Термобарьерный материал для изоляции домов
Пароизоляция: зачем нужна, какую выбрать и какой стороной укладывать к утеплителю
Современные частные дома должны быть не только во всех отношениях комфортабельными, но и энергоэффективными, чтобы за эту комфортабельность не переплачивать и не греть улицу. Строительство же энергоэффективного дома сегодня невозможно без применения теплоизоляционных материалов. Но чтобы утеплители отработали положенный срок и надежно предотвращали теплопотери, а не создавали проблемы, их применяют только совместно с пароизоляцией. И вот тут даже сегодня возникает масса проблем, а самый топовый вопрос, волнующий самостройщиков – правильная сторона пароизоляции. Однако задаются им, обычно плохо представляя, что это вообще за материал, зачем пароизоляция вообще нужна, и как ее правильно использовать. Из этого и вытекают основные ошибки при утеплении, особенно, когда речь о перекрытиях и мансардных крышах.
Почему при утеплении никак не обойтись без пароизоляции, как не накосячить при монтажеСодержание
Функционал пароизоляции
Независимо от строительной технологии, использованных материалов и типа ограждающих конструкций, физические законы в зданиях действуют одинаково – из-за разности давлений водяной пар стремится проникнуть из теплой зоны в холодную. А в воздухе отапливаемого эксплуатируемого помещения водяной пар содержится всегда, даже при наличии эффективной системы вентиляции. При прохождении сквозь утепленные строительные конструкции, на границе теплой и холодной зоны, пар преобразуется в конденсат и выпадает либо внутри утеплителя, либо на его поверхности. Пароизоляция необходима для того, чтобы отсечь основную массу влагонасыщенных паров и предотвратить переувлажнение теплоизоляции и прилегающих конструкций.
Она защищает последующие слои от намокания, которое чревато не только ухудшением теплосберегающих характеристик утеплителя, но и полной деструкцией конструктивных элементов. Во влажной среде деревянные балки перекрытия или стропила кровельной системы сначала заплесневеют и покроются грибками, а после, в течение нескольких лет просто сгниют и потребуют полной замены. В стенах в каркасном доме произойдет тоже самое – пусть основная масса паров стремится вверх, через стены они тоже отлично проходят.
Полностью предотвратить поступление пара невозможно, но с той частью, что все же пройдет сквозь утепление, справится вентиляция.Однако никакие вентзазоры, софиты и продухи, даже выполненные по всем правилам, не спасут ситуацию, если пароизоляция в утепленном доме отсутствует. Конденсат будет образовываться в таких количествах, что просто не успеет просохнуть, увеличатся теплопотери, появятся протеки внутрь помещения, многократно сократится срок службы всех комплектующих. Поэтому вопроса, нужна ли пароизоляция, не стоит – нужна, но правильно выбранная и правильно смонтированная. Важно не то, какой стороной пароизоляция уложена на утеплитель, а какая именно и как.
Виды пароизоляции
Обеспечить защиту утеплителя от влаги, поступающей изнутри, способны различные, как специфичные, так и неспецифичные пароизоляционные материалы. У производителей целые линии пленок с набором разнообразных характеристик и свойств, но все, что можно применить в качестве пароизоляции, делится на две основных категории.
- Непроницаемые – это и обычный полиэтилен, но лучше использовать плотный, от 200 мкм, а еще лучше, армированный и первичный; и специализированные пароизоляционные пленки различных брендов. Последние могут быть разной плотности и прочности, однослойные или двухслойные, гладкие или с шершавой стороной. Но и полиэтилен, и специфичная пленка этого типа не пропускает пар ни при каких обстоятельствах. Неважно, какой стороной уложена такая пароизоляция, пленка будет защищать утеплитель одинаково эффективно. Прочность же и плотность имеют значение из-за режима эксплуатации, чем выше нагрузка, тем плотнее и прочнее должен быть материал.
- С переменной паропроницаемостью (адаптивные) – это относительно новая категория пароизоляционных пленок, способных проводить пар при повышении влажности воздуха. Их используют при утеплении новых мансардных крыш или перекрытий, так и при проведении капитальной реконструкции с внешней стороны. Они рассчитаны только на помещения с нормальным температурно-влажностным режимом или с временно повышенной влажностью и температурой (ванная, кухня). Не допускаются для использования в саунах, бассейнах или подобных зонах. Как и непроницаемые, адаптивные пароизоляционные пленки защищают утеплитель от основной массы образующегося в доме пара, а их способность пропускать некоторое его количества даже полезна. Вода дырочку найдет, и по закону подлости эта дырочка будет в труднодоступном месте, откуда еще попробуй, выветрись. Через адаптивную же пленку пар пройдет равномерно, выйдет конденсатом на поверхность утеплителя либо диффузионной мембраны, откуда его спокойно высушит. Но если объемные мокрые работы в доме еще не закончены или отложены на будущий сезон, лучше использовать обычную непроницаемую пленку, так как пара будет слишком много. А как только уложили утеплитель, в перекрытие ли, в скаты или стены, его нужно закрыть паробарьером, а потом уже продолжать работы.
В некоторых статьях к пароизоляции относят и диффузионные мембраны, что ошибочно, так как эти материалы в принципе не способны изолировать пар, независимо от того, какой стороной их укладывать. Даже адаптивная пленка не является пароизоляционной мембраной, пропуская пар только при его переизбытке и в малых количествах. Принципиальное отличие пленок от гидроизоляционных ветрозащитных мембран – их непроницаемость.
Чем отличаются внешняя и внутренняя стороны
Специализированные пароизоляционные пленки изготавливаются из непроницаемых полимерных материалов и не могут менять физические свойства в зависимости от стороны. Но для удобства применения на внешнюю сторону производители наносят маркировку, а некоторые и техническую разметку, упрощающую монтаж. Рулоны смотаны также обычно лицевой стороной наружу и разворачивать их легче «по шерсти», а не с обеих сторон.
Если же рассматривать двухслойную пароизоляцию, предлагаемую некоторыми брендами, то у нее одна из сторон гладкая, а вторая – шероховатая.
Но это никак не сказывается на ее способности задерживать пар, как и дополнительно препятствовать образованию конденсата она сама по себе не в состоянии. Шероховатая поверхность только задерживает капельки влаги на поверхности, не давая им падать и скатываться. Учитывая, что это пароизоляция, а не диффузионная мембрана и конденсат при соблюдении технологии утепления оперативно выводится и осушается, за счет вентиляции, особого профита от этого свойства нет.
Какой стороной пароизоляция, гладкой или шероховатой, по большому счету – без разницы, пароИЗОЛЯЦИЯ не пропускает ни пар, ни воду никакой стороной. Мы рекомендуем в горизонтальных конструкциях шероховатой вниз – на этой стороне не повисают капельки конденсата, и, соответственно, не капают. Диффузионную мембрану мы рекомендуем рисунком наружу – но это чистый маркетинг. На самом деле пароПРОНИЦАЕМАЯ мембрана пропускает пар и задерживает воду в любую сторону.
Где в пироге утепления должна располагаться пароизоляция
Пароизоляцию в доме многие путают с гидроветрозащитой, а также, не разобравшись в ее свойствах, укладывают «для галочки», как придется, а не там, где это необходимо. Непроницаемая пленка всегда располагается со стороны теплого помещения, до утеплителя, перед черновой или чистовой отделкой. Производители адаптивных пленок допускают их укладку поверх первого слоя утеплителя, если их несколько, когда речь о реновации мансарды. Непроницаемой пароизоляцией нельзя обматывать деревянные лаги, она укладывается только поверх них. Адаптивной пленкой при необходимости разрешено закрывать деревянные элементы, что тоже актуально при проведении ремонтных работ.
Грубейшая ошибка, однако, допускаемая не только самостройщиками, но и профессионалами – укладка непроницаемой пленки не под утеплитель, а поверх него, с холодной стороны или с двух сторон.В обоих случаях влага оказывается запертой в утеплителе, но в первом процесс гниения древесины пойдет очень и очень быстро, особенно, если с вентиляцией тоже намудрить.
Еще одна достаточно распространенная ошибка – поменять местами пленку и диффузионную мембрану, используемую в качестве гидроветрозащиты. Мембрана необходима для защиты утеплителя от влаги, поступающей снаружи (конденсат на металлической кровле, протечки, дождь, снег), а также, от конвективного теплопереноса. Не пропуская воду, она отлично выпускает пар из утеплителя, а конденсат выпадает на ее поверхности, где и высыхает благодаря вентзазору. И теплоизоляция, и стропильные элементы или лаги перекрытия (холодный чердак) поддерживаются в сухом состоянии. Укладывается диффузионная мембрана на утеплитель без вентзазора, если перепутать и уложить пароизоляционный барьер сверху, а мембрану снизу, начнется интенсивное влагонакопление. И совершенно без разницы, какой стороной класть пароизоляцию, когда не в том месте.
Правильный пирог утепления
Колесо изобретать не стоит, пароизоляция в доме давно продумана до мелочей – правильный кровельный пирог крыши мансардного типа следующий:
- Внутренняя отделка;
- Зазор 20-30 мм для циркуляции воздуха (обычно образован контробрешеткой);
- Пароизоляция;
- Теплоизоляция (толщина утеплителя величина расчетная, зависит от его теплопроводности и региона проживания);
- Диффузионная мембрана;
- Вентзазор 50 мм (в крайнем случае, не меньше 40 мм, образуется контробрешеткой);
- Обрешетка;
- Кровельное покрытие.
Сами по себе вентзазоры ничего не решают, воздух по ним должен циркулировать, поддерживая конструкции в сухом состоянии. Вентилирование осуществляется через свесы, закрытые софитами и коньковую аэрацию или через слуховые окна и конек, при устройстве холодного треугольника.
Невозможно запереть пар в помещении, задать ему желаемое направление и выветрить в форточки или вытянуть принудительно – пароизоляция работает только в тандеме с вентилированием подкровельного пространства.
На практике невозможно создать абсолютно герметичную конструкцию, да это и не требуется – всегда останется непроклееная дырочка, щели, неплотности. Нереально остановить явление перехода вещества (в данном случае воды) из одного состояния в другое (жидкое, твердое, газообразное). Плоскость конденсации, она же точка росы, всегда находится в конструкции, отсюда вы принимаете ряд мер для того что бы предотвратить накопление влаги – ограничиваете поступление пара (пароизоляция) с одной стороны, с другой стороны вентилируете конструкцию. На текущий момент – это наиболее эффективное решение.
Можно сделать однослойную конструкцию, можно греть, можно установить принудительную вентиляцию, но классический пирог пароизоляция/утеплитель/вентзазор однозначно дешевле и проще в реализации. Повторюсь – с одной стороны изолируем, с другой вентилируем. Заодно решается проблема собственной влажности материалов, что в условиях нашего строительства немаловажно.
Когда речь про чердачное перекрытие и холодный чердак, кардинальных отличий в схеме утепления нет.
- Отделка.
- Зазор.
- Пароизоляция.
- Теплоизоляция.
- Диффузионная мембрана.
- Вентзазор.
- Разреженный настил для свободного передвижения (устанавливается не всегда).
Диффузионную мембрану поверх утеплителя рекомендуется применять даже в случае холодного чердака, так как она защищает от конвективного теплопереноса, что минимизирует теплопотери. Да и на случай протечки или попадания осадков в виде дождя и снега, мембрана весьма полезна, так как предотвратит намокание утеплителя даже при прямом контакте с водой. Утепляя межэтажное перекрытие, используют и пленку, и диффузионную мембрану. Пленкой отсекается пар, пусть и в минимальном количестве, но поступающий в утеплитель через потолок при подъеме теплого воздуха вверх. А мембрана предотвратит попадание частиц теплоизоляции в воздух, которое неизбежно происходит со временем, и защитит утеплитель, если протечет пол.
Нюансы монтажа пароизоляции
Чтобы пароизоляция работала, это должна быть именно паронепроницаемая пленка (специализированная или полиэтилен), уложенная без нарушений.
Воздух из помещения надо отсекать пароизоляцией от утеплителя, она должна быть абсолютно герметичной, для этого проклеиваются все стыки и примыкания к конструкциям. Во всем мире для пароизоляции используется первичный полиэтилен, пленка не меньше 200 мкм высшего сорта. Затем идет слой утепления, желательно от 200 мм (финны делают от 300-500 мм и не считают это избыточным).
Сверху утеплитель нельзя закрывать непаропроницаемым материалом, тут нужна хорошая диффузионная мембрана. На ней нельзя экономить, если уж совсем туго с деньгами лучше ничего не положить, чем запереть всю крышу непроницаемой дешевкой, которую производители именуют чем-то типа «универсальная парогидроизоляция». Между утеплителем и кровлей обязателен вентзазор 50 мм, если вы уверены, что пароизоляция у вас сделана идеально, можете уменьшить, но лучше не рискуйте. Чтобы этот вентзазор работал, и там не было застойных процессов с конденсацией влаги, необходимо обеспечить приток воздуха в карнизе и отвод у конька, для этого тоже существует разные технические решения.
А на фото выше – иллюстрация того, как делать нельзя. Хочется верить, что это промежуточный этап, но никакой герметизации стыков уже не наблюдается, сомнительно, что и проходы чем-либо проклеят.
Первичная полиэтиленовая пленка рекомендуется в качестве альтернативы специализированной, из-за большей долговечности, но и стоит она гораздо дороже вторички. Подробную инструкцию укладке пароизоляционной пленки к своей продукции прикладывает каждый производитель, но есть и стандартные рекомендации.
- Укладывают пароизоляцию поверх несущего каркаса без зазора, но так как утеплитель обычно между элементов (стойки, стропила, лаги, контробрешетка), а пленка проходит ниже, прямого контакта нет. Рекомендуется не допускать провисов пароизоляции, но и не натягивать пленку слишком сильно.
- К каркасу пароизоляцию необходимо крепить степлером, эти места проклеиваются специализированным скотчем.
- При соединении полотен обязательно оставляют нахлест (15 см и более), стыки проклеиваются скотчем.
- В зонах примыкания к стенам, дымоходу (мансарда) и другим сложным элементам, используют или специализированный клей, или комбинируют клей и скотч.
Тут, конечно весьма странный способ герметизации, наводящий на мысли об использовании остатков, но лучше так, чем в предыдущем премере.
В плане удобства работы и надежности фиксации стыков, будет иметь значение, какой стороной на утеплитель уложена двухслойная пароизоляция – к шероховатой поверхности скотч клеится хуже. Это некритично при применении дорогостоящего скотча, но если использовать бюджетный, придется повозиться и с гладкой, не говоря о ворсистой. Качество пароизоляционного слоя в большей степени зависит от монтажа, чем от брендированности материала.
На пароизоляцию можно не тратить много денег, но НЕОБХОДИМО потратить много ВРЕМЕНИ! Потому что максимально проклеенная и герметичная пароизоляция может снивелировать возможные проблемы с ветрозащитой, если мембрана окажется худшего качества, чем предполагалось. Нельзя делать пароизоляцию, как у нас водится – пленка натянута тяп-ляп, на степлер без проклейки и герметика.
- Нужна ли пароизоляция – нужна.
- Где укладывать – только перед утеплителем со стороны теплого помещения.
- Где нельзя укладывать – поверх утеплителя, со стороны холодной зоны.
- Какой стороной уложена пароизоляция – не имеет принципиального значения, она не пропускает пар никакой стороной.
По тематике статьи можно прочитать о самых распространенных ошибках при монтаже пароизоляции. А также о том, как уложить пароизоляцию, чтобы не сгноить перекрытие. В видео – ремонт кровли по классической схеме и с адаптивной пленкой.
Как защитить дом от ветра и влаги: строительные плёнки и мембраны
Дом утеплён минеральной ватой, потрачены серьёзные средства и масса времени, но ожидаемого эффекта почему-то нет. В комнатах холодно, стены и кровля сыреют… Это довольно распространённая ситуация для безответственных строителей и слишком экономных заказчиков. А ведь нужно было сделать ещё всего один шажок — закрыть теплоизолятор мембранами…
Современное жилище с каждым годом становится всё сложнее и технологичнее. Не удивительно, ведь в последнее время значительно возросли требования к изоляционным материалам , характеристикам практически всех элементов зданий и сооружений. Вопросы теплоизоляции жилых домов, в частности, во многих странах стали объектом государственного регулирования. В результате широкое распространение получили многослойные конструкции с применением волокнистых утеплителей. Это — каркасные наружные стены, вентилируемые фасады, утеплённая скатная кровля и перекрытия.
Однако изолятор на основе минеральной ваты сам нуждается в надёжной защите. Дело в том, что ветровое давление, атмосферная влага, пары из помещений значительно снижают теплотехнические характеристики минеральной ваты и здания вцелом. Сохранить проектную эффективность многослойных конструкций, избежать образования конденсата на элементах здания позволяет применение строительных плёнок и мембран. В своё время мембраны стали настоящим прорывом в строительной теплотехнике, теперь невозможно себе представить жилой дом, возведённый без использования этого материала. Мембраны зарекомендовали себя на практике, они продолжают совершенствоваться.
Как работают мембраны
Чего боится утеплитель
Считается, что минеральная вата не впитывает воду, но она содержит множество пор и воздушных каналов, благодаря чему влага может перемещаться внутри материала и задерживаться внутри него. Масса утеплителя из каменной ваты может увеличиться до 5% от собственного веса. Влага вытесняет воздух из волокон — теплоизоляционные характеристики падают (на 20–30% уже при однопроцентном увлажнении, утверждают многие технологи), образуются мостики холода. При значительных колебаниях температур вода многократно замерзает и тает, расширяясь, разрушает внутреннюю структуру утеплителя. Если ограждающие и водоотводящие конструкции работают исправно, вода может путём диффузии попадать в вату из помещений, как продукт жизнедеятельности людей, либо снаружи — с влажным воздухом.
В утеплённые фасады и кровли, а затем в помещения воздух может проникать извне под действием ветрового и температурного давления. Ветер не только давит на стены, но и образует завихрения. Где-то холодный и влажный воздух нагнетается в конструкции, где-то отсасывается из утеплителя, прихватывая с собой тепло. Так происходит незапланированная инфильтрация конструкций с ухудшением их термической сопротивляемости.
В вентилируемых конструкциях крыш и фасадов имеются воздушные прослойки, выполняющие роль конвекционных каналов. Воздух, проходя через вентиляционные зазоры, даже при малой скорости движения «вытягивает» теплоту из незащищённой ваты, что сразу снижает показатели теплоизоляции здания вцелом до 30–40% от проектных. Более того, конвективные потоки воздуха способны «выветривать» связующие вещества, а также волокна большинства видов ваты, также разрушая структуру утеплителя.
Особые свойства плёнок и мембран
Главная задача строительных мембран заключается в том, чтобы защитить конструкции здания от ветра и атмосферной влаги. Но при этом плёнки, применяемые на наружных стенах и кровле, должны пропускать через себя водяные пары из помещений наружу. С точки зрения физики, любая мембрана — это полупроницаемая плёнка, оболочка, разделяющая две среды, регулирующая однонаправленную транспортировку веществ из одной зоны в другую.
Основная особенность большинства строительных мембран — это наличие в их структуре диффузионных слоёв с микроперфорацией и микропорами, которые способны проводить водяные пары в одном направлении. Чаще всего пропускающие пар мембраны имеют один тонкий функциональный слой и один или несколько защитных, обеспечивающих физическую и химическую стабильность.
Некоторые мембраны (их часто называют строительными плёнками) вовсе не пропускают ни пар, ни воду. Они состоят из нескольких неперфорированных слоёв полиэтилена, обычно на сетчатой основе. Это так называемый «паробарьер».
Выбирая строительные плёнки и мембраны, следует особое внимание уделить двум основным потребительским свойствам:
- степени паропроницаемости
- влагостойкости
Строительные мембраны изготавливаются из синтетических волокон (полипропилен, полиэтилен) в виде текстильных тканых или нетканых полотен. В зависимости от поставленных задач, строительные мембраны могут иметь однослойную или многослойную структуру, в том числе с армирующей сеткой из полиэтиленовых волокон или дополнительным алюминиевым покрытием. При малой толщине мембраны обладают очень высокой прочностью и малой растяжимостью. Они определённое время устойчивы к ультрафиолету, не поражаются грибками и микроорганизмами.
Некоторые производители предлагают мембраны не только регулирующие влажностный режим, но и обладающие собственным сопротивлением теплопередаче, что позволяет компенсировать потери тепла в зоне воздушных прослоек. Это многослойные иглопрошивные материалы толщиной 10–15 мм, изготовленные на основе полипропилена.
Огнестойкость строительных плёнок также довольно актуальный вопрос, который решается двумя способами. Существуют мембраны, полимерные материалы которых в массе содержат антипирены, второй вариант — это пропитка готовых полотен или нанесение защитных составов на их поверхность.
Ещё один важный нюанс заключается в сроке службы мембраны. Очевидно, что мембрана должна работать столько, сколько и ограждающая конструкция вцелом. Не стоит применять материалы, производители которых умалчивают о сроке службы, или ограничивают его 10–15 годами.
Технические характеристики мембран значительно снижаются из-за старения материала под действием высоких температур. Распространённых заявленных показателей «до +80°» не всегда достаточно, особенно в утеплённой металлической кровле, где температуры могут достигать куда больших значений.
Итак, строительная мембрана — это плёнка, которая пропускает или не пропускает пары, но всегда останавливает воду и ветер. Это основа плёночных технологий.
Типы строительных мембран
В зависимости от своего назначения и, соответственно, некоторых структурных особенностей строительные мембраны разделяются на:
- пароизоляционные
- паропроницаемые
Пароизоляционная прослойка устраивается изнутри утеплителя, она должна изолировать вату от увлажнения парами, возникающими в помещениях здания. Примером применения может служить утеплённая кровля или перекрытие «подчердачного» этажа, где вата снизу должна быть закрыта плёнкой. Также паробарьер обязательно используется при утеплении стен изнутри . Пароизоляционная мембрана не имеет пор и перфораций, чем меньше её паропроницаемость, тем лучше. Эти материалы представляют собой армированную или неармированную полиэтиленовую плёнку, иногда со слоем алюминиевой фольги. Заметим, что применение пароизоляции значительно повышает уровень влажности в здании, поэтому особое внимание придётся уделить вентиляции помещений.
Отдельным видом пароизоляционных мембран можно считать плёнки с антиконденсатным покрытием. Они применяются под кровельными материалами, боящимися коррозии — профнастил, оцинкованное железо, некоторые виды металлочерепицы без внутреннего покрытия. Такая мембрана не пропускает пары к уязвимым металлическим элементам. Антиконденсатная плёнка укладывается шероховатым текстильным (адсорбирующим) слоем книзу, где влага накапливается и постепенно удаляется, не стекая обратно в утеплитель и не контактируя с металлом. Между этой мембраной и ватой обязательно должен быть зазор 20–60 мм.
Паропроницаемые (паровыводящие) мембраны используются с наружной стороны утеплителя. Они служат защитой от ветрового давления на ограждающие конструкции и являются вспомогательным гидроизоляционным слоем в скатных кровлях, а также фасадах с негерметично соединяемыми элементами облицовки. Из-за того, что такие плёнки являются буфером между утеплителем и окружающей средой, необходимо, чтобы они беспрепятственно пропускали влагу из ваты в вентилируемое пространство. Определённую паропроницаемость этим материалам обеспечивает наличие микроперфорации и микропор. Естественно, чем активнее будет проходить диффузия пара наружу, тем лучше, тем суше и эффективнее будет утеплитель. В соответствии со степенью паропроницаемости мембраны разделяют на:
- псевдодиффузионные (до 300 г/м2 за сутки)
- диффузионные (300–1000 г/м2)
- супердиффузионные (от 1000 г/м2)
Псевдодиффузионные мембраны обладают хорошими гидроизоляционными характеристиками, поэтому чаще применяются как наружные подкровельные покрытия, причём с организацией обязательного вентиляционного зазора под ними. Использование таких плёнок в качестве внешней пароизоляции фасада является ошибкой из-за минимально допустимой пропускной способности. Дело в том, что в сухую погоду микропоры могут засоряться пылью, попадающей из вентиляционного зазора. Как следствие, влага не выводится в полном объёме из утеплителя, и возможно выпадение конденсата.
Диффузионные и супердиффузионные мембраны лишены этого недостатка. Здесь характеристики паропроницаемости представлены, что называется, «с запасом». К тому же пары выводятся через перфорированные микроотверстия большего диаметра, которые не подвержены засорениям. Эти материалы не требуют устройства дополнительного вентиляционного зазора снизу, соответственно отпадает необходимость монтировать всевозможные контррейки и дополнительные обрешётки.
Особый вид паровыводящих материалов — это объёмные диффузионные мембраны. Благодаря своей объёмной структуре (высота трёхмерных матов из полипропиленовых нитей составляет 8 мм) эта мембрана является специфическим разделительным слоем, который сам образует вентиляционный зазор и способствует выводу конденсата от металлической кровли. По сути, она выполняет ту же функцию, что и пароизоляционная плёнка с антиконденсатным покрытием, только выпускает влагу из утеплителя. Дело в том, что на листах металлической кровли с малым углом наклона (3-15°) выпавший снизу конденсат не стекает и не капает вниз, а находится в непосредственном контакте с цинковым покрытием, разрушая его. Крепится объёмная мембрана гвоздями на сплошное основание.
Основные производители диффузионных мембран для кровли и фасада выпускают продукцию относительно близкую по своим техническим и эксплуатационным характеристикам. Отличия касаются лишь функциональности, стоимости и качества их плёнок. Это объясняется особенностями технологических процессов, типом сырья и добавок, видом изоляционных плёнок, количеством слоёв и способами их скрепления.
Часто задаваемые вопросы о монтаже строительных мембран
С какой стороны утеплителя крепить мембрану?
На утеплённом фасаде минеральную вату закрывают паровыводящими плёнками только с наружной стороны.
В конструкциях утеплённой кровли диффузионные, антиконденсатные или объёмные мембраны крепятся поверх минеральной ваты, аналогично монтажу в вентилируемых фасадах.
Элементы кровли без утеплителя защищают пароизоляционными мембранами снизу стропил.
Если стены утеплены изнутри, нужна сплошная пароизоляция — неперфорированная плёнка устанавливается поверх ваты со стороны помещения.
Утеплитель верхнего перекрытия с находящимся выше холодным чердаком закрывается паробарьером снизу.
Какой стороной укладывать мембрану?
Пароизоляционные плёнки обычно являются двусторонними (не важно, какой стороной куда обращен материал), но есть исключения. Антиконденсатные мембраны текстильным адсорбирующим слоем крепятся вовнутрь помещения. Плёнки с металлизированным покрытием также односторонние — фольга должна быть обращена в сторону комнат.
Монтаж паровыводящих (диффузионных) мембран той или иной стороной необходимо производить согласно инструкциям производителя. Одна и та же компания может выпускать как двусторонние, так и однонаправленные плёнки. Ориентиром обычно служит различное окрашивание разных сторон мембраны, одна из которых чаще всего имеет ярко выраженную маркировку. В большинстве случаев «цветастая» сторона мембраны должна быть обращена наружу.
Нужен ли вентиляционный зазор возле мембраны?
Снизу пароизоляционных плёнок обязательно должна быть устроена воздушная прослойка (около 50 мм) для выветривания возможного конденсата. Не допускается, чтобы внутренняя облицовка касалась паробарьера.
Диффузионные мембраны крепятся непосредственно поверх утеплителя или сплошного покрытия из ОСП, влагостойкой фанеры. А вот поверх таких мембран просто необходимо сделать вентиляционный зазор для отвода влаги. Вентиляционный зазор в кровле делается с помощью брусков контробрешётки, в конструкции вентилируемого фасада нужную прослойку обеспечивают стойки или перпендикулярно расположенные горизонтальные профили.
Антиконденсатная плёнка с обоих сторон должна иметь воздушный зазор порядка 40–60 мм.
Каким должен быть перехлёст полотен?
Строительные плёнки и мембраны часто маркируются линией вдоль края полотна, которая обозначает размер перехлёста — от 100 до 200 мм. Для кровли мембрана выполняет гидроизоляционную функцию, потому этот размер может меняться в зависимости от уклона скатов (от 30° — 100 мм; 20–30° — 150 мм; до 20° — 200 мм).
Диффузионная мембрана в районе конька перехлёстывается на 200 мм. В ендовах материал перекрывается на 300 мм, плюс, при малых уклонах, по всей длине укладывается второй слой в виде дополнительной полосы, заходящей по 300–500 мм на оба ската.
Заметим, что мембраны должны закрывать не только общую площадь, но и торцы утеплителя. Кровельные мембраны выводятся на сливной жeлоб или на металлический капельник.
Нужно ли проклеивать стыки? Если да, то чем?
Полотна строительных мембран обязательно проклеиваются между собой. Стык должен быть герметичным. Для этих целей применяются специальные самоклеящиеся ленты, которые изготавливаются на основе различных нетканых материалов: полиэтилена, полипропилена, вспененного полиэтилена, бутила, бутилкаучука. Они могут быть двусторонними или односторонними. Этими лентами ремонтируют разрывы и повреждения полотен.
Выбор конкретного типа соединительной ленты следует производить в соответствии с рекомендациями производителей.
Применение упаковочного скотча (особенно малой ширины) для соединения строительных плёнок и мембран является распространённой причиной разгерметизации стыков.
Чем крепить мембрану?
В качестве временных крепёжных элементов можно использовать гвозди с широкими шляпками и скобы строительного степлера. Однако действительно надёжную фиксацию можно обеспечить только при помощи контрреек.
Несколько сложнее дело обстоит при оборудовании навесных фасадов. После установки кронштейнов укладываются плиты минеральной ваты, каждая из которых крепится одним-двумя тарельчатыми дюбелями. Далее поверх утеплителя раскатывается диффузионная мембрана, прорезается в точках прохода кронштейнов и через слой ваты такими же дюбелями фиксируется к стене. Количество крепежей должно быть не менее четырёх штук на квадратный метр. Если есть возможность выбора, бурить нужно в районе стыка полотен.
На кровельных скатах мембраны по всему периметру приклеиваются к конструкциям с помощью двусторонних лент. Этими же материалами регулирующие строительные плёнки фиксируются к различным элементам здания: окнам, дверям, трубам, вентканалам, стойкам антенн… На шероховатых поверхностях ленты не помогают — здесь применяют полиуретановые, акриловые, каучуковые клеи, «фиксеры».
Как долго можно оставлять мембрану открытой?
Стойкость строительных мембран к ультрафиолетовым лучам ограничена. Обычно она составляет до 4–5 месяцев, затем материал теряет свою термическую стойкость, происходит старение материала с потерей большинства полезных характеристик. Очевидно, что нужно минимизировать освещённость мембран, в максимально короткие сроки установить облицовку. Как бы мы ни старались герметизировать все стыки и отверстия, данные рулонные материалы работают только в тандеме с финишными наружными слоями, поэтому сильный дождь может стать причиной намокания теплоизолятора и элементов конструкций. Именно поэтому монтировать утеплитель, плёнки и мембраны лучше поэтапно, а не сразу на весь дом.
Вместо эпилога
Применение строительных плёнок и мембран — это обязательное условие корректного функционирования многослойных конструкций. Только с их помощью можно обеспечить надлежащий температурно-влажностный режим внутри здания. В работе с мембранами обычно не возникает особой сложности, нужно лишь правильно выбрать необходимый в конкретном случае материал и правильно его смонтировать.
Практика показала — утеплитель действительно есть смысл защищать, особенно если учесть, что расходы на плёнки и мембраны при строительстве коттеджа не превышают отметки в 0,5% от общей сметы. А ведь на кону стоит немало — микроклимат помещений, долговечность элементов здания, уровень расходов на энергоносители.
Термобарьерное покрытие - Thermal barrier coating
Содержание
Структура
Связующее покрытие представляет собой стойкий к окислению металлический слой, который наносится непосредственно на металлическую основу. Обычно он имеет толщину 75-150 мкм и изготовлен из сплава NiCrAlY или NiCoCrAlY, хотя существуют и другие связующие покрытия из алюминидов Ni и Pt. Основная цель связующего покрытия - защитить металлическую основу от окисления и коррозии, особенно от кислорода и коррозионных элементов, которые проходят через пористое керамическое верхнее покрытие.
TBC также можно локально модифицировать на границе раздела между связующим покрытием и термически выращенным оксидом, чтобы он действовал как термографический люминофор, что позволяет дистанционно измерять температуру
Отказ
TBC выходят из строя из-за различных режимов разрушения, включая механическое смятие связующего покрытия во время термоциклического воздействия (особенно покрытий в авиационных двигателях), ускоренное окисление, горячую коррозию или разрушение расплавленных отложений. Также существуют проблемы с окислением (участки TBC начинают удаляться) TBC, что резко сокращает срок службы металлического компонента, что приводит к термической усталости.
Ключевой особенностью всех компонентов TBC является необходимость согласования коэффициентов теплового расширения между всеми слоями. Термобарьерные покрытия расширяются и сжимаются с разной скоростью при нагревании и охлаждении окружающей среды, поэтому, если материалы разных слоев имеют плохо согласованные коэффициенты теплового расширения, возникает деформация, которая может привести к растрескиванию и, в конечном итоге, разрушению покрытия.
Муллит
Муллит представляет собой соединение оксида алюминия и кремнезема с формулой 3Al2O3-2SiO2. Он имеет низкую плотность, а также хорошие механические свойства, высокую термическую стабильность, низкую теплопроводность, а также устойчивость к коррозии и окислению. Однако при температурах выше 800 ° C он страдает от кристаллизации и сжатия, что приводит к растрескиванию и расслоение. Таким образом, этот материал подходит в качестве альтернативы диоксиду циркония для таких применений, как дизельные двигатели, где температура поверхности относительно низкая, а колебания температуры по покрытию могут быть значительными.
Глинозем
Среди оксидов алюминия стабильна только α-фаза Al2O3. Обладая высокой твердостью и химической инертностью, но высокой теплопроводностью и низким коэффициентом теплового расширения, оксид алюминия часто используется в качестве дополнения к существующему покрытию TBC. За счет включения оксида алюминия в YSZ TBC можно улучшить стойкость к окислению и коррозии, а также твердость и прочность сцепления без значительного изменения модуль упругости или жесткость. Одной из проблем с оксидом алюминия является нанесение покрытия путем плазменного напыления, которое имеет тенденцию создавать множество нестабильных фаз, таких как γ-оксид алюминия. Когда эти фазы в конечном итоге превращаются в стабильную α-фазу в результате термоциклирования, следует значительное изменение объема на
15% (от γ до α), что может привести к образованию микротрещин в покрытии.
CeO2 + YSZ
CeO2 (церия) имеет более высокий коэффициент теплового расширения и более низкую теплопроводность, чем YSZ. Добавление оксида церия в покрытие YSZ может значительно улучшить характеристики TBC, особенно в тепловой удар сопротивление. Скорее всего, это связано с меньшим напряжением связующего слоя из-за лучшей изоляции и лучшего коэффициента теплового расширения. Некоторые отрицательные эффекты добавления оксида церия включают снижение твердости и ускорение скорости спекания покрытия (менее пористое).
Цирконаты редкоземельных элементов
Ла2Zr2О7, также называемый LZ, представляет собой пример цирконата редкоземельного элемента, который показывает потенциал для использования в качестве TBC. Этот материал является фазово-стабильным до температуры плавления и может в значительной степени допускать наличие вакансий на любой из своих подрешеток. Наряду со способностью к замещению сайтов другими элементами это означает, что термические свойства потенциально могут быть изменены. Хотя он имеет очень низкую теплопроводность по сравнению с YSZ, он также имеет низкий коэффициент теплового расширения и низкую вязкость.
Оксиды редкоземельных элементов
Смесь оксидов редкоземельных элементов легко доступна, дешева и может быть многообещающей в качестве эффективных ТВП. Покрытия из оксидов редкоземельных элементов (например, La2O3, Nb2O5, Pr2O3, CeO2 в качестве основных фаз) имеют более низкую теплопроводность и более высокие коэффициенты теплового расширения по сравнению с YSZ. Основная проблема, которую необходимо преодолеть, - это полиморфная природа большинства оксидов редкоземельных элементов при повышенных температурах, поскольку фазовая нестабильность имеет тенденцию отрицательно влиять на сопротивление тепловому удару.
Композиты металл-стекло
Порошковая смесь металла и обычного стекла может быть напылена плазмой в вакууме с подходящим составом, в результате чего TBC сравним с YSZ. Кроме того, композиты металл-стекло имеют превосходную адгезию связующего покрытия, более высокие коэффициенты теплового расширения и отсутствие открытой пористости, что предотвращает окисление связующего покрытия.
Использует
Автомобильная промышленность
Тепловой барьер керамика покрытия становятся все более распространенными в автомобильной промышленности. Они специально разработаны для уменьшения потерь тепла от двигателя. вытяжная система компоненты, включая выпускные коллекторы, турбокомпрессор кожухи, выпускные коллекторы, водосточные и выхлопные трубы. Этот процесс также известен как "управление вытяжным теплом". При использовании под капотом они положительно влияют на снижение температуры моторного отсека, тем самым снижая температуру всасываемого воздуха.
Хотя большинство керамических покрытий наносится на металлические детали, непосредственно связанные с выхлопной системой двигателя, технологические достижения теперь позволяют наносить термобарьерные покрытия через плазменный спрей на композитные материалы. Сейчас обычным явлением стало обнаружение компонентов с керамическим покрытием в современных двигателях и высокопроизводительных компонентах гоночных серий, таких как Формула 1. Эти покрытия не только обеспечивают тепловую защиту, но также используются для предотвращения физического разрушения композитного материала из-за трения. Это возможно, потому что керамический материал связывается с композитом (вместо того, чтобы просто прилипать к поверхности с краской), тем самым образуя прочное покрытие, которое не отслаивается и не отслаивается.
Хотя на внутреннюю часть компонентов выхлопной системы были нанесены термобарьерные покрытия, возникли проблемы из-за сложности подготовки внутренней поверхности перед нанесением покрытия.
Авиация
Обработка
В промышленности термобарьерные покрытия производятся несколькими способами:
- Электронно-лучевое физическое осаждение из паровой фазы: EBPVD
- Воздуха плазменный спрей: APS
- Кислородное топливо с высокой скоростью: HVOF
- Электростатическое осаждение из паровой фазы с помощью распыления: ESAVD
- Прямое осаждение из паровой фазы
Читайте также: