Условия совместной работы бетона и арматуры
ЖЕЛЕЗОБЕТО́Н
ЖЕЛЕЗОБЕТО́Н, строительный материал, состоящий из бетона и стали, которые работают под нагрузкой как единая система. Сочетание в Ж. двух различных по структуре и физико-механич. свойствам материалов обеспечивает усиление слабо работающего на растяжение бетона стальной арматурой, которая одинаково хорошо сопротивляется и растяжению, и сжатию, восполняя недостатки бетона как конструкц. материала. Несущая способность Ж. зависит от количества арматуры: армирование 1–2% от площади поперечного сечения изгибаемого элемента позволяет увеличить его несущую способность примерно в 20 раз по сравнению с чисто бетонным. Наличие арматуры в жел.-бетон. сжатых колоннах (стойках) даёт возможность уменьшить их поперечные размеры.
Совместная работа бетона и арматуры
Основным фактором, обеспечивающим совместную работу арматуры и бетона в конструкции и позволяющим работать железобетону как единому монолитному телу является надежное сцепление арматуры с бетоном.
Совместная работа бетона и арматуры в железобетонной конструкции становится возможной благодаря выполнению следующих условий:
– бетон и арматура имеют достаточно близкие значения коэффициента температурного расширения;
– силы сцепления, возникающие по границе контакта между бетоном и арматурой обеспечивают выполнение условия равенства деформаций арматуры и бетона ec = es при действии усилий от нагрузок.
Совместная работа арматуры и бетона обусловлена, кроме того, правильным определением необходимого количества арматуры, размещаемой в конструкции. Это означает, что должны соблюдается требования по размещению арматурных стержней в сечении элемента и выдержан минимальный коэффициент армирования сечения, определяемый отношением площади арматуры (As) к площади бетона (Ас)
Силы сцепления, приходящиеся на единицу поверхности арматуры, обусловливают напряжения сцепления арматуры с бетоном по длине элемента. Количественно сцепление оценивают величиной соответствующих напряжений сдвига.
Можно выделить следующие факторы, влияющие на величину напряжений сцепления арматурной стали и бетона:
– трение арматуры о бетон, появляющееся в результате контракционной усадки бетона .;
– структурные и искусственно созданные неровности (шероховатость) на поверхности арматурного стержня, вызывающие механическое зацепление;
– адгезия (склеивание) или взаимное притяжение между частицами на стыке двух контактирующих материалов;
– химические взаимодействия между сталью и бетоном.
Как показывают экспериментальные исследования, распределение напряжений сцепления по длине стержня не является равномерным. Это положение имеет важное значение при определении длины анкеровки арматурного стержня в конструкции.
Условия совместной работы бетона и арматуры
Защитное действие бетона на стальную арматуру основано на способности щелочной среды поддерживать химически пассивное состояние стали неопределенно длительное время. Основным фактором, определяющим надежные защитные свойства бетона, является непроницаемость его для газов и для агрессивных ионов в водных растворах.
Чтобы арматура работала в железобетонных конструкциях с заданным расчетным сопротивлением, необходимо ее завести (анкеровать) за рассматриваемое сечение элемента на длину зоны передачи напряжений с арматуры на бетон, обусловленную сцеплением арматуры с бетоном или заанкерить с помощью специальных устройств. Арматуру, концы которой надежно самоанкеруются в бетоне за счет сил сцепления, называют арматурой без анкеров в пределах длины зоны анкеровки. Арматуру, концы которой анкеруют в бетоне посредством специальных устройств, называют арматурой с анкерами на концах.
К арматуре без анкеров относят всю стержневую, проволочную профилированную арматуру и канаты однократной свивки при натяжении на упоры и достаточной передаточной прочности бетона. К арматуре с анкерами на концах относят любую арматуру, натягиваемую на бетон, а также арматуру, натягиваемую на упоры, при недостаточном ее сцеплении с бетоном (гладкая высокопрочная проволока, многопрядные канаты). В отдельных случаях применяют арматурные элементы из высокопрочной проволоки без сцепления их с бетоном (наружное размещение арматуры). Конструкции с такой арматурой по сравнению с аналогичными конструкциями, в которых имеется надежное сцепление арматуры с бетоном, требуют увеличения расхода стали. По своей сущности они являются шпренгельными конструкциями.
Ответ № 8.Общие свойства железобетона
Железобетон представляет собой строительный материал котором выгодно сочетается совместная работа бетона и стали крайне отличающихся своими механическими свойствами. Бетон, как и всякий каменный материал, хорошо сопротивляется сжимающим нагрузкам, но он хрупок и слабо противодействует растягивающим напряжениям. Прочность бетона при растяжении примерно в 10. 15 раз меньше прочности при сжатии В результате этого бетон невыгодно использовать для изготовления конструкций, в которых возникают растягивающие напряжения. Сталь же, обладая очень высоким пределом прочности при растяжении, способна воспринимать растягивающие напряжения, возникающие в железобетонном элементе. Для строительства элементов, подверженных изгибу, целесообразно применять железобетон. При работе таких элементов возникают напряжения двух видов: растягивающие и сжимающие. При этом сталь воспринимает первые напряжения, а бетон — вторые и железобетонный элемент в целом успешно противостоит изгибающим нагрузкам. Таким образом сочетается работа бетона и стали в одном материале — железобетоне. Возможность совместной работы в железобетоне двух резко различных по своим свойствам материалов определяется следующими важнейшими факторами: прочным сцеплением бетона со стальной арматурой, вследствие этого при возникновении напряжения в железобетонной конструкции оба материала работают совместно; почти одинаковым коэффициентом температурного расширения стали и бетона, чем обеспечивается полная монолитность железобетона; бетон не только не оказывает разрушающего влияния на заключенную в нем сталь, но и предохраняет ее от коррозии. В зависимости от способа армирования и состояния арматуры различают железобетонные изделия с обычным армированием и предварительно напряженные. Армирование бетона стальными стержнями, сетками или каркасами не предохраняет изделия, работающие на изгиб, от образования трещин в растянутой зоне бетона, так как последний обладает незначительной растяжимостью (1. 2мм на 1 м), тогда как сталь выдерживает | без разрушения в 5. 6 раз большие растягивающие напряжения, чем бетон. Появление трещин отрицательно влияет на работу железобетонного элемента: увеличиваются прогибы, в трещины проникают влага и газы, отчего создается опасность коррозии стальной арматуры. Предварительное напряжение арматуры не только предупреждает появление трещин в растянутом бетоне, но и позволяет снизить массу железобетонных конструкций, увеличить их жесткость, повысить долговечность и сократить расход арматуры. Поэтому дальнейшее развитие строительной техники направлено на значительное увеличение выпуска тонкостенных предварительно напряженных железобетонных конструкций. В основу классификации сборных железобетонных изделий положены следующие признаки: вид армирования, плотность, вид бетона, внутреннее строение и назначение.По виду армирования железобетонные изделия делят на предварительно напряженные и с обычным армированием. По плотности изделия бывают из тяжелых бетонов, облегченного, легкого и из особо легких (теплоизоляционных) бетонов. Для элементов каркаса зданий применяют тяжелый бетон, а для ограждающих конструкций зданий — легкий.По виду бетонов и применяемых в бетоне вяжущих различают изделия: из цементных бетонов — тяжелых на обычных плотных заполнителях и легких бетонов на пористых заполнителях: силикатных бетонов автоклавного твердения — плотных (тяжелых) или легких на пористых заполнителях на основе извести или смешанном вяжущем; ячеистых бетонов — на цементе, извести или смешанном вяжущем; специальных бетонов — жаростойких, химически стойких, декоративных, гидратных. По внутреннему строению изделия могут быть сплошными и пустотелыми, изготовленными из бетона одного вида, однослойные или двухслойные и многослойные, изготовленные из разных видов бетона или с применением различных материалов, например теплоизоляционных.Железобетонные изделия одного вида могут отличаться также типоразмерами, например стеновой блок угловой, подоконный и т. д. Изделия одного типоразмера могут подразделяться также по классам. В основу деления на классы положено различное армирование, наличие монтажных отверстий или разли чие в закладных деталях.В зависимости от назначения сборные железобетонные издв лия делят на основные группы: для жилых, общественных промышленных зданий, для сооружений сельскохозяйственного и гидротехнического строительства, а также изделий общего назначения
9.Техническая и экономическая сущность предварительно напряженного железобетона. Два способа создания предварительно напряженных конструкций. Способы натяжения напрягаемой арматуры.
Предварительно напряженными называют такие железобетонные конструкции, в которых до приложения нагрузок в процессе изготовления искусственно создаются значительные сжимающие напряжения в бетоне пyтем натяжения высокопрочной арматуры. Преимущества предварительно напряженных железобетонных конструкций:
- повышенная трещиностойкость, и как следствие, повышенная долговечность;
- повышенная жесткость;
- экономический эффект, достигаемый применением высокопрочной арматуры (удельная стоимость арматуры снижается с увеличением прочности арматуры, поэтому высокопрочная арматура значительно выгоднее обычной; однако применять высокопрочную арматуру в конструкциях без преднапряжения не рекомендуется, т.к. при высоких растягивающих напряжениях в арматуре трещины в растянутых зонах бетона будут значительно раскрыты, снижая при этом необходимые эксплуатационные качества конструкции);
- меньший собственный вес по сравнению с обычным железобетоном за счет применения высокопрочных материалов.Преднапряжение практически не влияет на прочность железобетонных конструкций.
Способы создания предварительного напряжения конструкций:
1. Натяжение арматуры на упоры.
2. Натяжение арматуры на бетон.
3. Самонапряжение конструкций.
Натяжение на упоры – наиболее индустриальный способ создания преднапряжения арматуры. (рис1.) Арматуру заводят в форму до бетонирования элемента, один конец ее закрепляют на упоре, другой натягивают домкратом или иным приспособлением до контролируемого напряжения Затем изделие бетонируется, пропаривается и после приобретения бетоном необходимой кубиковой прочности для восприятия обжатия арматуру отпускают с упоров. Арматура, стремясь укоротиться в пределах упругих деформаций, при наличии сцепления с бетоном увлекает его за собой и обжимает. Рис.1
Натяжение на бетон применяется главным образом при соединении на монтаже крупноразмерных конструкций (в мостостроении и др.), а также при возведении специальных сооружений (телебашни, защитные оболочки АЭС и др.), в которых необходимо поддерживать заданное напряжение. (рис.2) Сначала изготавливают бетонный или слабоармированный элемент, затем по достижении бетоном прочности Rbp создают в нем предварительное сжимающее напряжение. Это осуществляется следующим образом: напрягаемую арматуру заводят в каналы или пазы, оставляемые при бетонировании элемента, и натягивают с помощью домкрата, упираясь прямо в торец изделия. При этом обжатие бетона происходит уже в процессе натяжения арматуры. При этом способе напряжения в арматуре контролируют после окончания обжатия бетона. Каналы в бетоне, превышающие диаметр арматуры на 5 ¸ 15 мм, создают укладкой извлекаемых впоследствии пустотообразователей (стальных спиралей, резиновых трубок и т.д.). Сцепление арматуры с бетоном достигается за счет того, что после обжатия инъецируют (нагнетают в каналы цементное тесто или раствор под давлением через заложенные при изготовлении элемента тройники – отводы). Если напрягаемую арматуру располагают с внешней стороны элемента (кольцевая арматура трубопроводов, резервуаров и т.п.), то навивку ее с одновременным обжатием бетона выполняют специальными навивочными машинами. В этом случае на поверхность элемента после натяжения арматуры наносят торкретированием защитный слой бетона.
Способы создания натяжения арматуры:
1. Механический (гидравлические домкраты);
2. Электротермический (нагрев арматуры).
3. Электротермомеханический (арматуру нагревают и домкратами натягивают);
10. Условия совместной работы бетона и арматуры. Коррозия железобетона. Защитный слой бетона. Анкеровка арматуры в бетоне. Сведения об усадке и ползучести железобетона. Воздействие температуры на железобетон.
Основными условиями, обеспечивающими надежную совместную работу бетона и стальной арматуры в железобетонных конструкциях, являются:
1) сцепление арматуры с бетоном по площади их контакта, исключающее продергивание (сдвиг) арматуры в бетоне;
2) примерное равенство коэффициентов температурного удлинения (укорочения) бетона аЬ = 0, 000007…0, 00001 град-1 и стальной арматуры ast = 0, 000012 град-1.
Материалы с разными коэффициентами линейных температурных деформаций независимо от надежного сцепления между ними работают в усложненных условиях, так как при перепадах температуры возникают собственные натяжения, снижающие сцепление между материалами; небольшая разница коэффициентов линейных температурных деформаций бетона и стали исключает появление собственных напряжений в них и надежное сцепление арматуры с бетоном сохраняется при изменениях температуры до 100 С;
3) способность бетона при соответствующей его плотности, достаточной толщине защитного слоя, кратковременном раскрытии трещин не более 0, 4 мм и содержании цемента более 250 кг/м3 надежно предохранять арматуру от коррозии и непосредственного действия огня.
Коррозионная стойкость элементов железобетонных конструкций зависит от плотности бетона и степени агрессивности среды. Коррозия бетона, имеющего недостаточную плотность, может происходить от воздействия фильтрующейся воды, которая растворяет составляющую часть цементного камня - гидрат окиси кальция. Наибольшей растворяющей способностью обладает мягкая вода. Внешним признаком такой коррозии бетона являются белые хлопья на его поверхности. Другой вид коррозии бетона возникает под влиянием газовой или жидкой агрессивной среды: кислых газов в сочетании с повышенной влажностью, растворов кислот, сернокислых солей и др. При взаимодействии кислоты с гидратом окиси кальция цементного камня бетон разрушается. Продукты химического взаимодействия агрессивной среды и бетона, кристаллизуясь, постепенно заполняют поры и каналы бетона. Рост кристаллов приводит к разрыву стенок пор, каналов и быстрому разрушению бетона. Наиболее вредны для бетона соли ряда кислот, особенно серной кислоты; они образуют в цементе сульфат кальция и алюминия. Сульфатоалюминат кальция, растворяясь, вытекает и образует белые подтеки на поверхности бетона. Весьма агрессивны грунтовые воды, содержащие сернокислотный кальций, а также воды с магнезиальными и аммиачными солями. Морская вода при систематическом воздействии оказывает вредное влияние на бетон, поскольку содержит сульфатомагнезит, хлористую магнезию и другие вредные соли. Коррозия арматуры (ржавление) происходит в результате химического и электролитического воздействия окружающей среды; обычно она протекает одновременно с коррозией бетона, но может протекать и независимо от коррозии бетона. Товар коррозии арматуры имеет в несколько раз больший объем, чем арматурная сталь, и создает значительное радиальное давление на окружающий слой. При этом вдоль арматурных стержней возникают трещины и отколы бетона с частичным обнажением арматуры. Мерами защиты от коррозии железобетонных конструкций, находящихся в условиях агрессивной среды, в зависимости от степени агрессии являются: снижение фильтрующей способности бетона введением специальных добавок, повышение плотности бетона, увеличение толщины защитного слоя бетона, а также применение лакокрасочных или мастичных покрытий, оклеечной изоляции, замена портландцемента глиноземистым цементом, применение специального кислотостойкого бетона.
Анкеровка — это закрепление арматуры в бетоне, которое достигается заведением арматуры за расчетное сечение на длину достаточную для включения стежня в работу, или выполнением специальных конструктивных мероприятий. В зоне анкеровки растянутый стержень работает на выдергивание из тела бетона через поверхность сцепления, а в сжатом стержне усилия передаются через поверхность сцепления в тело бетона.Анкеровку арматуры осуществляют одним из следующих способов или их сочетанием:
- в виде прямого окончания стержня (прямая анкеровка);
- с загибом на конце стержня в виде крюка, отгиба (лапки) или петли;
- с приваркой или установкой поперечных стержней;
- с применением специальных анкерных устройств на конце стержня.
а — сцеплением прямых стержней с бетоном; б — крюками; в — лапками; г — петлями; д — приваркой поперечных стержней
Ползучесть железобетона является следствием ползучести бетона. Стальная арматура, как и при усадке, становится внутренней связью, препятствующей свободным деформациям ползучести. В железобетонном элементе под нагрузкой стесненная ползучесть приводит к перераспределению усилий между арматурой и бетоном. Процесс перераспределения усилий интенсивно протекает в течение первых нескольких месяцев, а затем в течение длительного времени (более года) постепенно затухает. Продольные деформации арматуры и бетона центральнo-сжатой железобетонной призмы благодаря сцеплению материалов одинаковы. На работу коротких сжатых железобетонных элементов ползучесть бетона оказывает положительное влияние, обеспечивая полное использование прочности бетона и арматуры; в гибких сжатых элементах ползучесть вызывает увеличение начальных эксцентриситетов, что может снижать их несущую способность; в изгибаемых элементах ползучесть вызывает увеличение прогибов; в предварительно напряженных конструкциях ползучесть приводит к потере предварительного напряжения. Ползучесть и усадка железобетона протекают одновременно и совместно влияют на работу конструкции.
Усадка железобетона. В железобетонных конструкциях стальная арматура вследствие ее сцепления с бетоном становится внутренней связью, препятствующей свободной усадке бетона. Согласно опытным данным, усадка и набухание железобетона в ряде случаев вдвое меньше, чем усадка и набухание бетона. Стесненная деформация усадки бетона приводит к появлению в железобетонном элементе начальных, внутренне уравновешенных напряжений растягивающих в бетоне и сжимающих в арматуре. Под влиянием разности деформаций свободной усадки бетонного элемента и стесне Начальные растягивающие напряжения в бетоне от усадки способствуют более раннему образованию трещин в тех зонах железобетонных элементов, которые испытывают растяжение от нагрузки. Однако с появлением трещин влияние усадки уменьшается. В стадии разрушения усадка не влияет на несущую способность статически определимого железобетонного элемента. В статически неопределимых железобетонных конструкциях (арках, рамах и т. п.) лишние связи препятствуют усадке железобетона и поэтому усадка вызывает появление дополнительных внутренних усилий. Влияние усадки эквивалентно понижению температуры на определенное число градусов. Для того чтобы уменьшить дополнительные усилия от усадки, железобетонные конструкции промышленных и гражданских зданий большой протяженности делят усадочными швами на блоки. нной усадки армированного элемента возникают средние растягивающие напряжения в бетоне.
Воздействие температуры на железобетон. Под воздействием температуры в железобетоне возникают внутренние взаимно уравновешенные напряжения, вызванные некоторым различием в значениях коэффициента линейной температурной деформации цементного камня, зерен заполнителей и стальной арматуры. При воздействии на конструкцию температуры до 50°С внутренние напряжения невелики и практически не приводят к снижению прочности бетона. В условиях систематического воздействия технологических температур (порядка 60-200°С) необходимо учитывать некоторое снижение механической прочности бетона (примерно на 30 %) При длительном нагреве до 500-600 °С и последующем охлаждении бетон разрушается. Основными причинами разрушения бетона при воздействии высоких технологических температур являются значительные внутренние растягивающие напряжения, возникающие вследствие разности температурных деформаций цементного камня и зерен заполнителей, а также вследствие увеличения в объеме свободной извести, которая выделяется при дегидратации минералов цемента и гасится влагой воздуха.
Совместная работа бетона и арматуры
Одно из основных свойств железобетона — это сцепление арматуры с бетоном, которое обеспечивается связью арматуры с цементным камнем, трением, возникающим от давления при усадке бетона, зацеплением за бетон выступов и неровностей на поверхности арматуры.
При выдергивании стержня из бетона (рис. ниже) касательные напряжения сцепления тbd распределяются вдоль стержня неравномерно. Максимальное значение тbd max возникает на некотором расстоянии от начала заделки стержня и не зависит от длины заделки стержня в бетон lаn.
К совместной работе бетона и арматуры
Для оценки сцепления используют средние (условные) напряжения на длине анкеровки
Для обычных бетонов и гладкой арматуры тbd m = 2,5-4 МПа, а для арматуры периодического профиля тbd m = 7 МПа.
Напряжения сцепления арматуры с бетоном, а также напряжения в арматуре распределяются по длине заделки неравномерно. Наибольшие напряжения тb max действуют вблизи начала заделки и не зависят от ее длины lаn. Выражая продольное усилие через напряжение в арматуре (N = σsπd 2 /4), получим
Из формулы видно, что с увеличением диаметра стержня и напряжения в нем (прочности арматуры) длина заделки возрастает. Ее можно уменьшить, если повысить прочность бетона (тbm) или применить арматуру периодического профиля. Опыты показывают, что длина заделки, при которой обеспечивается сцепление, для гладкой арматуры составляет (30—40)d, периодического профиля (15- 20)d. При этом в случае продавливания сцепление стержня больше, чем при выдергивании, что связано с сопротивлением бетона поперечному расширению сжатого стержня. Поэтому длина заделки растянутых стержней принимается больше, чем сжатых, а их диаметр для лучшего сцепления с бетоном следует ограничивать.
В железобетонных конструкциях анкеровка арматуры осуществляется запуском ее за рассматриваемое сечение на длину, обусловленную достаточным сцеплением с бетоном.
Длину зоны анкеровки lan для ненапрягаемой арматуры периодического профиля определяют по формуле
но не менее lan = λand, где значения ωan, λan а также допускаемые минимальные величины lan принимаются по таблице ниже.
Коэффициенты для определения анкеровки
Условия работы арматуры
растянутой в растянутом бетоне
растянутой или сжатой в сжатом бетоне
Стыки арматуры внахлестку:
в растянутом бетоне
в сжатом бетоне
В формуле выше введены обозначения:
ωan — коэффициент условий работы.
Гладкие арматурные стержни класса А240 в вязаных каркасах должны оканчиваться на концах анкерами в виде крюков (рис. ниже). В сварных сетках и каркасах анкерами гладких стержней служат крайние поперечные стержни, что позволяет не устраивать крюков (рис. ниже). Арматурные стержни периодического профиля не требуют на концах крюков или анкерующих поперечных стержней.
Анкеровка ненапрягаемой арматуры
Если невозможно разместить в элементе длину анкеровки, определенную по формуле выше, то на концах стержней устраивают специальные анкеры в виде пластин, гаек, уголков, высаженных головок и т. п. (рис. выше) или отгибают анкеруемый стержень на 90° (рис. выше).
Размеры анкеров определяют из условия прочности бетона на смятие. Так, площадь контакта анкера с бетоном должна быть не менее Nan/2,5Rb, где Nan — усилие в анкеруемом стержне. При применении специальных анкеров длину заделки стержней можно уменьшить до 10d.
На крайних свободных опорах изгибаемых элементов продольные растянутые стержни заводят для анкеровки за внутреннюю грань опоры на длину lan > 5d, если наклонные трещины не образуются, или на lап > 10d, если трещины образуются (рис. выше).
Предварительно напрягаемая арматура в зависимости от способа натяжения анкеруется в бетоне либо за счет сил сцепления, либо с помощью специальных анкеров, расположенных в теле бетона или на торце конструкции.
При натяжении на упоры (до бетонирования) высокопрочной рифленой проволоки, канатов однократной свивки, стержней периодического профиля анкеровка арматуры обеспечивается ее сцеплением с бетоном, и установка анкеров у концов элемента не требуется (рис. ниже). Длина анкеровки арматуры в этом случае принимается равней длине зоны передачи напряжений с арматуры на бетон и определяется по формуле
где ωp и λр определяют по таблице ниже; Rbp- передаточная прочность бетона, т. е. его кубиковая прочность к моменту обжатия; σsp —принимается равной большему из значений Rs и σsp с учетом первых потерь.
Анкеровка напрягаемой арматуры
При недостаточном сцеплении с бетоном арматуры, натягиваемой на упоры (гладкая проволока класса В-ll), устраивают внутренние анкеры, располагаемые у конца элемента, например, в виде колец с коротышами (рис. выше).
Значения ωр и λр
Вид и класс арматуры
Стержневая периодического профиля независимо от класса
Высокопрочная проволока периодического профиля
Для анкеровки арматуры, натягиваемой на бетон (после бетонирования), а также для захвата, натяжения и закрепления на упорах арматуры, натягиваемой до бетонирования, применяют специальные анкеры.
Типы анкеров весьма разнообразны и зависят от вида арматуры и арматурных изделий. Для стержневой арматуры применяют анкеры в виде высаженных головок, приваренных коротышей (рис. выше) или шайб, гаек, навинчиваемых на нарезанный конец стержня (рис. выше), и т. п.
Проволочные арматурные изделия (пакеты, канаты, пучки), натягиваемые на бетон, закрепляют на торце конструкции с помощью гильзового анкера, анкера с колодкой и пробкой, стаканного типа и другими анкерными устройствами. Пакеты из высокопрочных проволок (УНАЭ), натягиваемые до бетонирования, анкеруют на упорах с помощью стальных колодок с отверстиями, в которых закрепляют проволоки с высаженными головками. Для закрепления однорядных пучков применяют анкеры, состоящие из круглой колодки и конической пробки (рис. ниже). Мощные арматурные пучки, состоящие из нескольких концентрических рядов проволок или нескольких канатов, закрепляют на конструкции анкерами стаканного типа (рис. ниже).
Если невозможно разместить в элементе длину анкеровки, то на концах стержней устанавливаются анкеры в виде пластин, гаек, уголков, высаженных головок и т.п.
Анкеровка напрягаемой арматуры в бетоне допускается без специальных анкерных устройств на концах. Анкеровка такой арматуры в бетоне происходит в результате сил сцепления. Анкеровка напрягаемой арматуры при натяжении на бетон или упоры в условиях недостаточного сцепления с бетоном достигается применением анкерных устройств (цанговых захватов, металлических стаканов, конусных колодок, коротышей, шайб и гаек), высадкой головок, гильзовых анкеров, петлевых и других захватов.
Лекция №5. Железобетон. Свойства
Надежное сцепление арматуры с бетоном, препятствующее сдвигу арматуры в бетоне, является основным фактором, обеспечивающим совместную работу арматуры и бетона в железобетоне.
Надежное сцепление арматуры с бетоном создается тремя основными факторами:
сопротивление бетона усилиям смятия и среза, обусловленное выступами на поверхности арматуры (рис. 18), т.е. механическое зацепление арматуры за бетон (75% от общей величины сцепления). Сцепление рифленой арматуры в 2…3 раза выше, чем гладкой арматуры. Надежно самоанкеруются витые канаты;
Рис. 18. Сцепление арматуры
периодического профиля с бетоном.
а счет сил трения, возникающих на поверхности арматуры благодаря обжатию стержней бетоном при его усадке;
склеивание (адгезия) поверхности арматуры с бетоном.
Распределение напряжений сцепления арматуры с бетоном по длине заделки стержня неравномерно (рис. 19). Наибольшие напряжения действуют вблизи заделки и не зависят от длины анкеровки стержня. В расчетах используют среднее напряжение сцепления, равное отношению усилия в стержнеNк площади заделки:
,
где u – периметр сечения стержня.
Рис. 19. Распределение напряжений
сцепления арматуры с бетоном.
Следовательно, длина зоны анкеровки арматуры увеличивается с возрастанием ее прочности и диаметра (т.к. из формулы видно, что напряжение сцепления увеличивается со снижением диаметра арматуры).
5.2. Условия совместной работы бетона и арматуры
сцепление арматуры с бетоном, исключающее продергивание арматуры в бетоне;
примерное равенство коэффициентов температурного удлинения (укорочения) бетона и арматуры, так как в материалах с разными коэффициентами линейных температурных деформаций при перепадах температуры возникают собственные напряжения, что снижает сцепление между материалами.
;.
способность бетона надежно предохранять арматуру от коррозии и действия огня.
5.3. Анкеровка арматуры в бетоне
Анкеровка– это закрепление концов арматуры в бетоне.
выступами периодического профиля арматуры;
загибами арматуры (класс A-I);
стержнями поперечного направления;
при помощи специальных анкеров на концах стержней.
5.4. Защитный слой бетона в железобетонных элементах
Защитный слойнеобходим для обеспечения совместной работы арматуры с бетоном, защиты арматуры от внешних воздействий, высокой температуры, агрессивной среды и т.д.
Конструктивные требования к защитному слою бетона в железобетонных конструкциях приведены в СНиП 2.03.01-84* «Бетонные и железобетонные конструкции».
5.5. Собственные напряжения в железобетоне
при значительном перепаде температур возникают внутренние напряжения, происходит снижение прочности бетона, прочности сцепления арматуры с бетоном.
т.к. арматура обладает модулем упругости, в 10…20 раз превышающем модуль деформации бетона, то когда бетон испытывает пластические деформации, арматура – только упругие, соответственно арматура воспринимает часть нагрузки и разгружает бетон, сдерживая в нем развитие деформаций ползучести, т.е. происходит перераспределение усилий;
усадка и ползучесть действуют одновременно и совместно влияют на работу конструкции под нагрузкой;
релаксация напряжений арматуры и бетона;
напряжение от ползучести бетона при быстром разгружении тяжело и длительно нагруженных конструкций. В момент снятия нагрузки обратимые (упругие) деформации бетона вызывают в бетоне начальные напряжения растяжения, которые могут превышать предел прочности бетона на растяжение.
Условия совместной работы бетона и арматуры
примерное равенство коэффициентов температурного удлинения (укорочения) бетона и арматуры, так как в материалах с разными коэффициентами линейных температурных деформаций при перепадах температуры возникают собственные напряжения, что снижает сцепление между материалами.
; .
способность бетона надежно предохранять арматуру от коррозии и действия огня.
5.3. Анкеровка арматуры в бетоне
Анкеровка – это закрепление концов арматуры в бетоне.
выступами периодического профиля арматуры;
загибами арматуры (класс A - I);
стержнями поперечного направления;
при помощи специальных анкеров на концах стержней.
5.4. Защитный слой бетона в железобетонных элементах
Защитный слой необходим для обеспечения совместной работы арматуры с бетоном, защиты арматуры от внешних воздействий, высокой температуры, агрессивной среды и т.д.
Конструктивные требования к защитному слою бетона в железобетонных конструкциях приведены в СНиП 2.03.01-84* «Бетонные и железобетонные конструкции».
5.5. Собственные напряжения в железобетоне
при значительном перепаде температур возникают внутренние напряжения, происходит снижение прочности бетона, прочности сцепления арматуры с бетоном.
т.к. арматура обладает модулем упругости, в 10…20 раз превышающем модуль деформации бетона, то когда бетон испытывает пластические деформации, арматура – только упругие, соответственно арматура воспринимает часть нагрузки и разгружает бетон, сдерживая в нем развитие деформаций ползучести, т.е. происходит перераспределение усилий;
усадка и ползучесть действуют одновременно и совместно влияют на работу конструкции под нагрузкой;
релаксация напряжений арматуры и бетона;
напряжение от ползучести бетона при быстром разгружении тяжело и длительно нагруженных конструкций. В момент снятия нагрузки обратимые (упругие) деформации бетона вызывают в бетоне начальные напряжения растяжения, которые могут превышать предел прочности бетона на растяжение.
4.2. Усадка железобетона
В железобетонных конструкциях стальная арматура вследствие ее сцепления с бетоном становится внутренней связью, препятствующей свободной усадке бетона. Опыты показывают, что усадка железобетона примерно вдвое меньше усадки бетона. Усадка железобетона, как и бетона, получает наибольшее развитие в первый год твердения и значительно превышает деформацию набухания.
Рис. 3.11. Кривые усадки и набухания бетонных и железобетонных образцов
1 – бетона; 2 - железобетона
а – набухание в воде;б – усадка на воздухе
Это объясняется тем, что арматура, обладающая значительно большим модулем упругости, вовлекается в совместную работу с бетоном за счет сил сцепления и тем самым препятствует свободным усадочным деформациям бетона.
Вследствие этого в бетоне возникают начальные растягивающие напряжения, а в арматуре – сжимающие. Растягивающее усилие в бетоне равно сжимающему усилию в арматуре, т.к. процесс усадки происходит самоуравновешенно без внешней нагрузки.
Растягивающие напряжения бетона в железобетонном образце зависят от величины свободной усадки бетона, количества арматуры и класса бетона. При мощной арматуре растягивающие напряжения в бетоне возрастают и возможно появление усадочных трещин. Несимметричное расположение арматуры в сечении железобетонного образца повышает начальные усадочные напряжения, т.к. влияние такой арматуры при усадке скажется как действие продольной силы и изгибающего момента.
Начальные растягивающие напряжения в бетоне от усадки будут складываться с напряжениями в растянутой зоне изгибаемого элемента и способствовать более раннему появлению трещин в бетоне. Но с появлением трещин влияние усадки уменьшается, а в стадии разрушения исчезает и не оказывает влияние на предельную несущую способность элемента.
При проектировании промышленных и гражданских зданий и сооружений большой протяженности предусматривают устройством деформационных швов, которые уменьшают неблагоприятное влияние усадки.
Совместная работа бетона и арматуры
Для частей зданий и сооружений, подвергающихся изгибу (например, для балок и плит), при котором нижняя часть конструкции работает на растяжение, бетон применять нельзя. На рис. 32 показана схема работы балки при изгибе под действием нагрузки.
Рис. 32- Схема работы балки при изгибе:
а — бетонной; б — железобетонной
В нижней зоне балки возникает растяжение, в связи с чем необходим материал, хорошо сопротивляющийся растягивающим усилиям. Таким материалом является сталь, хорошо работающая совместно с бетоном. Строительный материал, представляющий собой сочетание стали и бетона, называется железобетоном.
Совместная работа бетона и стали эффективна благодаря наличию следующих условий: бетонная смесь при затвердевании прочно сцепляется со стальными прутками; бетон защищает стальную арматуру от воздействия воды, предохраняет ее от ржавления, а также от огня; сталь и бетон практически одинаково удлиняются при нагревании и сжимаются при охлаждении, поэтому при изменении температуры не нарушается сцепление между этими материалами.
Стальные стержни различной формы, заделанные в толщу бетона, называются арматурой железобетона. Вся нагрузка, воспринимаемая конструкцией или сооружением, распределяется между бетоном и арматурой. Бетон принимает на себя сжимающие усилия, а арматура — главным образом растягивающие.
В настоящее время невозможно представить себе ни одного более или менее крупного здания или сооружения любого назначения, при строительстве которых не применялся бы железобетон.
Читайте также: