое состояние. Кристаллизация аморфных сплавов, специально разработанных для этих целей (например, содержащих только 5…13 % металлоида, как правило, бора) позволяет получать микрокристаллические сплавы с размером зерна менее 1 мкм.

Для получения микрокристаллических сплавов используют также аморфные сплавы в виде порошков, которые подвергаются горячему прессованию и одновременно кристаллизуются.

В настоящее время технологические возможности не позволяют получать металлические детали, имеющие аморфную структуру во всем их объеме. Однако развитие существующих технологий в перспективе позволит получать детали с аморфной структурой. Так, при жидкой штамповке на расплав оказывается давление 150…200 МПа, но если его повысить на порядок и более, то могут произойти значительные изменения структуры отливок. С увеличением давления температура плавления большинства металлов и сплавов повышается. Поэтому, если сплав при нормальном давлении находится в жидком состоянии, то его можно перевести в твердое состояние при постоянной температуре за счет только высокого давления. Поскольку давление в жидкостях передается во всех направлениях без изменения, то можно теоретически по всему объему сплава создать переохлаждение, необходимое для одновременной кристаллизации всей отливки. Принципиально возможно создание таких давлений, при которых вязкость расплава возрастет настолько, что из-за малой подвижности атомы не успеют занять места в узлах кристаллической решетки и вместо кристаллической структуры получится аморфная.

IX Международная студенческая научная конференция Студенческий научный форум - 2017


В последние годы XX столетия особого внимания физиков и материаловедов заслуживают так называемые металлические стекла, представляющие собой аморфные металлические сплавы с неупорядоченным расположением атомов в пространстве. До недавнего времени понятие «металл» связывалось с понятием «кристалл», атомы которого расположены в пространстве строго упорядочено. Однако в начале 60-х годов прошлого века впервые были получены металлические сплавы, не имеющие кристаллической структуры [1]. Металлы и сплавы с беспорядочным расположением атомов стали называть аморфными металлическими стеклами.

Металлические стекла (аморфные сплавы, стекловидные металлы, метглассы) – это металлические сплавы в стеклообразном состоянии, образующиеся при сверхбыстром охлаждении металлического расплава, когда быстрым охлаждением предотвращена кристаллизация (скорость охлаждения менее 10 6 К/с) [2]. С помощью методов рентгеновской, нейтронной, электронной дифракции было показано, что в аморфных металлических стеклах имеется более или менее четко определяемый на расстоянии двух-трех соседних атомов так называемый ближний порядок: в аморфном металлическом сплаве элементарная ячейка, характерная для кристаллического состояния, также сохраняется. Однако при стыковке элементарных ячеек в пространстве порядок их нарушается, и стройность рядов атомов, характерная для дальнего порядка, отсутствует [2].

Особенности структуры аморфных металлических стекол сказались и на многих физических свойствах. Металлические стекла обладают уникальным сочетанием высоких механических, магнитных, электрических и антикоррозионных свойств. Так, несмотря на то, что плотность аморфных сплавов на 1-2% ниже плотности кристаллических аналогов, прочность их выше в 5-10 раз [3]. Металлические стекла отличаются от кристаллических сплавов отсутствием таких дефектов структуры, как вакансии, дислокации, границы зерен, и уникальной химической однородностью: отсутствует ликвация, весь сплав однофазен. Особенности строения металлических стекол обуславливают отсутствие характерной для кристаллов анизотропии свойств, высокую прочность и магнитную проницаемость, малые потери на перемагничивание.

Ещё в начале 60-х годов было показано, что можно получить аморфную структуру сплава, охлаждая жидкий расплав на холодной металлической подложке [1]. Для получения металлических стекол используются два метода. В первом методе жидкий металл наносят на внешнюю цилиндрическую поверхность вращающегося диска (колеса), во втором – расплав извлекается вращающимся диском. Данным методом перевести в твердое аморфное состояния чистые металлические элементы трудно. Например, чистый никель удалось зафиксировать в стеклообразном состоянии только при экстремально больших скоростях охлаждения (около 10 10 К/с). Однако сплавление элементов друг с другом, особенно с металлоидами, значительно облегчает процесс стеклообразования. Характерным в этом отношении является сплав Pd - Si. Чистый палладий не удается перевести в аморфное состояние даже при очень больших скоростях охлаждения. Но сплав палладия с 20% кремния аморфизируется уже при скоростях охлаждения примерно 10 2 К/с. Другой способ получения металлических стекол - высокоскоростное ионно-плазменное распыление металлов и сплавов. Аморфные металлические сплавы получают в виде напыленного слоя толщиной от 1 до 1000 мкм [3].

Благодаря особенностям своего строения, аморфные металлы и сплавы имеют ряд отличительных свойств. Аморфные сплавы обладают уникальными механическими свойствами: они имеют высокую прочность и твёрдость в сочетании с высокой пластичностью при сжатии или изгибе, также имеют высокий предел прочности на растяжение, высокую усталостную прочность, высокую энергию ударного разрушения и упругости. Так, например, по своей прочности и пластичности проволока их аморфного сплава Fe75Si10B15 превосходит даже стальную рояльную проволоку. Поэтому аморфные сплавы могут найти самое широкое применение как конструкционные или специальные материалы: конструкционные материалы машинного оборудования, материалы матриц (фильер), инструментальные материалы, композитные материалы и др. Но наиболее широкое применение металлические стекла нашли благодаря их магнитным и электрическим свойствам [2]. Важной характеристикой аморфных металлов является мягкий ферромагнетизм металлических стёкол на основе Fe–Ni–Co. Отсутствие анизотропии, присущее аморфной структуре, приводит к очень высокой магнитной проницаемости и низким энергетическим потерям. Таким образом, эти материалы могут найти применение в областях, где требуются мягкие магниты (например, сердечники трансформаторов, магнитные головки и экраны, магнетометры, сигнальные устройства) [2]. Беспорядок расположения атомов в виде ближнего порядка оказывает сильное влияние и на электропроводность металлических стекол. Их удельное электрическое сопротивление в 3-5 раз выше, чем у кристаллических аналогов. Это связано с тем, что при движении электронов через нерегулярную структуру аморфных металлических стекол они испытывают гораздо больше столкновений с ионами, чем в кристаллической решетке [3].

Сплавы типа металл – металл и, особенно, металл – металлоид в аморфном состоянии имеют более высокую коррозионную стойкость, чем в кристаллическом состоянии, т.к. химическая однородность, отсутствие межзёренных границ и линейных дефектов типа дислокаций увеличивает коррозионную стойкость за счет устранения локальной разности электрохимического потенциала [4]. Например, аморфный сплав Fe45Cr25Мо10P13C7 используется в качестве электродных материалов и фильтров для работы в растворах кислот.

Возможно также использование металлических стекол в качестве катализаторов органического синтеза, материалов для топливных элементов, а также в качестве медицинских имплантатов.

Аморфные металлы часто называют материалами будущего, «фантастическими материалами», что связано с уникальностью методов их получения и особыми свойствами, не встречающимися у кристаллических металлов. Однако аморфные материалы не лишены недостатков: это невысокая их термическая устойчивость и недостаточная стабильность во времени. Также недостатком являются малые размеры получаемых лент, проволоки, гранул и невозможность их сварки. Поэтому аморфные металлы не пригодны в качестве высокотемпературных материалов, а их применение, вероятно, будет ограничено только малогабаритными изделиями.

Однако полное завершение исследований по аморфным структурам еще впереди. Следует сказать, что ученых и инженеров ждет интересная и захватывающая работа в области аморфных металлических материалов, т.к. на очереди получение аморфных структур, в которых отсутствует даже ближний порядок [4].

Вьюгов П.Н., Дмитренко А.Е. Металлические стекла. Вопросы атомной науки и техники. Серия: Вакуум, чистые материалы, сверхпроводники, 2004, №4, с. 185-191.

Ржевская С. В. Материаловедение: Учеб. для вузов. – М.: Логос, 2004. – 424 с.

Золотухин И.В. Аморфные металлические материалы. – Соросовский образовательный журнал, №4, 1997, с. 73-78.

Судзуки К., Фудзимори Х., Хасимото К. Аморфные металлы. / Под ред. Масумото Ц. Пер. с япон. – М.: Металлургия, 1987. – 328 с.

Доклад на тему "Физические свойства аморфных металлических материалов"

В последние годы XX столетия внимание физиков и материаловедов привлечено к конденсированным средам, для которых характерно неупорядоченное расположение атомов в пространстве.

Открытие аморфных металлов внесло большой вклад в науку о металлах, существенно изменив наши представления о них. Оказалось, что аморфные металлы разительно отличаются по своим свойствам от металлических кристаллов, для которых характерно упорядоченное расположение атомов.

Аморфные металлы часто называют материалами будущего, что обусловлено уникальностью их свойств, не встречающихся у обычных кристаллических металлов. Широкому распространению аморфных металлов препятствует высокая себестоимость, сравнительно низкая термическая устойчивость, а также малые размеры получаемых лент, проволоки, гранул. Кроме того, применение аморфных сплавов в конструкциях ограничено из-за их низкой свариваемости.

Сразу же после получения аморфных металлических сплавов (АМС) возникли вопросы, связанные с их атомной структурой.

С помощью рентгеновской, нейтронной, электронной дифракции было показано, что в АМС имеется более или менее четко определяемый на расстоянии двух-трех соседних атомов так называемый ближний порядок. Ближний порядок, лежащий в основе структуры аморфных сплавов, является системой метастабильной. При нагреве до температуры кристаллизации Тх он перестраивается в обычную кристаллическую структуру. В среднем для большинства аморфных сплавов Тх находится в пределах 650-1000 К. К счастью, при комнатной температуре аморфные сплавы могут сохранять структуру и свойства в течение 104 – 105 лет.

Аморфная структура характеризуется отсутствием дальнего порядка в расположении атомов, благодаря чему в ней нет кристаллической анизотропии, отсутствуют границы блоков, зерен и другие дефекты структуры, типичные для поликристаллических сплавов.

Следствием такой аморфной структуры являются необычные магнитные, механические, электрические свойства и коррозионная стойкость аморфных металлических сплавов.

Известно, что в обычных ферромагнетиках всегда имеется магнитная анизотропия, обусловленная кристаллическим порядком расположения магнитных моментов атомов. Магнитная анизотропия существенно уменьшает подвижность доменных стенок и увеличивает коэрцитивное поле. В принципе в аморфных ферромагнетиках магнитная анизотропия должна быть равна нулю, поскольку отсутствует кристаллический дальний порядок. Практически реальные аморфные ферромагнетики все же обладают магнитной анизотропией, которая, однако, на два порядка меньше, чем в кристаллических. Уменьшение магнитной анизотропии приводит к резкому снижению коэрцитивного поля до значений 0,01 А/м, что уменьшает потери при перемагничивании. Таким образом, аморфные металлические сплавы почти всегда являются магнитомягкими ферромагнетиками.

Другим полезным свойством аморфных ферромагнетиков является более высокое значение начальной магнитной проницаемости как на низких (0,1-1 МГц), так и на высоких (5-15 МГц) частотах. Это свойство определяется высоким удельным электрическим сопротивлением аморфных ферромагнетиков, значительно снижающим потери на токи Фуко.

Завершая описание магнитных свойств аморфных ферромагнетиков, мы приходим к выводу, что присущие им магнитные свойства возникают благодаря неупорядоченному расположению атомов. Некоторые из этих свойств являются уникальными и не могут быть получены в кристаллических сплавах.

Системы А1 - Fe - РЗМ и А1 - Ni - РЗМ, где в качестве РЗМ могут применяться Се, Y, La и др.. Лабораторные образцы с аморфной структурой имеют высокую прочность, но прочность дополнительно повышается при смешанной структуре, когда из аморфной матрицы выделяются нанометрические частицы кристаллического алюминиевого твердого раствора и интерметаллических фаз. Формирование смешанной структуры достигается либо регулированием скорости охлаждения сплавов при затвердевании (некоторое снижение скорости по сравнению с той, которая требуется для образования аморфной структуры), либо путем термической обработки образцов с аморфной структурой. Образцы со смешанной структурой (лента толщиной 20 мкм) из сплава Al88Ni9Ce2Fe1 имеют σв=1560 МПа, а при 300°С σв=970 МПа. О пластичности таких образцов судят по углу загиба ленты — угол загиба до 180° не приводит к разрушению. Получить в производственных условиях в заготовках аморфную или смешанную на основе аморфной структуру очень трудно, так как температуры кристаллизации рассматриваемых сплавов довольно низкие — 250- 350 °С. Однако показано, что при компактировании порошка из некоторых сплавов, например Al85Y10Ni5, имеющего аморфную структуру, при температуре выше температуры кристаллизации образуется смесь нанометрических частиц кристал- лических фаз (Al-твердого раствора и интерметаллидных фаз). Так, в результате компактирования и последующей экструзии аморфного порошка из сплава AIxsY)0Ni5 при температуре 510 °С получены прутки, имеющие при комнатной температуре σв = 940 МПа, Е = 115000 МПа, δ = 2 %, а при температуре 300 °С σв = 380 МПа, δ=10 % . 4 Системы А1 - Ni - Fe и Al - Ni - Со. При очень больших скоростях охлаждения при кристаллизации (106 °С/с и выше) аморфная структура и соответственно смешанная структура на основе аморфной были получены и в сплавах этих систем, 22 т.е. в отсутствии РЗМ, которые являются более сильными аморфизаторами . Изготовленные методом спиннингования ленты из некоторых сплавов этих систем при полностью аморфной структуре имеют σв = 870-1070 МПа и 280 - 320 HV. Образцы из этих же сплавов, изготовленные при пониженной скорости затвердевания, обладали смешанной структурой (аморфная плюс дисперсные частицы А1-твердого раствора размером около 10 нм). При такой смешанной структуре прочность повысилась до 1270 МПа, а твердость до 360 НV без снижения пластичности, что делает их весьма перспективными для дальнейшей разработки.

Аморфные металлические сплавы (АМС) получают быстрой закалкой расплавов при скоростях охлаждения жидкого металла 104–106 град/с и при условии, что сплав содержит достаточное количество элементов-аморфизаторов. Аморфизаторами являются неметаллы: бор, фосфор, кремний, углерод и металлы. Соответственно аморфные металлические сплавы разделяются на сплавы «металл—неметалл» и «металл—металл».

Структура аморфных сплавов подобна структуре замороженной жидкости. Затвердевание происходит настолько быстро, что атомы вещества оказываются замороженными в тех положениях, которые они занимали, будучи в жидком состоянии.

Затвердевание с образованием аморфной структуры принципиально возможно для всех металлов и сплавов. Для практического применения обычно используют сплавы переходных металлов (Fe, Co, Mn, Cr, Ni и др.), в которые для образования аморфной структуры добавляют аморфообразующие элементы типа В, C, Si, P, S. Такие аморфные сплавы обычно содержат около 80 % ат. одного или нескольких переходных металлов и 20 % металлоидов, добавляемых для образования и стабилизации аморфной структуры. Амортизаторы понижают температуру плавления и обеспечивают достаточно быстрое охлаждение расплава ниже его температуры стеклования так, чтобы в результате образовалась аморфная фаза. На термическую стабильность аморфных сплавов оказывает наибольшее влияние кремний и бор, наибольшей прочностью обладают сплавы с бором и углеродом, а коррозионная стойкость зависит от концентрации хрома и фосфора.

Сверхвысокие скорости охлаждения жидкого металла для получения аморфной структуры можно реализовать различными способами. Общим в них является необходимость обеспечения скорости охлаждения не ниже 106 град/с. Известны методы катапультирования капли на холодную пластину, распыление струи газом или жидкостью, центрифугирование капли или струи, расплавление тонкой пленки поверхности металла лазером с быстрым отводом тепла массой основного металла, сверхбыстрое охлаждение из газовой среды и др. Использование этих методов позволяет получать ленту различной ширины и толщины, проволоку и порошки.

Наиболее эффективными способами промышленного производства аморфной ленты являются охлаждение струи жидкого металла на внешней (закалка на диске) или внутренней (центробежная закалка) поверхностях вращающихся барабанов или прокатку расплава между холодными валками, изготовленными из материалов с высокой теплопроводностью.

Рис.1. Методы получения тонкой ленты путем закалки из расплава:
а) центробежная закалка; б) закалка на диске; в) прокатка расплава; г) центробежная закалка; д) планетарная закалка

На рис. 1 приведены принципиальные схемы этих методов. Расплав, полученный в индукционной печи, выдавливается нейтральным газом из сопла и затвердевает при соприкосновении с поверхностью вращающегося охлаждаемого тела (холодильника). Различие состоит в том, что в методах центробежной закалки и закалки на диске расплав охлаждается только с одной стороны. Основной проблемой является получение достаточной степени чистоты внешней поверхности, которая не соприкасается с холодильником. Метод прокатки расплава позволяет получить хорошее качество обеих поверхностей ленты, что особенно важно для аморфных лент, используемых для головок магнитной записи. Для каждого метода имеются свои ограничения по размерам лент, поскольку есть различия и в протекании процесса затвердевания, и в аппаратурном оформлении методов. Если при центробежной закалке ширина ленты составляет до 5 мм, то прокаткой получают ленты шириной 10 мм и более. Метод закалки на диске, для которого требуется более простая аппаратура, позволяет в широких пределах изменять ширину ленты в зависимости от размеров плавильных тиглей. Данный метод позволяет изготавливать как узкие ленты шириной 0,1–0,2 мм, так и широкие — до 100 мм, причем точность поддержания ширины может быть ± 3 мкм. Разрабатываются установки с максимальной вместимостью тигля до 50 кг.

Во всех установках для закалки из жидкого состояния металл быстро затвердевает, растекаясь тонким слоем по поверхности вращающегося холодильника. При постоянстве состава сплава скорость охлаждения зависит от толщины расплава и характеристик холодильника. Толщина расплава на холодильнике определяется скоростью его вращения и скоростью истечения расплава, т. е. зависит от диаметра сопла и давления газа на расплав. Большое значение имеет правильный выбор угла подачи расплава на диск, позволяющий увеличить длительность контакта металла с холодильником. Скорость охлаждения зависит также от свойств самого расплава: теплопроводности, теплоемкости, вязкости, плотности.

Для получения тонкой аморфной проволоки используют разные методы вытягивания волокон из расплава.

Рис. 2 Методы получения тонкой проволоки, закаленной из расплава: а) протягивание расплава через охлаждающую жидкость (экструзия расплава); б) вытягивание нити из вращающегося барабана; в) вытягивание расплава в стеклянном капилляре; 1 — расплав; 2 — охлаждающая жидкость; 3 — стекло; 4 — форсунка; 5 — смотка проволоки

В первом методе (рис. 2, а) расплавленный металл протягивается в трубке круглого сечения через водный раствор солей. Во втором (рис. 2, б) — струя расплавленного металла падает в жидкость, удерживаемую центробежной силой на внутренней поверхности вращающегося барабана: затвердевшая нить сматывается затем из вращающейся жидкости. Известен метод, состоящий в получении аморфной проволоки путем максимально быстрого вытягивания расплава в стеклянном капилляре (рис. 2, в). Этот метод также называют методом Тейлора. Волокно получается при протягивании расплава одновременно со стеклянной трубкой, при этом диаметр волокна составляет 2–5 мкм. Главная трудность здесь состоит в отделении волокна от покрывающего его стекла, что, естественно, ограничивает составы сплавов, аморфизируемых данным методом.

Почему возник интерес к АМС? Прежде всего потому, что металлические сплавы с ближним порядком расположения атомов и по сей день являются очень интересными объектами физики конденсированных сред. В последние годы получены важные результаты при изучении механических, электрических и магнитных свойств аморфных металлических материалов. Однако полное завершение исследований по аморфным структурам еще впереди. Требует своего однозначного решения вопрос о структуре ближнего порядка в соответствии с реальной действительностью. А ведь на очереди аморфные структуры, в которых отсутствует даже ближний порядок.

К сожалению, мало изучен ферромагнетизм аморфных систем при низких температурах. Первые шаги в этом направлении показали, что имеется возможность создания на основе АМС принципиально новой запоминающей среды со сверхвысокой информационной плотностью (сплавы со свойствами спинового стекла). Следует также сказать, что ученых и инженеров ждет интересная и захватывающая работа в области аморфных металлических материалов.

Список используемой литературы

1. Солнцев Ю.П., Пряхин Е. И. Материаловедение: Учебник для вузов. Изд. 3-е перераб. и доп.- Спб.: ХИМИЗДАТ, 2004

2. Золотухин И.В. «Физические свойства аморфных металлических материалов». М: Металлургия, 1986

Читайте также: