Закон прочности для высокопрочных бетонов с ц в 2 5 имеет вид
Закон прочности для высокопрочных бетонов с ц в 2 5 имеет вид
Методы определения прочности по контрольным образцам
Concretes. Methods for strength determination using reference specimens
____________________________________________________________________
Текст Сравнения ГОСТ 10180-2012 с ГОСТ 10180-90 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________
Дата введения 2013-07-01
Предисловие
Сведения о стандарте
1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона "НИИЖБ" - филиалом ФГУП "НИЦ "Строительство"
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (приложение Д к протоколу от 4 июня 2012 г. N 40)
За принятие стандарта проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97
Код страны по МК (ИСО 3166) 004-97
Сокращенное наименование национального органа государственного управления строительством
Государственный комитет градостроительства и архитектуры
Министерство архитектуры и строительства
Агентство по делам строительства и жилищно-коммунального хозяйства
Министерство строительства и регионального развития
Министерство регионального развития
Агентство по строительству и архитектуре при Правительстве
4 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. N 2071-ст межгосударственный стандарт ГОСТ 10180-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2013 г.
5 Настоящий стандарт соответствует основным нормативным положениям в части изготовления и испытания образцов бетона, приведенным в следующих европейских региональных стандартах:
Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
EN 12390-1:2009 "Испытание затвердевшего бетона. Часть 1: Форма, размеры и другие требования к испытуемым образцам и формам" ("Testing hardened concrete - Part 1: Shape, dimensions and other requirements of specimens and moulds", NEQ);
EN 12390-2:2009 "Испытание затвердевшего бетона. Часть 2: Изготовление и выдерживание образцов для испытания на прочность" ("Testing hardened concrete - Part 2: Making and curing specimens for strength tests", NEQ);
EN 12390-3:2009 "Испытание затвердевшего бетона. Часть 3: Прочность на сжатие испытуемых образцов" ("Testing hardened concrete - Part 3: Compressive strength of tests specimens", NEQ);
EN 12390-4:2009 "Испытание затвердевшего бетона. Часть 4: Прочность на сжатие. Технические условия для испытательных установок" ("Testing hardened concrete - Part 4: Compressive strength - Specification for testing machines", NEQ);
EN 12390-5:2009 "Испытание затвердевшего бетона. Часть 5: Прочность на растяжение при изгибе испытуемых образцов" ("Testing hardened concrete - Part 5: Flexural strength of tests specimens", NEQ);
EN 12390-6:2009 "Испытание затвердевшего бетона. Часть 6: Прочность испытуемых образцов на растяжение при раскалывании" ("Testing hardened concrete - Part 6: Tensile splitting strength of tests specimens", NEQ).
7 ПЕРЕИЗДАНИЕ. Июнь 2018 г.
1 Область применения
Настоящий стандарт распространяется на бетоны всех видов по ГОСТ 25192, применяемые во всех областях строительства, и устанавливает методы определения предела прочности (далее - прочность) бетонов на сжатие, осевое растяжение, растяжение при раскалывании и растяжение при изгибе путем разрушающих кратковременных статических испытаний специально изготовленных контрольных образцов бетона.
Настоящий стандарт не распространяется на специальные виды бетонов, для которых предусмотрены другие стандартизованные методы определения прочности.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:
ГОСТ 2.601-2006 Единая система конструкторской документации. Эксплуатационные документы
ГОСТ 8.326-89* Государственная система обеспечения единства измерений. Метрологическая аттестация средств измерений
* В Российской Федерации действуют ПР 50.2.006-94.
Вероятно ошибка оригинала. Следует читать: ПР 50.2.009-94. - Примечание изготовителя базы данных.
ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия
ГОСТ 427-75 Линейки измерительные металлические. Технические условия
ГОСТ 3749-77 Угольники поверочные 90°. Технические условия
ГОСТ 577-68 Индикаторы часового типа с ценой деления 0,01 мм. Технические условия
ГОСТ 6659-83 Картон обивочный водостойкий. Технические условия
ГОСТ 7473-2010 Смеси бетонные. Технические условия
ГОСТ 7950-77 Картон переплетный. Технические условия
ГОСТ 9542-89 Картон обувной и детали обуви из него. Общие технические условия
ГОСТ 10181-2000 Смеси бетонные. Методы испытаний
ГОСТ 10905-86 Плиты поверочные и разметочные. Технические условия
ГОСТ 12730.1-78 Бетоны. Метод определения плотности
ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности
ГОСТ 22685-89 Формы для изготовления контрольных образцов бетона. Технические условия
ГОСТ 24104-2001** Весы лабораторные. Общие технические требования
ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования
ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций
ГОСТ 28840-90 Машины для испытаний материалов на растяжение, сжатие и изгиб. Общие технические требования
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Сущность методов
Определение прочности бетона состоит в измерении минимальных усилий, разрушающих специально изготовленные контрольные образцы бетона при их статическом нагружении с постоянной скоростью нарастания нагрузки, и последующем вычислении напряжений при этих усилиях.
4 Контрольные образцы
4.1 Форма, размеры и число образцов
4.1.1 Форма и номинальные размеры образцов в зависимости от метода определения прочности бетона должны соответствовать указанным в таблице 1.
Основной закон прочности бетона
100. Основной закон прочности бетона. Формулы, графики.
Прочность бетона зависит от прочности составляющих его материалов и от прочности сцепления их друг с другом. Прочность заполнителя (песка, щебня, гравия) в тяжелом бетоне, как правило, выше заданной прочности бетона, поэтому мало влияет на последнюю. Таким образом, прочность бетона определяется в основном двумя факторами:
• прочностью затвердевшего цементного камня;
• прочностью его сцепления с заполнителем.
З-н прочности бетона устанавливает зав-ть прочности от кач применяемых мат и пористости бетона. Прочность вяж хар его маркой( Rц), кач зап-теля к-нтом А, а пористость косвенно опред велич водо-цем отн В/Ц. Зав-ть прочности от В/ц явл в сущности зав-тью прочности от объема пор, образов водой, не вступ в хим вз с цем.
Пористость бетона плотной ст-ры:
В, Ц расх воды и цем, w-кол-во хим связ воды
Рис. 66. Обобщенный график изменения прочности бетона: тяжелый бетон; б — легкий бетон (заполнитель — керамзит); Уц т — объемная концентрация цементного камня
Кривая объединяющая точки с оптимальными частными значениями В/Ц, выражает общую зависимость прочности бетона слитного строения от В/Ц. Она представляет гиперболу, отвечающую формуле Н. М. Беляева
Гиперболическую формулу прочности бетона можно преобразовать в более простую формулу
Рис. 67. Зависимость прочности тяжелого бетона от Ц/В при разных марках цемента
Скрамтаева — Боломея, если выразить Re в зависимости от цементноводного отношения. Зависимость прочности бетона от величины Ц/В в общем виде выражается довольно сложной кривой. Для практических целей эту кривую заменяют двумя прямыми и соответственно получают две формулы: для бетона с Ц/В =1,4 — 2,5 и высокопрочных бетонов с Ц/В> >2,5 (рис. 67).
Формулой прочности бетона можно пользоваться только применительно к плотно уложенным бетонам, которые изготовляют из портландцемента, воды и заполнителей, удовлетворяющих требованиям стандартов.
Для обычных бетонов с Ц/В=1,4 — 2,5 формула прочности принимает вид
При высококачественных заполнителях (щебень из плотных изверженных горных пород, крупный песок с минимальным содержанием вредных примесей) Л = 0,65; для рядовых заполнителей Л = 0,6; при применении заполнителей пониженного качества Л = 0,55.
Для высокопрочных бетонов, изготовляемых с Ц/В>2,5, применяется формула
В этой формуле для высококачественных заполнителей A = 0,43, для рядовых Л-= 0,4.
101. В чем сост физ смысл осн з-на прочности бетона?
З-н прочности бетона устанавливает зав-ть прочности от кач применяемых мат и пористости бетона. Прочность вяж хар его маркой( Rц), кач зап-теля к-нтом А, а пористость косвенно опред велич водо-цем отн В/Ц. Зав-ть прочности от В/ц явл в сущности зав-тью прочности от объема пор, образов водой, не вступ в хим вз с цем.
Пористость бетона плотной ст-ры:
В, Ц расх воды и цем, w-кол-во хим связ воды
102. Что такое класс бетона по прочности? Как его определить?
Класс- числовая хар-ка какого-либо св бетона, примен с гарант обеспеченностью 0,95. Это значит, что устан классом св-во обесп не менее чем в 95 случаях их 100 и лишь в 5-ти можно ожидать его не вып.
класс бетона B 7.5, B 10, B 12.5, B 15, B 20, B 22.5, B 25, B 30, B 35, B 40 Полный диапазон классов от В 3.5 до B 80. Основной диапазон B7.5-B40.
Rn- прочн бетона в возрnсуток
n-число дней твердения
ОСНОВНОЙ ЗАКОН ПРОЧНОСТИ БЕТОНА Строительные материалы и технологии
Рис. 12.5. Кривая зависимости прочности бетона от количества воды затворения (при неизменном расходе цемента и способе уплотнения): 1 — слишком жесткие недоуплотненные бетонные смеси; 2 — смеси с оптимальным количеством воды затворения (Вопт); 3 — подвижные смеси; 4 — литые бетонные Rц: 1 – Rи = 60 МПа; 2 - Rц = 55 МПа; 3 - Rц = 50 МПа; 4 - Rц = 40 МПа Дальнейшее увеличение количества воды разжижает бетонную смесь, повышает ее подвижность. Однако добавляемая вода лишь частично связывается цементом, а избыток ее образует в бетоне поры — и в результате прочность бетона понижается (правая ветвь кривой).
Для каждой бетонной смеси существует оптимальное количество воды, которое позволяет получить при данном способе уплотнения бетон с минимальной пористостью и наибольшей прочностью. Прочность сцепления между цементным камнем и заполнителем определяется в основном качеством поверхности заполнителя. Для обеспечения высокой прочности сцепления поверхность зерен заполнителя должна быть чистой и шероховатой. Например, бетон на щебне при прочих равных условиях прочнее бетона на гравии. В обобщенном виде этот показатель именуется коэффициентом качества заполнителей (А), а его численные значения приводятся ниже (см. лабораторную работу № 9).
Рис. 12.6. Фактическая зависимость прочности бетона R от цементно-водного отношения (Ц/В) Рис. 12.7. Прочность бетона на сжатие R бкак функция Ц/В и марки цемента Высказанные теоретические предпосылки были положены в основу экспериментальных исследований зависимости прочности бетона от Ц/В, марки цемента и качества заполнителей (под прочностью здесь и далее подразумевается марочная прочность, т. е. прочность после 28 сут твердения в стандартных условиях). Полученные экспериментальные зависимости R = (Ц/В) представляют довольно сложную кривую, имеющую точку перегиба (рис. 12.6). С некоторым приближением эту кривую в реальном интервале Ц/В (от 1,4 до 3,3) можно аппроксимировать двумя прямыми, описываемыми уравнением вида 232
Приведенная формула предложена И. Боломеем и уточнена Б.Г. Скрамтаевым. Она выражает основной закон прочности бетона и используется для определения состава бетона по заданным параметрам. Для обычных бетонов (марок ниже М500) в интервале Ц/В = =1,4. 2,5 формула Боломея — Скрамтаева имеет вид
а для высокопрочных бетонов при Ц/В = 2,5. 3,3
Основной закон прочности бетона
Прочность бетона зависит от прочности составляющих его материалов и от прочности сцепления их друг с другом. Прочность заполнителя (песка, щебня, гравия) в тяжелом бетоне, как правило, выше заданной прочности бетона, поэтому мало влияет на последнюю. Таким образом, прочность бетона определяется в основном двумя факторами:
-прочностью затвердевшего цементного камня;
-прочностью его сцепления с заполнителем.
Прочность цементного камня в свою очередь, зависит от двух факторов: активности (марки) используемого цемента(Rц) и соотношения количеств цемента и воды (Ц/В).
Чем выше марка цемента, тем при прочих равных условиях будет прочнее цементный камень. Зависимость прочности цементного камня от соотношения цемента и воды в бетонной смеси объясняется следующим. Цемент при твердении химически связывает не более 20-25 % воды от своей массы. Но чтобы обеспечить необходимую пластичность цементного теста и, соответственно, подвижность бетонной смеси, необходимо брать 40. ..80 % воды от массы цемента. Вода, кроме того, необходима для смачивания поверхности песка и крупного заполнителя: большая удельная поверхность заполнителя требует большего расхода воды. Естественно, чем больше в бетоне будет свободной, химически не связанной воды, тем больше впоследствии будет пор в цементном камне и соответственно ниже станет его прочность.
С другой стороны, если не обеспечить необходимую удобоукладываемость бетонной смеси, соответствующую принятому в данном конкретном случае методу уплотнения, то из-за недоуплотнения в структуре бетона появятся крупные пустоты и участки с нарушенной связью «цементный камень — заполнитель», что приведет к резкому снижению прочности бетона.
120 /40 160 180 200
Количество воды затворения кг/м3
Рис.1.Кривая зависимости прочности бетона от количества воды затворения (при неизменном расходе цемента и способе уплотнения):
1 — слишком жесткие недоуплотнённые бетонные смеси; 2- смеси с оптимальным количеством волы затворения (Вопт); 3 — подвижные смеси; 4 — литые бетонные смеси
Экспериментально кривая зависимости прочности бетона от количества воды затворения (В) при постоянном расходе цемента (Ц) (т. е. фактически от В/Ц) и при одинаковом методе уплотнения (рис. 1.) подтверждает сказанное выше. Левая ветвь кривой отвечает недоуплотненным бетонным смесям, слишком жестким для данного способа уплотнения. При возрастании количества воды затворения до известного предела бетонная смесь укладывается плотнее, уменьшается объем пустот, а прочность бетона повышается. При оптимальном (для данного способа уплотнения) количестве воды бетон имеет наибольшую прочность и плотность, что соответствует максимуму на кривой прочности. Дальнейшее увеличение количества воды разжижает бетонную смесь, повышает ее подвижность. Однако добавляемая вода лишь частично связывается цементом, а избыток ее образует в бетоне поры — и в результате прочность бетона понижается (правая ветвь кривой).
Для каждой бетонной смеси существует оптимальное количество воды, которое позволяет получить при данном способе уплотнения бетон с минимальной пористостью и наибольшей прочностью.
Прочность сцепления между цементным камнем и заполнителем определяется в основном качеством поверхности заполнителя. Для обеспечения высокой прочности сцепления поверхность зерен заполнителя должна быть чистой и шероховатой. Например, бетон на щебне при прочих
равных условиях прочнее бетона на гравии. В обобщенном виде этот показатель именуется коэффициентом качества заполнителей (А).
Высказанные теоретические предпосылки были положены в основу экспериментальных исследований зависимости прочности бетона от Ц/В, марки цемента и качества заполнителей (под прочностью здесь и далее подразумевается марочная прочность, т. е. прочность после 28 суток твердения в стандартных условиях).
Приведенная формула предложена И. Боломеем и уточнена Б. Г. Скрамтаевым. Она выражает основной закон прочности бетона и используется для определения состава бетона по заданным параметрам.
Для обычных бетонов (марок ниже М400 – М500) в интервале Ц/В=1.4….2.5 формула
Боломея – Скрамтаева имеет вид;
а для высокопрочных бетонов при Ц/В = 2,5….3,3
Rб = А1Rц (Ц/В + 0.5)
Основной закон прочности бетона (формулы и графики).
Классификация бетонов. Применение бетонов различных видов.
Бетон – искуственный каменный материал, получаемый в результате затвердевания тщательно подобранной, перемешанной и уплотнней смеси, состоящей из вяжущего вещества, воды, заполнителей и специальных добавок.Состав: цемента 10-15%, песка, воды и крупного заполнителя около 85-90%. Бетон – основной строительный материал, универсальный. Можно придать любую форму, изменять свойства.
Классификация бетонов по средней плотности:
а) ρm>2600 кг/м3– особо тяжелый бетон (железные руды, стальные опилки, магнетит, гематит, лиманит, стальные зерна, чугунная дробь);
б) ρm=2100 - 2600 кг/м3 – тяжелый бетон (кварцевый песок, гравий или щебень из плотных горных пород);
в) ρm=1800 - 2100 кг/м3 – облегченные бетоны (кирпичный бой, старый бетон или крупно пористый (беспесчаный));
г) ρm=1200 - 1800 кг/м3 – легкие бетоны(шлак, пемза, туф).
д) ρm=500 - 1200 кг/м3 – особолегкие ячеистый (газабетон, пенобетон)или крупнопористый с легкими заполнителями
а) природные (пористые горные породы – вулканического происхождения: туф, пемза, лава);
б) искусственные: специально сделанные (керамзит) и отходы промышленности (поризованные шлаки – шлаковая пемза).
Классификация по виду конструкции: сборные и монолитные (на небольших стройках готовят смесь в передвижной бетономешалке. Широко используются сухие смеси.
Классификация бетонов по назначению: обычный, гидротехнический,для стен здания и легких перекрытий, декаротивный, дорожные, специального назначения (кислотоупорный, жаростойкие, бетоны для защиты от радиации).
Тяжелый бетон используют для защиты стальной арматуры от коррозии, для цементно-бетонных дорог и полов промышленных зданий.
Бетоны высокой морозостойкости применяют для тех частей сооружений, которые подвергаются многократному замораживанию и оттаиванию во влажном состоянии (гидротехнические сооружения, конструкции железобетонных градирен, цементно-бетонные покрытия дорог и аэродромов…).
Крупнопористыйбетониспользуется как теплоизоляционный материал. Гипсобетон широко применяют для изготовления сплошных и пустотелых плит перегородок. Ячеистые бетоны для ограждающих конструкций, железобетона и др.
2. Заполнители для тяжёлого бетона. Технические требования. Стандартные методы оценки зернового состава.
Песок –рыхлая смесь зерен камня крупностью 0,16-5мм, образовавшаяся в результате выветривания.
Мелкий заполнитель - природный песок.
По минеральному составу пески делят на:кварцевые , полевошпатовые, карбонатные
По условиям залегания пески делят на: речные, морские, овражные (горные).
Технические требования к песку:
1) Содержание зерен, проходящих через сито 0,16мм, не должно превыщать 10%, а содержание примесей(глинистых, илистых, пылевидных) не должно превышать 3%.
2) Органические примеси допускаются только в самых небольших количествах.
Определение зернового состава мелкого заполнителя:
1)Рассев, высушенной пробы массой 1кг, на стандартном наборе сит (5; 2,5; 1,25; 0,63; 0,315; 0,16 мм).
2)Определение модуля крупности (сумма полных остатков деленная на 100).
3)Построение графика зернового состава песка. Вывод о соотвествии зернового состава песка стандарту
Гравий –рыхлый материал осадочного происходения, состящий из зерен камня окатанной формы с гладкой поверхностью, зерна крупностью 5-70мм.
Щебень –продукт, получаемый дроблением камней из горных пород, остроугольной формы с шероховатой поверхностью, зерна крупностью 5-70мм.
Определение зернового состава крупного заполнителя:
1)Рассев, высушенной пробы массой 10кг, на стандартном наборе сит (70; 40; 20; 10; 5мм).
2)Определение набольшей D (размер отверстий сита, полный остатокна котором не превышает 10%) и наименьшей крупности d (размер отверстий сита, полный остаток на котором не менее 95%).
3)Построение графика зернового состава крупного заполнителя. Вывод о соотвествии зернового состава крупного заполнителя стандарту.
Удобоукладываемость бетонных смесей. Стандартные методы определения подвижности и жёсткости. Факторы, влияющие на удобоукладываемость.
Удобоукладоваемость – способность заполнять форму при данном способе уплотнения, не расслаиваясь в процессе укладки.
Стандартный метод определения подвижности бетонной смеси – с помощью стадартного конуса (усеченный конус высота 30см, диаметр верхнего основания 10см, нижнего 20см)
Осадка стандартного конуса (см) - показатель, характеризующий подвижность бетонной смеси.
1) Заполнение формы, смоченной водой, бетонной смесью в 3 приема, уплотняя после каждого штыкованием, удаление излишков смеси.
2)Снятие формы (вертикально вверх).
3)Осадка, освобожденной бетонной смеси, измерение величины осадки конуса.
Стандартный метод определения жесткости бетонной смеси – с помощью технического вискозиметра(цилиндрическая форма(высота 20см, диаметр 24см) с закрепленным на корпусе направляющим штативом, штангой и металлическим диском толщиной 4мм с 6 отверстиями (диаметром 10мм)) на виброплощадке.
Показатель жесткости(секунды) –показатель, характеризующий жесткость бетонной смеси.
1)Установка и закрепление формы с технического вискозиметром на виброплощадке, помещение стандартного конуса в формы.
2)Заполнение конуса, бетонной смесью в 3 приема, уплотняя ее штыкованием (25 раз каждый слой).
3)Удаление формы-конуса, установка на поверхности бетонной смеси диска вискозиметра.
4)Включение выброплощадки, вибрирование (амплитуда 0,5мм) продолжают до тех пор пока из 2-х отверстий не начнется выделение бетонной смеси. Полученное время – показатель жесткости.
Факторы, влияющие на удобоукладываемость:
1) Расход воды, с его увеличением возрастает подвижность бетонной смеси.
2) Крупность зерен заполнителей, при увеличении крупности зерен заполнителй снижается удельная поверхность, а вместе с ней влияние заполнителей на цементное тесто, в результате подвижность смеси возрастает.
3)Введение в бетонную смесь ПАВ(СДБ, ССБ),а так жесуперпластификаторов (С-3 и др.) снижает расход воды при сохранении заданной удобоукладываемости.
Основной закон прочности бетона (формулы и графики).
Физический смысл закона прочности бетона. Закон прочности бетона устанавливает зависимость прочности от качества применяемых материалов и пористости бетона. Прочность вяжущего характеризуется его маркой (Rц), качество заполнителя коэффициентом А, а пористость косвенно определяется величиной водо-цементного отношения В/Ц. Зависимость прочности от В/Ц является в сущности зависимостью прочности от объема пор, образованных водой, не вступающей в химическое взаимодействие с цементом. Кривая зависимости прочности бетона от количества воды затворения (при постоянном расходе цемента и способе уплотнения), приведенная на рис.4, характеризует физический смысл закона прочности. Левая ветвь кривой принадлежит недоуплотненным бетонным смесям, слишком жестким для данного способа уплотнения. При возрастании количества воды затворения, т. е. В/Ц, эти смеси укладываются плотнее, и прочность бетона повышается. Наконец, при оптимальном (для данного способа уплотнения) количества воды бетон имеет наибольшую плотность и прочность, что соответствует максимуму на кривой прочности.
Для тяжелых бетонов применяется заполнитель с прочностью в 1,5-2 раза больше заданной марки бетона. При большом содержании цементного теста зерна заполнителя раздвинуты на значительные расстояния, они почти не взаимодействуют друг с другом, поэтому решающее значение будет иметь прочность цементного камня и прочность сцепления его с заполнителем. На практике часто используют зависимость прочности бетона от цементно-водного отношения по формуле И. Боломея - Б.Г. Скрамтаева (рис. 5).
Для обычных бетонов с Ц/В=1,4-2,5 формула прочности имеет вид: Rб=ARц(Ц/B-0,5). При высококачественных заполнителях (щебень из плотных изверженных пород, крупный песок с минимальным содержанием вредных примесей) А=0,65; для рядовых заполнителей А=0,6; при применение заполнителей пониженного качества А=0,55. Для высокопрочных бетонов, изготовляемых с Ц/В>2,5, применяется формула: Rб=ARц(Ц/B+0,5). В этой формуле для высококачественных заполнителей А=0,43, для рядовых А=0,4. Основной закон прочности является общим для материалов с конгломератной структурой, он распространяется на тяжелые и легкие бетоны, мелкозернистые бетоны и строительные растворы. Только параметры А, входящие в формулу прочности, будут иметь различные численные значения, зависящие от вида материала и заполнителя.
Основной закон прочности бетона
Прочность бетона зависит от прочности составляющих его материалов и от прочности сцепления их друг с другом. Прочность заполнителя (песка, щебня, гравия) в тяжелом бетоне, как правило, выше заданной прочности бетона, поэтому мало влияет на последнюю. Таким образом, прочность бетона определяется в основном двумя факторами:
-прочностью затвердевшего цементного камня;
-прочностью его сцепления с заполнителем.
Прочность цементного камня в свою очередь, зависит от двух факторов: активности (марки) используемого цемента(Rц) и соотношения количеств цемента и воды (Ц/В).
Чем выше марка цемента, тем при прочих равных условиях будет прочнее цементный камень. Зависимость прочности цементного камня от соотношения цемента и воды в бетонной смеси объясняется следующим. Цемент при твердении химически связывает не более 20-25 % воды от своей массы. Но чтобы обеспечить необходимую пластичность цементного теста и, соответственно, подвижность бетонной смеси, необходимо брать 40. ..80 % воды от массы цемента. Вода, кроме того, необходима для смачивания поверхности песка и крупного заполнителя: большая удельная поверхность заполнителя требует большего расхода воды. Естественно, чем больше в бетоне будет свободной, химически не связанной воды, тем больше впоследствии будет пор в цементном камне и соответственно ниже станет его прочность.
С другой стороны, если не обеспечить необходимую удобоукладываемость бетонной смеси, соответствующую принятому в данном конкретном случае методу уплотнения, то из-за недоуплотнения в структуре бетона появятся крупные пустоты и участки с нарушенной связью «цементный камень — заполнитель», что приведет к резкому снижению прочности бетона.
120 /40 160 180 200
Количество воды затворения кг/м 3
Рис.1.Кривая зависимости прочности бетона от количества воды затворения (при неизменном расходе цемента и способе уплотнения):
1 — слишком жесткие недоуплотнённые бетонные смеси; 2- смеси с оптимальным количеством волы затворения (Вопт); 3 — подвижные смеси; 4 — литые бетонные смеси
Экспериментально кривая зависимости прочности бетона от количества воды затворения (В) при постоянном расходе цемента (Ц) (т. е. фактически от В/Ц) и при одинаковом методе уплотнения (рис. 1.) подтверждает сказанное выше. Левая ветвь кривой отвечает недоуплотненным бетонным смесям, слишком жестким для данного способа уплотнения. При возрастании количества воды затворения до известного предела бетонная смесь укладывается плотнее, уменьшается объем пустот, а прочность бетона повышается. При оптимальном (для данного способа уплотнения) количестве воды бетон имеет наибольшую прочность и плотность, что соответствует максимуму на кривой прочности. Дальнейшее увеличение количества воды разжижает бетонную смесь, повышает ее подвижность. Однако добавляемая вода лишь частично связывается цементом, а избыток ее образует в бетоне поры — и в результате прочность бетона понижается (правая ветвь кривой).
Для каждой бетонной смеси существует оптимальное количество воды, которое позволяет получить при данном способе уплотнения бетон с минимальной пористостью и наибольшей прочностью.
Прочность сцепления между цементным камнем и заполнителем определяется в основном качеством поверхности заполнителя. Для обеспечения высокой прочности сцепления поверхность зерен заполнителя должна быть чистой и шероховатой. Например, бетон на щебне при прочих
равных условиях прочнее бетона на гравии. В обобщенном виде этот показатель именуется коэффициентом качества заполнителей (А).
Высказанные теоретические предпосылки были положены в основу экспериментальных исследований зависимости прочности бетона от Ц/В, марки цемента и качества заполнителей (под прочностью здесь и далее подразумевается марочная прочность, т. е. прочность после 28 суток твердения в стандартных условиях).
Приведенная формула предложена И. Боломеем и уточнена Б. Г. Скрамтаевым. Она выражает основной закон прочности бетона и используется для определения состава бетона по заданным параметрам.
Для обычных бетонов (марок ниже М400 – М500) в интервале Ц/В=1.4….2.5 формула
Одним из главных свойств материала называют прочность бетона при осевом сжатии, растяжении при изгибе затвердевшей смеси. Крепость при сжатии выделяют двух видов: призменную, а также кубиковую. Равным образом долговечность раствора характеризуется классом или маркой. Существует процесс по набору бетоном затвердения, он длится ровно 28 дней. Примерно через 7 суток состав обретает 70% своей окончательной крепости.
Что учитывать и от чего зависит?
Физико-механические свойства находятся под тесным воздействием бетонной структуры, зависящие от смешанности раствора и разнящиеся способами изготовления. А также крепость обусловливается следующими факторами:
- интенсивность бетонно-цементного раствора;
- содержимое компонентов в процентном количестве;
- водоцементные пропорции в составе смеси;
- промышленные характеристики;
- свойства наполнителей;
- уровень перемешивания ингредиентов состава;
- часы, потраченные на приобретение раствором твердости;
- температурные показатели в атмосфере;
- сырость в окружающей среде.
Распределение по маркам и классам
Марка обозначается буквой М, а сопутствующая цифра возле нее определяет среднее примерное значение прочности при сжатии, выражается в кгс/см2. Таблица по показателям прочности:
Марка | Степень прочности, кгс/см2 |
100 | 98,2 |
150 | 158,6 |
200 | 197,4 |
250 | 261,90 |
300 | 307,40 |
350 | 337,42 |
400 | 392,8 |
450 | 459,29 |
500 | 522,77 |
Марка бетона полностью зависит от количественного соотношения цемента в составе раствора. При этом принято считать, что чем больше количество, тем выше марка и, в обратном порядке.
Определяют крепость еще и по цементным классам. Их разделяют для легких и тяжелых составов, а также по уровням крупности. Для расчета составов и пропорций применяют формулы, а для быстроты подсчета есть автоматические калькуляторы. Средняя прочность с коэффициентом крепости n = 0,136 и обеспеченностью t = 0,96 зависит от класса и формула для вычисления: Вb = Rb х0,778 или Rb = Вb / 0,778.
Вид | Класс, В |
Легкий | 10, 12,5, 15, 30, 40 |
Тяжелый | 10, 12,5, 15, 30, 40, 50, 55, 60 |
Мелкозернистый, крупность < 2,1 | 40 |
Мелкозернистый, крупность > 1 | 30 |
Нормативные данные
Прочность бетона на растяжение при изгибе, на сжатие и др. определяется ГОСТом 10180—90. К основным контрольным характеристикам состава относят:
- Нормативные данные сопротивления (Rbn) с вероятностью 95% и обеспеченностью 0,95 или растяжению (Rbtn).
- Расчетное сопротивление бетона осевому сжатию (смятию). Имеет следующее соотношение, что для первой конечной характеристики обеспеченности Rb составляет — 0,997, а для второй граничное значение Rbser — 0,96.
Как рассчитывать?
Крепость обуславливается многочисленными факторами, но первоочередно зависит от цементной марки Rц и обстоятельств застывания. Учитывая, что качество заполнителей для бетона соответствует запросам, описанным в ГОСТ 10268–80, то прочность материала, зависимая от марки и В/Ц, выражается формулой: Rб = ARц (Ц/В — 0,5), где:
- Rб — бетонная крепость за 28 сут., МПа;
- А — показатель, зависящий от наполнителей и их качества;
- Rц — марка;
- Ц/В — соотношение цемента и воды в составе (цифра, противоположная В/Ц).
Динамика набора прочности тяжелого бетона: n = 100 * (lg (n) / lg (28)), где n — день, на который желательно определить крепость цемента (но не меньше 3 дней). При обстоятельствах застывания, отличающихся от обычных, особенно по температурным режимам, нужно знать, что уменьшение температуры способствует торможению твердения, а повышение — ускорению. При показателях 10 градусов по Цельсию, спустя 7 сут. цемент будет иметь крепость 40—50%, а при 5 °C — 31—34%. При отрицательных температурах бетоны без специальных добавок вовсе не крепнут.
Граничная высота сжатой зоны (абсолютная или относительная) — показатель (х) предельной прочности бетона, уже перед разрушением.
Формула для вычисления
Чтобы провести расчет прочности бетона на растяжение при изгибе применяют формулу: Rи = 0,1 • P • L / b • h2, где: L — расстояние между балками; Р — масса суммарной нагрузки и к ней добавляется вес бетона; h — высота и b — ширина балки по сечению. Обозначается сокращенно — Btb, и плюсуют число в диапазоне от 0,4 до 8. Прочность на растяжение высчитывают так: Rbt = 0,233 х R2. Показатели растяжения и изгиба существенно меньше, чем способность бетона выносить нагрузки.
Читайте также: