С увеличением прочности бетона деформации
Способы увеличения прочности бетона. Добавки применяемые в производстве бетона
Основные способы увеличения прочности бетона (искусственного камня) сводятся к введению в бетонную смесь различных добавок, которые обладают разным действием.
Пластификатор
Пластификатор РС представляет собой водный раствор высокоэффективного неионогенного поверхностно-активного вещества, обеспечивающая снижение водоотделения строительных растворов, увеличивающая удобоукладываемость и время сохранения свойств растворных смесей. Добавка придает строительным растворам высокую связность, как при транспортировании, так и на стройплощадке, стабильное воздухосодержание в течение всего времени использования.
Добавка предназначена для приготовления растворных смесей на цементной основе, которые применяют при каменной или кирпичной кладке, монтаже строительных конструкций при возведении зданий и сооружений, для устройства стяжки и оштукатуривании различных поверхностей. Допускается применение добавки для производства легких растворов и бетонов различной плотности. Не содержит соединений хлора.
Рекомендуемая дозировка добавки составляет 0,3-1 % от массы цемента.
Пластификатор РС, 20 кг.
Пластификатор РС-Зима, 20 кг.
Суперпластификатор
Пластификатор необходимо предварительно развести в теплой воде до полного растворения, в жидком виде пластификатор сразу начинает работать в бетоне, если Вы добавляете его в сухом виде, то потребуется дополнительное время для его растворения и перемешивания бетона. Пластификатор должен быть разведен предварительно в воде, лучше при температуре 25-30 градусов за час до применения. Расчетное количество суперпластификатора вводят в бетонную смесь с водой затворения. Для повышения технологического эффекта (достижения большей подвижности бетонной смеси или повышения ее сохраняемости, при неизменном расходе добавки) целесообразно вводит С-3 с частью воды затворения спустя 1-5 минут после затворения бетонной смеси основным объемом воды.
Рекомендуемая дозировка С-3 составляет 0,5-0,8% от массы цемента (500-800 грамм на 100 кг цемента в расчете на сухое вещество).
Суперпластификатор ПК-1 представляет собой водный раствор на основе эфиров поликарбоксилатных соединений. Является базовым продуктом, не содержащим солей лигносульфонатов или нафталинформальдегидов. Не содержит замедлителей или ускорителей твердения и противоморозных модификаторов.
Основное назначение добавки – увеличение подвижности с марки П1 до П5 или снижение водопотребности (до 30 %) растворных и бетонных смесей. Применяется для производства различных бетонных и железобетонных изделий (в т.ч. преднапряженных): панелей, колонн, плит тротуарных, свай, фасадных изделий, блоков, мелкоштучных изделий и пр. Добавка эффективно работает с различными видами цементных вяжущих. Не вызывает водо- и раствороотделение. Повышает прочность бетона как на ранней (1 сутки), так и на поздней (28 суток) стадии твердения. Позволяет снизить продолжительность виброуплотнения. Добавку разрешено применять для бетонов, контактирующих с питьевой водой. Позволяет частично или полностью отказаться от тепловлажностной обработки.
Рекомендуемая дозировка добавки составляет 0,3 - 1 % от массы цемента.
Суперпластификатор ПК-1, 20 кг.
Суперпластификатор ПК-2 представляет собой водный раствор на основе органических эфиров поликарбоксилатных соединений. Добавка предназначена для производства товарного бетона.
Основное назначение добавки – увеличение подвижности бетонной смеси с марки П1 до П5 и снижение ее водопотребности (водоредуцирующий эффект до 30 %) при сохранении подвижности во времени (не менее 2 часов). Обеспечивает высокую начальную и конечную прочность. Не вызывает водо- и раствороотделение. Позволяет снизить продолжительность виброуплотнения. Не содержит соединений хлора. Добавку разрешено применять для бетонов, контактирующих с питьевой водой.
Рекомендуемая дозировка добавки составляет 0,3-1 % от массы цемента.
Суперпластификатор ПК-2, 20 кг.
Суперпластификатор ПК-2-Зима, 20 кг.
Суперпластификатор ПКЛ-1 представляет собой водный раствор на основе поликарбоксилатных соединений и лигносульфоната. Не содержит замедлителей или ускорителей твердения и противоморозных модификаторов.
Основное назначение добавки – увеличение подвижности с марки П1 до П5 или снижение водопотребности (не менее 25 %) бетонных смесей. Применяется для производства различных бетонных и железобетонных изделий (в т.ч. преднапряженных): панелей, колонн, плит тротуарных, свай, фасадных изделий, блоков, мелкоштучных изделий и пр. Добавка эффективно работает с различными видами цементных вяжущих. Не вызывает водо- и раствороотделение. Повышает прочность бетона как на ранней (1 сутки), так и на поздней (28 суток) стадии твердения. Позволяет снизить продолжительность виброуплотнения. Добавку разрешено применять для бетонов, контактирующих с питьевой водой. Позволяет частично или полностью отказаться от тепловлажностной обработки.
Рекомендуемая дозировка добавки составляет 0,6-1,5 % от массы цемента.
Суперпластификатор ПКЛ-1, 20 кг.
Суперпластификатор ПКЛ-2 представляет собой водный раствор на основе смеси органических эфиров поликарбоксилатных соединений и лигносульфоната.
Добавка предназначена для производства бетонной смеси. Основное назначение добавки – увеличение подвижности бетонной смеси с марки П1 до П5 или снижение ее водопотребности (водоредуцирующий эффект до 25 %) при сохранении подвижности во времени (не менее 2 часов). Обеспечивает повышенную начальную и конечную прочность. Не вызывает водо- и раствороотделение. Позволяет снизить продолжительность виброуплотнения. Не содержит соединений хлора. Добавку разрешено применять для бетонов, контактирующих с питьевой водой.
Рекомендуемая дозировка добавки составляет 0,3-1 % от массы цемента.
Суперпластификатор ПКЛ-2, 20 кг.
Пластификаторы и суперпластификаторы с маркировкой "Зима" могут применяться при отрицательных температурах окружающей среды до -25°С.
Микрокремнезем
Микрокремнезем применяется для получения высокопрочных бетонов, дозировка 10% от массы цемента, в бетонах применяется вместе с суперпластификатором.
Применение микрокремнезема позволяет:
- получить бетоны высокой прочности и водонепроницаемости
- повысить стойкость бетона при воздействии кислот и повышенной температуры
- заменить часть цемента (до 30-40%) при сохранении прочности растворов и бетонов.
Ускоритель твердения (кальций хлористый)
Добавка хлористый кальций применяется в производстве пенобетона, полистиролбетона, бетона, стеновых камней, тротуарной плитки и др.
"Узкое место" в производстве таких бетонных изделий таких как газобетон и пенобетона - формы, в которых происходит схватывание и твердение цементного раствора. Раствор должен находиться в формах длительное время при определенной температуре и влажности для получения достаточной (нормативной) прочности. Сложности возрастают при понижении температуры, когда время "простоя" форм увеличивается в несколько раз.
Для снижения себестоимости продукции требуется уменьшить расход цемента без потери прочности. В связи с этим в настоящее время считается технологически и экономически выгодным применение ускорителя твердения. Рекомендуемая дозировка добавки составляет 1-2 % от массы цемента.
Гидрофобизирующая добавка Гидромикс
Гидрофобизирующая добавка Гидромикс предназначена для повышения марки по водонепроницаемости и снижения водопоглощения конструкций из бетона и железобетона, цементно-песчаных оснований, испытывающих давление грунтовых, сточных и дождевых вод.
Добавка Гидромикс представляет собой сухой порошкообразный материал, содержащий активные химические вещества, которые уплотняют структуру бетона (раствора) и придают ему водоотталкивающие свойства. Добавка не влияет на подвижность бетонной или растворной смесей, незначительно снижает их расслаиваемость и водоотделение, не оказывает замедляющего или ускоряющего эффекта на твердение бетона. Добавка совместима практически с любыми пластифицирующими добавками.
Добавка повышает марку бетона по водонепроницаемости до 3 ступеней (0,6 МПа) и снижает его водопоглощение не менее чем на 30 %. Добавка способствует повышению морозостойкости бетона и защищает его от действия различных агрессивных сред. Без ограничений применяется для эксплуатации в хозяйственно-питьевом водоснабжении.
Введение добавки позволяет поднять марку бетона по водонепроницаемости с W8 до W14.
Добавку применяют в количестве 2 кг. на 1 м3 бетонной или растворной смеси.
Гидрофобизатор Гидромикс, 2 кг.
Пропитка гидрофобизирующая
Агрессивное воздействие воды на сооружения из кирпича и бетона – давно установленный факт, ибо данные материалы имеют достаточно пористую структуру. Вода проникает в сооружение снизу. Это – грунтовая вода, т.е. растворы солей: хлоридов, сульфатов и гидрокарбонатов, которые затем после испарения воды “украшают” фасады, разрушают фундаменты, срывают штукатурки и облицовку.
Вода угрожает и сверху, и это воздействие весьма неоднозначно. Дождевая вода, проникая в поры материала, при отрицательных температурах увеличивается в объеме и может вызвать локальную деструкцию. Кроме того, строго говоря, дождевая вода – это тоже раствор. Дождевые потоки захватывают из атмосферы большое количество газообразных производственных выбросов, таких как оксиды углерода, серы, азота и фосфора, таких как аммиак, хлор и хлористый водород. Эти газы, растворяясь частично в воде, превращают дождь в кислотный раствор, разрушающе действующий на бетон, мрамор, силикатный кирпич и другие материалы. При этом увеличивается количество пор, капилляров и микротрещин, являющихся все новыми очагами агрессии, и степень разрушения материала существенно возрастает. Даже очень небольшое содержание в воздухе кислотных оксидов серы и азота, а также хлористого водорода способно вызвать смещение такого экологического параметра атмосферы как углекислотное равновесие.
При этом существенно повышается содержание в воздухе свободной углекислоты, называемой в таком случае “агрессивной”. Агрессивным углекислый газ является по отношению к минеральным строительным материалам (извести, мрамору и бетону), превращая нерастворимый кальцит в водорастворимый гидрокарбонат кальция. Происходит элементарное вымывание материала с дополнительным образованием трещин, пор, раковин и т.д. Бетон стареет, штукатурки отшелушиваются, мрамор тускнеет, на его поверхности появляются характерные “потеки”.
Проблема защиты материала от воздействия влаги решается различными способами гидрофобизации (водоотталкивания). Это применение всевозможных методов гидроизоляции, использование жидкого стекла, закрывающего поры, получение высокоплотных материалов с минимальной пористой структурой и т.д.
Одним из перспективных направлений гидрофобизации является использование различных кремнийорганических составов, обладающих способностью к гидрофобизации. Кремнийорганические жидкости, основу которых составляет кремнекислородная цепочка (-O- Si-O-Si-O-Si-)n регулируемой длины, содержат около атомов кремния гидрофобные углеводородные радикалы разной величины: С2Н5, С3Н7, С nH2n-1, что сообщает им в зависимости от назначения как разную степень гидрофобизирующих свойств, так и различную способность проникновения в материал. Вариации этих сочетаний позволяют получать водоотталкивающие системы, применяемые в самых разнообразных целях, связанных с проблемой гидрофобизации. Это краски, покрытия, пропитки, гидрофобизующие добавки в бетоны и растворы и ряд других направлений.
Существенно важным обстоятельством при этом является способность кремнийорганических жидкостей не закрывать, а выстилать поры, создавая на их поверхности тончайшую водонепроницаемую пленку.
Гидрофобизатор Гидрофиб, 10 лит.
Полиуретановое и акриловое защитное покрытие
Полиуретановые и акриловые покрытия являются высокоэффективным средством защиты поверхностей, даже при крайне небольших толщинах слоя при расходе от 0,25 кг/м2. При обработке камня или бетона подчеркивает структуру поверхности, создаёт эффект мокрого камня. Малая рабочая толщина слоя делает покрытие пожаробезопасным. При воздействии на него источника пламени покрытие не горит, а лишь разлагается под воздействием температуры, не создавая при этом опасности распространения пожара.
Указанные покрытия обладают высочайшей адгезией к обрабатываемым поверхностям, имеют большой срок службы (внутри помещений до 50 лет, в условиях открытой атмосферы не менее 15 лет), не наносят вреда здоровью человека даже при непосредственном постоянном контакте с питьевой водой и продуктами питания.
Полиуретановые покрытия обеспечивают гидрофобность строительным материалам (бетон, раствор, кирпич, гипс, картон, древесина и т.п.), а, соответственно, не дают впитываться в них водным субстанциям, соляным растворам, маслам, нефтепродуктам, кислотам, щелочам и другим материалам, которые могут повлиять на целостность и долговечность этих материалов.
Защитное покрытие представляет собой двухкомпонентный состав. Применяется в качестве прозрачного защитного лакокрасочного покрытия для поверхностей из бетона, металла, дерева. Полностью высохшее покрытие обладает высоким глянцем, прочностью, эластичностью, а также стойкостью к истиранию и химическому воздействию и полностью сохраняет все декоративные качества.
Полиуретановое покрытие S-COMPOSIT CRYSTAL, 6,74 кг.
Акриловая смола (базовая), 10 кг.
Полипропиленовые волокна (фиброволокно)
В 1998 году исполняется 15 лет с того момента, как полипропиленовые волокна (фиброволокно, ППВ) для бетона стали широко использоваться во всем мире. Сегодня в США 10% всего товарного бетона содержит ППВ, а в Великобритании уложены миллионы кубометров такого бетона. В настоящее время волокна используются в конструкционном бетоне для морских укреплений, мостов и водохранилищ, а также в сборном бетоне и торкрет-бетоне. Новые разработки включают антибактериальный бетон, тонкий бетон для покрытия асфальтированных дорог, бетон с обнаженным заполнителем - с шуршащей поверхностью, бетон, менее подверженный взрывному откалыванию при воздействии огня.
Полипропиленовые волокна - это олефиновые волокна, изготовленные из полимеров или сополимеров пропилена. Расплавленный полипропилен подвергается штамповке с вытяжкой, образуя ровные листы или волокна. Затем из него можно получить два типа ППВ. Ровные листы расщепляются на мелкие волокнистые элементы, из которых состоит основная структура, и разрезаются на части различной длины. Эти фибриллированные волокна в поперечном сечении имеют форму, близкую к прямоугольной. Волокна с круглым поперечным сечением также разрезаются на части различной длины для получения моно- и мультифиламентных волокон. ППВ - чистое, безопасное, простое в использовании, химически нейтральное и совместимое со всеми вяжущими веществами и добавками волокно.
Количество, тип и длина используемых волокон зависит от требований проекта. Обычная дозировка составляет 0,1% по объему или 0,6 - 0,9 кг/м3 бетона. Для удобства в применении ППВ поставляется в растворимых мешках по 0,6 - 0,9 кг. На каждый кубометр бетона добавляется один мешок - или в смесительную установку на бетонном заводе или прямо в автобетономешалку. Достаточно всего 5 минут смешивания в автобетономешалке для равномерного рассеивания без образования комков и скоплений. Более высокая дозировка, особенно фибриллированных волокон, используется в сборном бетоне, торкрет-бетоне и других видах бетона, где важна прочность и устойчивость к раскалыванию.
При дозировке 0,1-1% ППВ не обеспечивает первичного армирования. Теория показывает, что количество волокна, которое выдерживает нагрузку после растрескивания - критический объем волокна - для ППВ составляет примерно 2% по объему. Такое количество трудно ввести в бетонную смесь и оно неприемлемо с коммерческой точки зрения. Однако, дозировка 0,1-1% ППВ по объему действительно дает определенные преимущества бетону как в пластичном, так и в затвердшем состоянии. Волокна оказывают эффект немедленно, повышая сцепление бетонной смеси, препятствуя оседанию крупных, тяжелых частиц при уплотнении и облегчая подачу бетонной смеси насосом. ППВ повышает способность бетона к деформации без разрушения в критический период схватывания, что мешает образованию микротрещин внутри застывшего бетона, а также сдерживает расширение видимых поверхностных трещин, возникших при пластической усадке. ППВ препятствует перемещению и последующему испарению воды, повышая гидратацию цемента на поверхности, но не заменяет надлежащих процедур выдерживания бетона. 16 лет независимого тестирования по всему миру, теперь подкрепленного сертификатом ВВА, показали, что ППВ в количестве 0,1% по объему обеспечивает устойчивость к выступанию воды, оседанию, растрескиванию при пластической усадке, истиранию, циклам замораживание/оттаивание, сопротивление удару, а также огнестойкость, остаточную прочность, антимикробную защиту и пониженную проницаемость.
Вышеописанные преимущества означают, что ППВ можно использовать во всех областях применения бетона. Выгода ППВ видна при анализе затрат даже на такие сооружения как мосты, водохранилища и стенки набережных. Но с наибольшим успехом этот материал использовался в бетонных плитах покрытий, особенно там, где он служил заменой вторичной стальной проволочной арматуры. Расчеты для бетонных плит покрытия с ППВ ничем не отличаются от обычных, изложенных в техническом отчете N 34 Общества Бетона. ППВ не увеличивает допустимую нагрузку бетонной плиты заданной прочности и толщины. Простота в применении, устранение стальной арматурной проволочной сетки и беспрепятственный доступ для выгрузки бетонной смеси делают укладку бетона с ППВ более быстрой и экономичной. Учитывая уже описанные преимущества поверхности такого бетона, нетрудно понять, почему он с таким успехом используется в плитах покрытий. Преимущества торкрет-бетона с ППВ заключаются в лучшем сцеплении бетонной смеси, что cнижает отскок и ускоряет укладку.
При высокой дозировке более длинных фибриллированых волокон его прочность может сравниться с бетоном, содержащим 25-30 кг стальной арматуры. Преимущества сборного бетона с ППВ заключаются в уменьшении опасности случайного повреждения при распалубке и последующей транспортировке, пониженной проницаемости и, следовательно, меньшей подверженности коррозии. Преимущества бетона с ППВ при использовании скользящих опалубок заключаются в лучшем сцеплении бетонной смеси, что способствует повышению темпов строительства и снижению объемов ремонтных работ.
Бетон с высокими рабочими характеристиками, обладающий прочностью 60-100 МПа и более, приобретает все большую популярность во всей Европе. Однако, как показал пожар в туннеле под Ла-Маншем, такой бетон подвержен взрывному откалыванию при температуре выше 200 гр.С. ППВ обеспечивает безопасный выход перегретого пара через капилляры на поверхность, когда плавится полипропилен при температуре 160-170 гр.С, и в настоящее время ППВ вводится в спецификации бетона для туннелей и других областей применения, где взрывное откалывание может угрожать жизни.
Фиброволокно полипропиленовое, 12 мм.
Фиброволокно полипропиленовое, 20 мм.
Омагничивание воды затворения
Без воды невозможно начало химической реакции, превращающей разрозненные компоненты бетонной смеси в единый монолит. Её роль в этом процессе сложно переоценить. Поэтому вполне объяснимо стремление модифицировать многие химические процессы, происходящие в присутствии воды, в том числе и образование цементного камня, именно по пути изменения некоторых её свойств.
В бетоноведении роль модифицированной воды – одна из самых скандальных и мало изученных тем. При всем притом, что с периодичностью примерно в 10 лет, ученые-бетоноведы всего мира вновь и вновь возвращаются к этой теме, факторы, влияющие на изменение характеристик бетонов, обусловленные применением модифицированной воды остаются еще во многом не ясными. Все это обусловило разделение ученых-бетоноведов на два противоборствующих лагеря. Одни, с пеной у рта, утверждают, что шаманить над водой – чистой воды шарлатанство, недостойное серьезных исследователей. Другие, столь же ожесточенно, доказывают обратное. Истина, как всегда, где-то посредине.
Говоря о роли внешних факторов внешних наводок при омагничивании водных систем, нельзя обойти молчанием так называемую сезонную зависимость результатов (хотя этот вопрос рассматривается учеными – геоцентристами неизменно скептически). Так, например, неоднократно подтверждался тот факт, что омагничивание воды, применяемой для затворения цементных растворов, наименее эффективно в мае-июле. Многократно проводившиеся эксперименты убедительно и однозначно свидетельствуют, что в абсолютно идентичных условиях прирост прочности образцов затворенных омагниченной водой составил в январе 50 – 60%, мае 2 – 5%, сентябре 20 – 25%, октябре – 40%. Причины таких проявлений сезонности, точно не установлены. Можно только предполагать, что в эксперимент “вмешивалось” геомагнитное воздействие солнца. Во всяком случае, их нельзя связать с поступлением талых вод, поскольку опыты проводились с использованием бидистилятов.
В любом случае даже не зная как “ЭТО” работает, человечество давно и очень эффективно научилось использовать магнитное воздействие на вещества, в том числе и воду, в своих целях.
В СССР начало применения омагниченной воды при затворении бетонов относится к 1962 г. (Нейман Б.А. свид. СССР № 237664, от 1962 г.). С тех пор велись и по сей день ведутся значительные исследования в этом направлении. Известно, что в процессе твердения цементного камня одновременно протекает ряд сложных процессов: растворение и гидратация цементных минералов с образованием пересыщенных растворов, самопроизвольное диспергирование этих минералов до частиц коллоидных размеров, образование тиксотропных коагуляционных структур и, наконец, возникновение, рост и упрочнение кристаллизационных структур. И омагничивание воды влияет на все эти процессы. Следовательно, влияние магнитной обработки воды, используемой для растворения, на твердение и свойства цементного камня является вполне закономерным.
Опытами установлено, что затворение цемента омагниченной водой приводит к значительному повышению прочности камня. Причем зависимость прочности от напряженности поля имеет экстремальный характер.
Все улучшения прочностных характеристик бетона обусловлены несколькими факторами, на которые влияет омагничивание воды. Главные из них, это ускоренное нарастание пластической прочности цементного камня, измеряемой по предельному напряжению сдвига. При затворении обычиой водой имеется значительный индукционный период выкристаллизовывания цемента. В случае же затворения омагниченной водой пластическая прочность начинает активно расти почти сразу же после затворения. При этом отмечается более быстрое диспергирование частиц до микронных размеров.
Микроскопические исследования также показали увеличение скорости гидратации цемента в омагниченной воде. Причем значительно возрастает количество кристаллов сульфоалюмината кальция и гидроокиси кальция, а размеры их уменьшаются. Кристаллы находятся не только на поверхности зерен гидратирующегося цемента, как обычно, но и в объеме всей массы. Исследование цементного камня трехдневного возраста под электронным микроскопом показало, что в омагниченмой воде структура камня гораздо более мелкозернистая. Кроме того многочисленные эксперименты показали, что эффект магнитной обработки воды, во многом зависит, также и от её химического состава. Примеси ионов железа и хлоридов чаще всего оказывают положительное влияние. Некоторые газы – остаточный хлор, аммиак – отрицательное. Очень большую роль играют соли жесткости как сами по себе, так и их взаимное соотношение. Достоверно установлено, что наилучшие результаты достигаются при следующих концентрациях солей: сульфата магния – 1.2 г/л, сульфата кальция – 1.2 г/л, хлорида магния – 2.8 г/л.
Многочисленные эксперименты по оценке влияния омагниченной воды на бетоны однозначно свидетельствуют – эффект магнитообработки носит экстремальный характер. Существует некий оптимум, как по напряженности магнитного потока, так и по скорости протекания воды, а также её минералогическому составу. Для каждой отрасли промышленности, использующей омагниченную воду, он разный. Глубоко ошибочной, порочной и даже вредной следует признать практику бездумного использования омагничивающих приборов, ориентированных на работу в других технологических цепочках.
Самое интересное в конструкции омагничивающего устройства – она, абсолютно не нуждается в какой либо защите от копирования. Можно прибор распилить, измерить, хоть на вкус попробовать. Пока не разгадаете магнитосилу применённых магнитов – все ваши потуги изготовить аналогичный прибор будут тщетны – просто не получите нужного эффекта.
Свойства бетона и фибробетона при повышенных температурах и деформации
Инженерные конструкции могут подвергаться экстремальным нагрузкам, например при пожаре, ударах или взрывах, а также их комбинированным воздействиям в результате случайных событий.
Для лучшего понимания надежности конструкций при воздействии экстремальных явлений, в первую очередь, необходимо изучить механические свойства строительных материалов. Бетон , как широко используемые строительный материал, достаточно изучен для прогнозирования его поведения в различных сценариях нагрузки.
Доказано, что свойства бетона зависят как от температуры, так и от скорости деформации при пожаре или другом воздействии. В целом, прочность бетона повышается с увеличением скорости деформации. Это увеличение (так называемый эффект скорости деформации) может быть связан с термической активацией, макро вязкостью и инерциальным механизмом.
Кроме того, так называемый эффект скорости деформации зависит от различных неопределенных факторов , например от состава, соотношения воды и цемента, метода и времени отверждения, типа заполнителя, размера образца и прочих факторов. Под воздействием огня, бетон значительно разрушается и теряет большую часть своей несущей способности.
Для количественной оценки влияния температуры используются понижающие коэффициенты и расчетные кривые. Cтальной фибробетон, сочетающий цементирующую матрицу и прерывистую арматуру, состоящий из случайно распределенных в матрице стальных волокон, обладает хорошей прочностью и высокой прочностью на разрыв и может быть лучше, чем традиционного бетона.
Поэтому стальной фибробетон лучше выдерживает некоторые экстремальные нагрузки, по сравнению с обычным бетоном. За последние несколько десятилетий установили, что, хотя стальной фибробетон и отличается от простого бетона – его качество все еще зависит от скорости деформации и температуры.
Под воздействием высоких температур материалы становятся более хрупкими и проявляют различные эффекты скорости деформации по сравнению с материалами при комнатной температуре. Тем не менее, имеющихся в настоящее время исследований недостаточно. Они выполняются на различных материалах с различными экспериментальными процедурами, учитывающими различные комбинации высокой температуры и скорости деформации (например, динамическая нагрузка при высокой температуре или после нее).
Таким образом, мы еще далеки от количественного определения комбинированного воздействия скорости деформации и температуры. Что касается стального фибробетона, то исследований его свойств, при пожарах и ударах еще меньше, чем исследований обычного бетона.
Несмотря на недостаток испытаний, можно сделать следующие неоспоримые выводы:
- При температурене выше 600 C включение стального волокна может эффективно предотвратить разрушение образцов стального фибробетона на фрагменты при динамической нагрузке, в то время как это изменение в структуре не является значительным при разрушении при 800 C.
- Кривые динамического напряжения -деформации фибробетона имеют такие же формы, как и в случае квазистатических нагрузок. Кривые напряжения-деформации как в статических, так и в динамических условиях становятся более плоскими с увеличением температуры.
- Динамическая прочность на сжатие фибробетона, при воздействии повышенных температур, все еще чувствительна к скорости деформации. Тем не менее, влияние температуры и количества стальных волокон на скорость деформации неравномерно.
- С ростом температур , динамическая прочность на сжатие и модуль упругости фибробетона уменьшаются, в то время как критическая деформация возрастает. Кроме того, сначала повышается пиковая прочность, а затем она уменьшается при тех же условиях.
- При воздействии высоких температур , дозировка стальных волокон оказывает незначительное влияние на динамическую прочность при сжатии, критическую деформацию и модуль упругости, а также пиковую вязкость.
Считается, что больше внимания следует уделять изучению влияния размеров волокна, дозировки волокна и температуры на растяжение, изгиб и сжатие фибробетона при динамических нагрузках с более широким диапазоном скоростей деформации.
Прочностные свойства бетона.
Под прочностью бетона понимают его способность сопротивляться воздействию внешних сил, не разрушаясь.
Прочность бетона зависит от многочисленных факторов: структуры, марки и вида цемента, водоцементного отношения, вида и прочности крупных и мелких заполнителей, вида напряженного состояния, формы и размеров образца, длительности загружения.
На прочность бетона большое влияние оказывает скорость загружения образцов. При замедленном их нагружении, прочность бетона оказывается на 10…15% меньше, чем при кратковременном статическом. При быстром загружении прочность бетона возрастает до 20 %.
Бетон имеет различную прочность при разных силовых воздействиях: сжатии, растяжении, изгибе, срезе. В связи с этим различают несколько характеристик прочности бетона: кубиковую и призменную прочность, прочность при растяжении, срезе и скалывании; прочность при многократных повторных нагрузках, прочность при кратковременном, длительном и динамическом действии нагрузок.
В железобетонных конструкциях бетон преимущественно используется для восприятия сжимающих напряжений. Поэтому за основную характеристику прочностных свойств бетона принята его прочность на осевое сжатие, устанавливаемая, как правило, путем испытания стандартных кубов размером 150×150×150 мм, испытанных при температуре (20 ± 2) °С через 28 дней твердения в нормальных условиях (температуре воздуха 15. 20 °С и относительной влажности 90. 100%). Реже испытания проводят па цилиндрах диаметром (d) 100, 150, 200 и 300 мм с высотой h = 2d.
За кубиковую прочность бетона принимают временное сопротивление R эталонных кубов, определяемое по выражению:
где F – разрушающая нагрузка, Н;
А – средняя рабочая площадь образца, мм2;
α – переводный коэффициент, зависящий от размеров образца. С уменьшением размеров поперечного сечения коэффициент а уменьшается. Это объясняется изменением эффекта обоймы с изменением размеров образца и расстояния между его торцами.
Различное сопротивление сжатию образцов разной величины (и формы) объясняется влиянием сил трения, возникающих между гранями образца и опорными плитами пресса.
Вблизи опорных плит пресса силы трения, направленные внутрь, создают как бы обойму и тем самым увеличивают прочность образцов при сжатии. По мере удаления от торцов влияние сил трения уменьшается. Поэтому бетонный куб получает форму двух усеченных пирамид (рис.2, а). При отсутствии (или существенном уменьшении) сил трения характер разрушения меняется, происходит раскалывание куба по плоскостям, параллельным направлению действующей внешней нагрузки (рис.2, б).
Прочностные свойства бетона.Рис. 2. Характер разрушения бетонных кубов; а - при наличии трения по опорным плоскостям; б - при отсутствии трения по опорным плоскостям
Реальные железобетонные конструкции по своей форме значительно отличаются от кубов. Поэтому кубиковая прочность не может непосредственно характеризовать прочность сжатых участков железобетонных конструкций. Для этой цели используют другую характеристику - призменную прочность бетона.
Железобетонные конструкции по форме отличаются от кубов, поэтому кубиковая прочность бетона не может быть непосредственно использована в расчетах прочности элементов конструкции. Основной характеристикой прочности бетона сжатых элементов является призменная прочность. Под призменной прочностью σbu понимают временное сопротивление осевому сжатию призмы с отношением высоты призмы h к размеру а квадратного основания, равным 4.
В реальных конструкциях напряженное состояние бетона сжатой зоны приближается к напряженному состоянию призм. Образцы призматической формы, для которых влияние сил трения меньше, чем для кубов, при одинаковом поперечном сечении показывают меньшую прочность на сжатие. При отношении высоты призмы к стороне основания h /a > 4 влияние сил трения практически исчезает, и прочность становится постоянной и равной ≈ 0,75 R.
Прочность на осевое растяжение
Прочность бетона на осевое растяжение зависит от прочности при растяжении цементного камня и его сцепления с зернами крупного заполнителя.
Рис.3. Схемы испытаний образцов для определения прочности бетона на растяжение
Опытным путем она определяется испытаниями на разрыв образцов в виде восьмерок, на раскалывание образцов в виде цилиндров, кубов или на изгиб бетонных балочек.
Прочность бетона на осевое растяжение имеет сравнительно небольшое значение.
σbtu =0,1σbu . 0,05 σbu
Ориентировочное значение σbt можно определить по эмпирической формуле Фере: Ориентировочное значение σbt можно определить по эмпирической формуле Фере:где γ = 0,8 – коэффициент для бетонов класса В25 и ниже, γ = 0,7 – для бетонов класса В30 и ниже
Прочность бетона при срезе и скалывании
Под чистым срезом понимают разделение элемента на части по сечению, к которому приложены перерезывающие силы.
Под чистым скалыванием понимают взаимное смещение (сдвиг) частей элемента между собой под действием скалывающих (сдвигающих) усилий.
Железобетонные конструкции редко работают на чистый срез и скалывание. Обычно срез сопровождается действием продольных сил, а скалывание - действием поперечных сил.
Сопротивление срезу может возникать в шпоночных соединениях и у опор балок, а сопротивление скалыванию – при изгибе преднапряженных балок до появления в них наклонных трещин, если не обеспечена надежная связь между верхней и нижней частями бетона на опорах.
В нормах временное сопротивление срезу и скалыванию не приводится, и его принимают приблизительно равным 2 σbtu
Прочность бетона при длительном действии нагрузки
Пределом длительного сопротивления бетона называют наибольшие статические неизменные во времени напряжения, которые он может выдерживать неограниченно долгое время без разрушения.
При длительном действии нагрузки бетонный образец разрушается при напряжениях, меньших, чем при кратковременной нагрузке. Это обусловлено влиянием развивающихся неупругих деформаций изменением структуры бетона.
При расчете прочности элементов в расчетное сопротивление бетона сжатию Rb и растяжению Rbt вводят коэффициент условия работы γb2 , учитывающий влияние на прочность бетона вероятной длительности действии я расчетных усилий и условий возрастания прочности бетона во времени.
Прочность бетона при многократном действии нагрузки
Под прочностью бетона при многократно повторных (подвижных или пульсирующих) нагрузках σf (предел выносливости бетона) понимают напряжение, при котором количество циклов нагрузки и разгрузки, необходимых для разрушения образца, составляет не менее 1 000 000.
Предел выносливости бетона связан с нижней границей образования микротрещин. Если многократно повторная нагрузка вызывает в бетоне напряжения, превышающие границы трещинообразования, то при большом количестве циклов наступает его разрушение.
Предел выносливости бетона σf определяют посредством умножения временных сопротивлений σbu и σbtu бетона на коэффициент условий работы бетона γb1 .
Удаление и снос бетона
- Как удалить старый бетон
Следующее предназначено только для общего информационного использования. Это очень общий обзор процесса выдачи разрешений для проектов по сносу. Фактический процесс может широко варьироваться между регионами страны, округами и муниципалитетами.
Вы также найдете обзор распространенных методов и инструментов сноса. Сравните ваши варианты того, как снести существующий бетон, а также какое оборудование использовать. Кроме того, вы сможете найти информацию о безопасности и предупреждения о возможных опасностях во время сноса.
Бетон Информация о сносе
УСЛОВИЯ ВЫЗОВА БЕТОНА ДЛЯ СНЯТИЯ И ЗАМЕНЫ
Существуют определенные условия, при которых использование исправляющего состава и продукта для шлифовки приведет к кратковременному исправлению. В этих условиях исправление бетона перед повторной шлифовкой или нанесение декоративного покрытия будет пустой тратой времени и денег, поскольку поверхность или покрытие вскоре будут иметь те же характеристики, что и бетон, который вы пытались починить.
Эти условия включают в себя:
- Глубокие, широко распространенные трещины , где произошло заселение. Это может быть связано с весом больших грузовиков, неправильной подготовкой подкласса, эрозией подкласса или по другим причинам.
- Бетонные плиты, которые утонули , что может произойти, если подкласс не был подготовлен должным образом. Свободная грязь, возможно, использовалась для подкласса. Когда эта грязь оседает - иногда из-за разбрызгивателя или дождевой воды, идущей под бетоном - бетон не поддерживается и будет более подвержен погружению.Также возможно, что подкласс был уплотнен, а бетон подвергся чрезмерному весу, что привело к падению бетона.
- Бетонные плиты с явными признаками морозного пучения . Морозные пучки очень распространены в холодном климате. Влага в земле замерзает и бетон поднимается вверх.
- Бетонные плиты, которые имеют так много отколов или точечной коррозии на поверхности, что выгоднее заменить бетон, чем подготовить всю поверхность к повторной шлифовке и шлифовке бетона.
При любом из вышеперечисленных условий лучше снять и заменить бетон.
Найдите местных подрядчиков по бетону, которые могут вырвать ваш старый бетон и заменить его новым красивым декоративным бетоном.
Существует множество других причин, по которым необходимо удалять бетон в проекте:
- Пристройка к коммерческому или жилому зданию требует удаления бетона, который мешает пристройке.
- Удаляется вся конструкция, из которой бетон является частью конструкции.
- Существует неисправная бетонная конструкция, которую владелец хочет вырвать и заменить.
- Старый бордюр должен быть удален для улучшения улиц, расширения дорог и т. Д.
БЕТОННЫЕ МЕТОДЫ РАЗРУШЕНИЯ
Разрывное давление
Разрыв под давлением может использоваться в тех случаях, когда предпочтительным является относительно тихий, беспыльный контролируемый снос.
Как механическое, так и химическое разрушение под давлением расщепляют бетон либо с помощью расщепляющей машины, работающей на гидравлическом давлении, обеспечиваемом двигателем в случае механического разрушения, либо путем введения расширяющейся суспензии в заранее определенный рисунок скважин в случае химического взрыва.
Затем расщепленный бетон легко удаляется вручную или краном.
Гидравлическое и химическое разрывное давление разрушает бетонные конструкции с минимальным уровнем шума и летящих обломков. Оба метода работают путем приложения боковых сил к внутренним отверстиям, просверленным в бетоне, и могут выполнять практически любую работу, на которую способны другие методы разрушения. Однако, вместо того, чтобы разрушить мошенник
Читайте также: