Разрушающие методы контроля прочности бетона
Современные методы испытания бетона
Пренебрегать методами контроля бетона означает подвергать жизнь людей опасности. Чтобы не допустить брак при строительстве любых объектов на каждом этапе создания и созревания бетона устанавливаются определенные методы контроля. В статье рассмотрены эти методы с указанием соответствующих регламентирующих документов.
Как определяется прочность бетона
Проверки начинаются ещё до создания формовочной смеси. Проверяют параметры и дозировку составляющих компонентов при замешивании смеси. Также проверке по ряду параметров подвергается сама бетонная смесь, а именно: удобоукладываемость, средняя плотность, расслаиваемость, пористость, температура, сохраняемость свойств во времени, объем вовлеченного воздуха.
Формирование заданной прочности бетона зависит от совокупности физических и химических факторов на протяжении каждого этапа. Для понимания всего процесса разделим эти этапы на:
- Подготовку компонентов для приготовления каждой партии бетонной смеси.
- Замешивание бетонной смеси в растворном узле.
- Заливку готовой смеси в формы или опалубку на объекте.
- Набор прочности.
- Эксплуатацию сооружения.
От чего зависит получение заданного класса бетона
Что проверяют на первом этапе? Перед запуском производства и подачей компонентов бетонной смеси в смеситель технолог подбирает состав и таким образом задает характеристики будущей смеси, далее вводит параметры исходного сырья на пульт управления бетоносмесительного узла. Автоматика современных БСУ производит дозирование компонентов в необходимых пропорциях с учётом естественной влажности, температуры и применяемых добавок. Каждая партия бетонной смеси должна быть испытана на производстве, а также иметь документ о качестве по ГОСТ 7473-2010 (Приложение Б), который должен отражать следующие основные параметры:
- наименование, адрес и телефон производителя и поставщика бетонной смеси;
- дата и время отгрузки бетонной смеси;
- вид бетонной смеси и ее условное обозначение;
- проектный класс бетона по прочности;
- применяемые добавки:
- пластификаторы;
- ускорители;
- гидрофобизаторы;
- антифризы;
Примечание: На деле, зачастую, производитель может пытаться умолчать о некоторых пунктах документа о качестве по собственному усмотрению или по просьбе подрядчика, поэтому приходится следить и требовать корректного составления данного документа.
После смешения компонентов испытатели берут смесь одного номинального состава из бетоносмесителя. Из нее отливают стандартные образцы для испытаний.
Лаборанты учитывают разницу в физическом и химическом воздействии на бетонную смесь, которая отправлена на объект, с той, что поступила к ним на испытания в лабораторию. Причина в том, что существует зависимость набора прочности бетона от дополнительных факторов:
- время от замешивания смеси до укладки в опалубку;
- вибрационное воздействие на смесь;
- равномерность заполнения формы или опалубки;
- температура окружающей среды;
- изменение водоцементного соотношения рабочими на объекте.
Эти факторы будут различаться между лабораторными условиями и стройкой. Чтобы получить точные показатели, также берут пробы непосредственно на стройплощадке. Образцы представляют собой кубы с длиной ребра 10 см. Их маркируют, а после доставляют на исследование. Иногда проверку проводят прямо на объекте. Все работы выполняют согласно принятой в отрасли НТД (нормативно-технической документации).
Классификация методов испытания бетона на прочность
В XXI веке применяют два способа тестирования: разрушающие и неразрушающие методы испытаний. Общая цель этих способов — получить показания приборов и соотнести их с характеристиками, заявленными в ГОСТ 22690, ГОСТ 17624 и 10180. Затем, на основании полученных результатов, определить класс бетона по прочности.
Разрушающие методы
Испытания механическим разрушением предварительно отформованных образцов проводят для проверки предельных параметров:
- на сжатие;
- на растяжение при раскалывании;
- на растяжение при изгибе;
- на осевое растяжение.
В лабораторных условиях проверяют прочность по кубикам или балочкам определенных размеров. Их отливают в формы для бетонной смеси (регулируется ГОСТ 10180). Образцы для испытаний также отбирают из готовых конструкций (регулируется ГОСТ 28570). При проведении испытания кубик давят в гидравлическом прессе до разрушения. Важно, что в процессе проверки раздавливают не единичный экземпляр, а серию образцов. Полученные измерения усредняют, а результаты заносят в протокол испытаний. Этим достигается уменьшение погрешности.
Перед испытаниями образцов бетона происходит сбор информации о материале, запрашиваются паспорта качества и исходя из этого подбирается оптимальный режим проведения испытаний. Но иногда случается так, что прочность оказывается в 1,5 – 2 раза выше расчётной. Последствия данной неожиданности мы и отразили в данном ролике.
Неразрушающие методы
ГОСТ 22690 объединяет в эту группу прямые и косвенные механические методы проверки прочности. Первые основаны на замерах механических воздействий на испытуемый материал. Вторые – на сравнении показаний приборов, т.е. косвенных характеристик с прочностными показателями разрушающих методов.
Прямые:
- Отрыв металлических дисков. Позволяет исследовать параметры местного разрушения бетона в месте отрыва приклеенного к нему металлического диска. Приложенное для отрыва усилие фиксируют прибором типа «Оникс». Полученный показатель делят на площадь диска. Затем число сверяют со справочной информацией.
Косвенные:
- Ультразвуковой контроль прочности бетона.Принятое сокращение — УЗК. Это метод базируется на разной скорости прохождения ультразвуковых волн через бетоны различной прочности. Проверку производят методом сквозного и поверхностного прозвучивания. Работы регламентируют ГОСТом 17624. В этом документе зафиксированы требования к технологии проведения испытаний на объектах строительства. Также указаны формы протоколов испытаний. Преимущество этого способа заключается в точности (при использовании современных приборов) и быстроте получения показателей. Но при применении УЗК необходимо произвести дополнительные вычисления и построить градуировочную зависимость, которая свяжет полученные данные с прочностью материала.
- Ударно-импульсный способ. При проведении испытания прибор считывает энергию удара и ее изменение в момент соударения бойка с поверхностью бeтона. Точность измерений при этом способе невысокая и несравнима с показателями лабораторных тестов. Зато есть преимущества в простоте процесса.
- Метод упругого отскока. Метод основан на связи прочности бетона со значением отскока бойка от поверхности бетона. Измеряют величину единицы отскока и далее, вычисляют прочность по заранее построенной градуировочной зависимости. Для работы применяют компактный прибор — молоток Шмидта, инструмент, который изобретен ещё в 1948 году. Из несущественных минусов отметим необходимость предварительной подготовки площадки, на которой проводят измерения.
- Метод пластической деформации. Это тоже способ, которым проверяют прочность бетонной поверхности. Используется ударный инструмент — молоток Кашкарова. Им ударяют по листам бумаги с копиркой, которые выкладывают на исследуемую поверхность. Затем замеряют параметры отпечатка на бумаге, который оставляет эталонный стержень на конце молотка. Показатели соотносят со справочными цифрами, взятыми из нормативных документов. Является довольно экзотическим методом, который редко применяется на практике, ввиду сложности с воспроизводимостью измерений разными испытателями.
Другие виды испытаний
Строительные нормативы при возведении зданий предписывают застройщикам проверять различные параметры бетонных конструкций. Для этого они пользуются услугами строительных лабораторий. Чаще всего определяют следующие характеристики:
- степень карбонизации;
- диаметр и расположение арматуры в готовой конструкции;
- измерение величины защитного слоя;
- влажность поверхности;
- плотность.
Также в лабораториях, для определения важных характеристик, обязательно тестируют образцы на водонепроницаемость и морозостойкость.
Испытание бетона на водонепроницаемость
От показателя водонепроницаемости бетона зависит его прочность и морозостойкость. Все исследовательские процедуры на определение марки по водонепроницаемости выполняют по регламенту ГОСТ 12730.5.
Образцы заливают в формы-цилиндры с диаметром 150 мм или формы-кубы с ребром 150 мм. После созревания их вынимают и тестируют водяным давлением на лабораторном оборудовании. Для уменьшения погрешности показателей в лабораториях исследуют не менее 6 образцов. В зависимости от требований применяют различные способы испытаний бетонных образцов на пропускание влаги:
- используют метод «мокрого пятна»;
- вычисляют коэффициент фильтрации;
- определяют глубину проникания воды под давлением;
- проводят экспресс-тест по воздухопроницаемости.
Техническое оснащение показывает уровень лаборатории и ее возможности по получению результатов проверок.
Определение параметров морозостойкости
Требования к морозостойкости бетона вызваны климатическими факторами на территории России. Проектировщики указывают этот параметр в проектах, а службы контроля включают его в список испытаний на предварительном этапе строительства. Морозостойкость зависит от плотности смеси и отсутствия пор, в которых может скапливаться вода.
Испытания на морозостойкость проводятся только в лабораториях. Работы регламентируются ГОСТ 10060-2012. Образцы замораживают в холодильных камерах до температуры от -18 С до -50 С. Затем бетонный кубик размораживают на воздухе или в водно-солевом растворе при t=+20C. Это считается полным циклом. После определенного количества циклов бетонный камень подвергают стандартной проверке на прочность с помощью гидравлического пресса.
Лаборанты определяют количество циклов, при котором сохраняется марочная прочность. Результаты заносят в протокол испытаний. Без подписи ответственного лица документ не действителен.
Маркировка смесей и готового бетона
Маркировка бетона регулируется ГОСТ 7473. Она отражает свойства, которые заложены производителем. Разберём принятые обозначения на одном примере:
БСТ В15 П4 F150 W6Аббревиатуры БСТ, БСМ, БСЛ означает тип бетонной смеси: тяжёлая, мелкозернистая или лёгкая. Эти сокращения приняты в отрасли и закреплены в ГОСТе.
Буквой B обозначается класс по прочности в МПа.
Буквой П, Ж, Р обозначают принадлежность смесей к группам по удобоукладываемости: подвижные, жёсткие, растекающиеся.
Латинской буквой F маркируют параметр морозостойкости. Показывает, какое количество циклов замораживания-оттаивания выдерживает насыщенный водой бетон без потери прочности или массы.
Латинская буква W в маркировке означает водонепроницаемость. Она сочетается с четными числами от 2 до 20. Единицей измерения этого параметра принято считать давление в МПа×10⁻¹. Этим показателем характеризуют максимальный водный напор, при котором бетон не пропускает воду.
Разрушающие методы контроля прочности бетона
Министерство регионального развития и строительства
5 В настоящем стандарте учтены основные нормативные положения европейского стандарта ЕН 206-1:2000* "Бетон - Часть 1. Общие технические требования, эксплуатационные характеристики, производство и критерии соответствия" (EN 206-1:2000 "Concrete - Part 1: Specification, performance, production and conformity", NEQ) в части контроля и оценки прочности бетона
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
7 ПЕРЕИЗДАНИЕ. Август 2018 г.
1 Область применения
Настоящий стандарт распространяется на все виды бетонов, для которых нормируется прочность, и устанавливает правила контроля и оценки прочности бетонной смеси, готовой к применению (далее - БСГ), бетона монолитных, сборно-монолитных и сборных бетонных и железобетонных конструкций при проведении производственного контроля прочности бетона.
Правила настоящего стандарта могут быть использованы при проведении обследований бетонных и железобетонных конструкций, а также при экспертной оценке качества бетонных и железобетонных конструкций.
Выполнение требований настоящего стандарта гарантирует обеспечение принятых при проектировании расчетных и нормативных сопротивлений бетона конструкций.
2 Нормативные ссылки
В настоящем стандарте приведены ссылки на следующие стандарты:
ГОСТ 7473-2010 Смеси бетонные. Технические условия
ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам
ГОСТ 13015-2003 Изделия железобетонные и бетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения
ГОСТ 17624-87 Бетоны. Ультразвуковой метод определения прочности
ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля
ГОСТ 27006-86 Бетоны. Правила подбора состава
ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Термины, определения и обозначения
3.1 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1.1 нормируемая прочность бетона: Прочность бетона в проектном возрасте или ее доля в промежуточном возрасте, установленная в нормативном или техническом документе, по которому изготавливают БСГ или конструкцию.
Примечание - В зависимости от вида прочности в проектном возрасте устанавливают следующие классы бетона по прочности:
- класс бетона по прочности на сжатие;
- класс бетона по прочности на осевое растяжение;
- класс бетона по прочности на растяжение при изгибе.
3.1.2 требуемая прочность бетона: Минимально допустимое среднее значение прочности бетона в контролируемых партиях БСГ или конструкций, соответствующее нормируемой прочности бетона при ее фактической однородности.
3.1.3 фактический класс бетона по прочности: Значение класса бетона по прочности монолитных конструкций, рассчитанное по результатам определения фактической прочности бетона и ее однородности в контролируемой партии.
3.1.4 фактическая прочность бетона: Среднее значение прочности бетона в партиях БСГ или конструкций, рассчитанное по результатам ее определения в контролируемой партии.
3.1.5 проба бетонной смеси: Объем БСГ одного номинального состава, из которого одновременно изготавливают одну или несколько серий контрольных образцов.
3.1.6 серия контрольных образцов: Несколько образцов, изготовленных из одной пробы БСГ или отобранных из одной конструкции, твердеющих в одинаковых условиях и испытанных в одном возрасте для определения фактической прочности одного вида.
3.1.7 партия бетонной смеси: Объем БСГ одного номинального состава, изготовленный или уложенный за определенное время.
3.1.8 партия монолитных конструкций: Часть монолитной конструкции, одна или несколько монолитных конструкций, изготовленных за определенное время.
3.1.9 партия сборных конструкций: Конструкции одного типа, последовательно изготовленные по одной технологии в течение не более одних суток из материалов одного вида.
3.1.10 контролируемый участок конструкции: Часть конструкции, на которой проводят определение единичного значения прочности бетона неразрушающими методами.
3.1.11 зона конструкции: Часть контролируемой конструкции, прочность бетона которой отличается от средней прочности этой конструкции более чем на 15%.
3.1.12 анализируемый период: Период времени, за который вычисляют среднее значение коэффициента вариации прочности бетона для партий БСГ или конструкций, изготовленных за этот период.
3.1.13 текущий коэффициент вариации прочности бетона: Коэффициент вариации прочности бетона в контролируемой партии БСГ или конструкций.
3.1.14 средний коэффициент вариации прочности бетона: Среднее значение коэффициента вариации прочности бетона за анализируемый период при контроле по схемам А и В.
3.1.15 скользящий коэффициент вариации прочности бетона: Коэффициент вариации прочности бетона, рассчитываемый как средний для текущей партии и предыдущих проконтролированных партий БСГ или конструкций при контроле по схеме Б.
3.1.16 контролируемый период: Период времени, в течение которого требуемая прочность бетона принимается постоянной в соответствии с коэффициентом вариации за предыдущий анализируемый период.
3.1.17 текущий контроль: Контроль прочности бетона партии БСГ или конструкций, при котором значения фактической прочности и однородности бетона по прочности (текущего коэффициента вариации) рассчитывают по результатам контроля этой партии.
3.1.18 разрушающие методы определения прочности бетона: Определение прочности бетона по контрольным образцам, изготовленным из бетонной смеси по ГОСТ 10180 или отобранным из конструкций по ГОСТ 28570.
3.1.19 прямые неразрушающие методы определения прочности бетона: Определение прочности бетона по "отрыву со скалыванием" и "скалыванию ребра" по ГОСТ 22690.
3.1.20 косвенные неразрушающие методы определения прочности бетона: Определение прочности бетона по предварительно установленным градуировочным зависимостям между прочностью бетона, определенной одним из разрушающих или прямых неразрушающих методов, и косвенными характеристиками прочности, определяемыми по ГОСТ 22690 и ГОСТ 17624.
3.1.21 захватка: Объем бетона монолитной конструкции или ее части, уложенный при непрерывном бетонировании одной или нескольких партий БСГ за определенное время.
3.1.22 единичное значение прочности: Значение фактической прочности бетона нормируемого вида, учитываемое при расчете характеристик однородности бетона:
- для БСГ - среднее значение прочности бетона пробы бетонной смеси;
- для сборных конструкций - среднее значение прочности бетона пробы бетонной смеси или среднее значение прочности бетона участка конструкции, или среднее значение прочности бетона одной конструкции;
- для монолитных конструкций - среднее значение прочности бетона участка конструкции или бетона одной конструкции.
3.2 Обозначения
- проектный класс прочности бетона, МПа;
- фактический класс прочности бетона, МПа;
, , - единичное, минимальное и максимальное значения прочности бетона в партии, МПа;
Разрушающие методы контроля прочности бетона
Правила контроля и оценки прочности
Concretes. Rules for control and assessment of strength
____________________________________________________________________
Текст Сравнения ГОСТ 18105-2018 с ГОСТ 18105-2010 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________Дата введения 2020-01-01
Предисловие
Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"
Сведения о стандарте
1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ им.А.А.Гвоздева) - структурным подразделением АО "НИЦ "Строительство"
2 ВНЕСЕН Техническим комитетом ТК 465 "Строительство"
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 29 ноября 2018 г. N 54)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97
Сокращенное наименование национального органа по стандартизации
Госстандарт Республики Беларусь
4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 апреля 2019 г. N 130-ст межгосударственный стандарт ГОСТ 18105-2018 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2020 г.
Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)
1 Область применения
Настоящий стандарт распространяется на все виды бетонов по ГОСТ 25192, для которых нормируется прочность, и устанавливает правила контроля и оценки прочности бетона при контроле качества бетонных смесей, бетонных и железобетонных изделий и конструкций, в том числе монолитных и сборно-монолитных.
Настоящий стандарт устанавливает общие правила контроля и оценки прочности бетона. Стандарты на отдельные виды бетонов, изделий или конструкций могут содержать дополнительные требования к правилам настоящего стандарта (массивные конструкции, подземные сооружения, торкрет-бетоны, аэродромные и дорожные покрытия, фибробетоны и т.п.).
Настоящий стандарт может быть использован при инспекционном контроле и проведении обследований бетонных и железобетонных изделий и конструкций.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:
ГОСТ 7473-2010 Смеси бетонные. Технические условия
ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам
ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения
ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности
ГОСТ 22690-2015 Бетоны. Определение прочности механическими методами неразрушающего контроля
ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования
ГОСТ 27006-86 Бетоны. Правила подбора состава
ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций
ГОСТ 31914-2012 Бетоны высокопрочные тяжелые и мелкозернистые для монолитных конструкций. Правила контроля и оценки качества
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Термины, определения и обозначения
3.1 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1.1 анализируемый период: Период времени, в течение которого вычисляют среднее значение коэффициента вариации прочности бетона для партий бетонной смеси или изделий, изготовленных за этот период.
3.1.2 градуировочная зависимость: Графическая или аналитическая зависимость между косвенной характеристикой прочности и прочностью бетона, определенной одним из разрушающих или прямых неразрушающих методов.
3.1.3 группа конструкций: Несколько монолитных конструкций из бетона одного проектного класса, объединенных по общим принципам (технологии возведения и формования), изготовленных в течение определенного интервала времени.
3.1.4 единичное значение прочности: Значение фактической прочности бетона нормируемого вида, учитываемое при расчете характеристик однородности бетона:
- для бетонных смесей - среднее значение прочности бетона серий контрольных образцов одной пробы;
- сборных конструкций - среднее значение прочности бетона серий контрольных образцов одной пробы или значение прочности бетона контролируемого участка конструкции, или среднее значение прочности бетона одной конструкции;
- монолитных конструкций - значение прочности бетона контролируемого участка конструкции или среднее значение прочности бетона серий контрольных образцов одной пробы.
3.1.5 захватка: Объем бетона монолитной конструкции или ее части, уложенный при непрерывном бетонировании, ограниченный рабочими швами бетонирования или гранями конструкции.
3.1.6 зона конструкции: Часть контролируемой конструкции, прочность бетона которой отличается от средней прочности бетона этой конструкции более чем на 15%.
3.1.7 инспекционный контроль: Контроль, осуществляемый специально уполномоченными лицами с целью проверки эффективности ранее выполненного контроля.
3.1.8 контролируемый период: Период времени, в течение которого требуемая прочность бетона принимается постоянной и назначается в соответствии со средним коэффициентом вариации за предыдущий анализируемый период.
3.1.9 контролируемый участок: Часть изделия или конструкции размерами, обеспечивающими возможность определения единичного значения прочности бетона.
3.1.10 косвенные неразрушающие методы определения прочности бетона: Неразрушающие методы определения прочности бетона по предварительно устанавливаемым градуировочным зависимостям.
3.1.11 косвенные характеристики прочности (косвенный показатель): Показание прибора при измерении прочности бетона неразрушающими методами.
3.1.12 неразрушающие методы определения прочности бетона: Методы определения прочности бетона при локальном воздействии на бетон конструкций или образцов без их общего разрушения, основанные на связи косвенных показателей и прочности бетона.
3.1.13 нормируемая прочность бетона: Прочность бетона в проектном возрасте или ее доля в промежуточном возрасте, установленная в нормативном или техническом документе, по которому изготовляют бетонную смесь, изделие или конструкцию.
Примечание - В зависимости от требований нормативных или технических документов к нормируемым и контролируемым показателям качества бетона по прочности в проектном возрасте устанавливают класс бетона по прочности:
- осевое растяжение - ;
- растяжение при изгибе - .
3.1.14 партия бетонной смеси: Объем бетонной смеси одного номинального состава, изготовленный за определенное время.
3.1.15 партия изделий: Бетонные и железобетонные изделия одного типа, изготовленные по одной технологии из бетонной смеси одного вида в течение определенного интервала времени.
3.1.16 проба бетонной смеси: Объем бетонной смеси одного номинального состава, из которого одновременно изготовляют одну или несколько серий контрольных образцов.
3.1.17 прямые неразрушающие методы определения прочности бетона: Методы по ГОСТ 22690, предусматривающие стандартные схемы испытаний и допускающие применение известных градуировочных зависимостей без их привязки и корректировки.
3.1.18 разрушающие методы определения прочности бетона: Методы определения прочности бетона по контрольным образцам, изготовленным из бетонной смеси по ГОСТ 10180 или отобранным из конструкций по ГОСТ 28570.
3.1.19 серия контрольных образцов: Несколько образцов, изготовленных из одной пробы бетонной смеси или отобранных из одной конструкции, твердеющих в одинаковых условиях и испытанных в одном возрасте для определения одного вида фактической прочности.
3.1.20 скользящий коэффициент вариации прочности бетона: Коэффициент вариации прочности бетона, рассчитываемый как средний для текущей контролируемой партии и предыдущих проконтролированных партий бетонных смесей или изделий при контроле по схеме Б.
3.1.21 средний коэффициент вариации прочности бетона: Среднее значение коэффициента вариации прочности бетона за анализируемый период при контроле по схеме А.
3.1.22 текущий контроль: Контроль прочности бетона партии бетонной смеси или изделий, а также отдельных монолитных конструкций или их групп, при котором значения фактической прочности и однородности бетона по прочности (текущего коэффициента вариации) рассчитывают по результатам проводимого контроля.
3.1.23 текущий коэффициент вариации прочности бетона: Коэффициент вариации прочности бетона в контролируемой партии бетонных смесей, изделий, зоне конструкции, отдельной конструкции или группе конструкций.
3.1.24 требуемая прочность бетона: Минимально допустимое среднее значение прочности бетона в контролируемых партиях бетонной смеси или изделий, соответствующее нормируемой прочности бетона при ее фактической однородности.
3.1.25 фактическая прочность бетона: Среднее значение прочности бетона, рассчитанное по результатам ее определения в партиях бетонной смеси, изделий или монолитных конструкциях.
3.1.26 фактический класс бетона по прочности: Оценочное значение класса бетона по прочности, рассчитанное по результатам определения фактической прочности бетона и ее однородности.
3.2 Обозначения
В настоящем стандарте применены следующие обозначения:
- нормируемая прочность бетона, МПа;
- фактический класс прочности бетона, МПа;
- число единичных значений прочности бетона в контролируемой партии, зоне, конструкции или группе конструкций;
Неразрушающий контроль - определение прочности бетона.
Азы строительной науки повествуют нам о том, что бетон прекрасно работает на сжатие и крайне плохо на растяжение. Оставим методы увеличения сопротивляемости бетона для данных групп напряжений и поговорим о том, как же нам проверить прочностные характеристики бетона, ведь эта основная его задача - быть прочным и долговечным.
Существует 2 основных способа:
1) Разрушающие методы контроля прочности бетона – испытания образцов бетона при помощи пресса.
2) Неразрушающие методы контроля прочности бетона – испытания бетона, не допускающие разрушения конструкции или бетонного образца.
Разрушающие методы в свою очередь делятся на 2 вида по способу создания образца:
Основная задача метода – выявить предельную нагрузку бетона на сжатие путем раздавливания образца под воздействием гидравлического пресса, имитирующего предельные разрушающие напряжения, возникающие в процессе эксплуатации. Зачастую образец изготавливается и крайне редко выпиливается из конструкции, чтобы не ухудшать ее эксплуатационных свойств, однако второй вариант дает наиболее четкое представление о сопротивлении бетона возникающим напряжениям на конкретном участке. Когда образец отбирают непосредственно из конструкции, это называется выбуривание кернов, про это у нас тоже есть отдельная статья.
Неразрушающая экспертиза бетона имеет одну очень важную особенность, которая состоит в том, что мы можем проверить прочность конструкции во время её эксплуатации. К ней относятся следующие методы, которыми испытывают бетон:
Определение прочности бетона неразрушающим методомНеразрушающий метод предусматривает собой испытания различными приборами без разрушения конструкции и потери ею эксплуатационных характеристик. Данный метод позволяет производить испытания непосредственно на площадке, получать данные оперативно. С одной стороны, этот метод не обладает такими же показателями точности, как испытание при помощи гидравлического пресса, однако эта точность повышается с каждым годом благодаря улучшению оборудования, с другой, у него есть ряд серьезных преимуществ. Это и становится причиной популярности данного способа.
Давайте более подробно рассмотрим каждый метод. Стоит заметить, что получение максимально точных данных возможно при комбинированном их использовании. О каждом методе отдельно вы можете почитать в статьях на нашем сайте.
Упругий отскок предназначен для измерения прочностных показателей бетона в диапазоне от 5 до 50 МПа. Основное положение, которое следует соблюдать при измерении прочности бетонной конструкции этим методом, – это перпендикулярное расположение оборудования. Один из самых популярных инструментов в этом направлении – склерометр.
Склерометр – это прибор для определения прочностных характеристик бетона посредством замера величины отскока ударного механизма после контакта с поверхностью бетона. В случае расположения склерометра перпендикулярно к поверхности (обязательное требование), но под углом к поверхности земли, необходимо учитывать еще и этот угол. Все данные для расчета имеются на графике, прилагаемом к склерометру.
Также необходимо соблюдать некоторые условия размещения прибора во время проведения испытания. Первое условие – это расстояние минимум в 3 сантиметра между точками проведения испытаний, а также 5 сантиметров до края конструкции. Так вы избавите себя от дополнительных расчетов погрешности, а также сможете получить максимально точные данные. Помните, что прибор выдает вам косвенную характеристику, а не прямую, как в случае с испытаниями на гидравлическом прессе, а значит и погрешность в результате будет присутствовать. Для максимально точного определения характеристики, рекомендуется произвести не менее 9 испытаний. Минимальная толщина конструкции для испытания этим методом – 100 миллиметров. Таким образом, при соблюдении всех условий будут получены максимально точные данные.Для проведения испытаний при помощи ударного импульса необходимо провести уже не менее 10 испытаний, однако данная методика позволяет работать с конструкциями толщиной не менее 50 миллиметров, а значит диапазон работы расширяется. Также существенно уменьшается расстояние между местами измерений. В этом случае оно составляет всего 1,5 сантиметра, и это дает нам расширенное поле действий и возможность провести более точные измерения.
Наиболее часто применяемый измеритель - ИПС-МГ4. Помимо стандартных требований к применению прибора, есть еще и допустимые границы состояния окружающей среды и конструкции. Влажность окружающего воздуха не должна быть больше 95%. Так вы не повредите электронные механизмы и провода прибора. Температура воздуха не должна быть ниже -10 градусов и выше 40. Предел исследуемой прочности варьируется от 3-х до 100 мегапаскалей. Необходимо провести 10-15 испытаний. Как правило, для получения точных данных берется среднее арифметическое по всем результатам, но следует учесть, что, если в определенной точке вы получили какие-либо далеко отстоящие цифры, их не нужно брать в расчет. Причиной этих расхождений может быть малое расстояние до стержня арматуры или конца конструкции, а также неверное расположение прибора.
Состоит прибор из двух блоков – измерителя и преобразователя. Измеритель представляет собой сложный механизм с цифровым экраном, на котором отображаются текущие настройки и результаты измерения.
Преобразователь – это прибор, имеющий 3 точки закрепления, дающий фиксацию на поверхности конструкции под прямым углом. Преобразователь передает импульс на конструкцию и считывает данные возврата. Это и дает необходимую нам характеристику. Если применить данный метод предстоит в лабораторных условиях, заранее изготовьте кубики с ребром 10 сантиметров, образцы следует зафиксировать при помощи пресса с давлением в 30 килоньютонов.Методом пластических деформаций осуществляется измерение прочности в пределах от 5 до 50 МПа. Количество испытаний неразрушающего контроля бетона – 5.
Существует 3 прибора. 1-й прибор – это молоток Физделя. Он представляет собой ручной молоток с шариком на одном конце. Конструкция молотка неимоверно проста, и воспользоваться им может человек абсолютно любой квалификации. Другое дело, что провести испытание с необходимой точностью способен не просто специалист, а, пожалуй, несколько десятков специалистов по всей стране. И причина как раз в простой конструкции молотка. Молоток не дает точно рассчитать силу удара и угол. Необходимо фиксировать локоть, бить всегда с одной силой, сверять данные. Эти и множество других нюансов сделали молоток Физделя непопулярным среди строителей.В отличие от молотка Физделя, молоток Кашкарова позволяет получить значительно более точные данные. За счет чего же это достигается? Водной из наших статей мы уже рассказывали вам о его устройстве. Если говорить кратко, то причина эта заключается в конструкции молотка, вернее, в расположенном в его ударной части цилиндре. В нем находится металлический шарик, устройство для крепления стержня и сам эталонный стержень, закрепленный между ручкой молотка при помощи крепления и шарика. Когда мы производим удар по поверхности, изменяется не только поверхность бетона, но и поверхность эталонного стержня, прочность которого нам известна. Благодаря этому мы сможем получить соотношение, характеризующее нашу силу удара, а с учетом диаметра полученного отверстия в бетоне легко вывести его прочность. Таким образом, молоток Кашкарова, обладающий все теми же преимуществами, что и молоток Физделя, лишен его недостатков по уровню точности измерений, и в этом причина его популярности среди работников стройки и службы эксплуатации.
В последнее время также набирают популярность и пружинные молотки, дающие достаточно точные результаты, но они более громоздкие, а также значительно в меньшей степени износоустойчивые, поэтому необходимо регулярно проводить поверку пружины прибора на соответствие эталонному значению, в противном случае вы просто будете получать неточные данные по измерению бетона, даже не догадываясь об этом.
Именно поэтому наиболее часто применяемый инструмент при методе пластической деформации – молоток Кашкарова.Для проведения испытаний необходимо выбрать площадь около 50 квадратных сантиметров на поверхности бетона, очистить ее от неровностей, подготовить точки для нанесения ударов. Помните, что проводя испытания в помещении с повышенной влажностью, вы также рискуете получить неточные данные, ведь влага оседает на поверхностном слое, давая свое сопротивление и распределение удара. Бетон необходимо просушить. Также нельзя проводить испытания бетона сразу после применения нагрузки на конструкцию и после температурного воздействия. Впрочем, это касается всех методов.
Проводим испытания посредством ударов о поверхность бетона, заносим диаметры лунок, выбираем из них те, которые отличаются друг от друга не более чем в 1,2 раза, и рассчитываем среднее арифметическое значение. Чтобы иметь максимально достоверные сведения, необходимо в расчет среднего арифметического включить около 6-ти лунок.Испытание прочности бетона при помощи ультразвука
Ультразвуковое исследование бетона позволяет определять действительную прочность бетона с максимальной точностью. Данный метод по точности может уступить разве что разрушающему методу, но он гораздо более удобный и предоставляет более полную картину того, что происходит внутри бетона. Как уже говорилось ранее, некоторые приборы ультразвукового контроля прочности бетона имеют расширение в виде дефектоскопов, которые собирают данные обо всем объеме материала, т.е. они покажут внутренние трещины и пустоты в бетоне, о которых вы даже не подозревали, а они влияют на эксплуатационные характеристики здания. Эти приборы способны оценить не только однородность, но и пористость материала, а также зрелость бетона и наличие минеральных отложений внутри. Иначе говоря, вы знаете все, что происходит внутри бетона.
Огромным преимуществом ультразвукового метода является то, что он совершенно не повреждает бетонную конструкцию, что позволяет отнести его к неразрушающим методам контроля бетона, о которых мы уже рассказывали вам ранее. Однако его отличие от прочих методов видно невооруженным глазом. Вам не надо бить, скалывать и отрывать бетон от поверхности. Да, прочностные характеристики от этого страдают минимально, поэтому существенных проблем при эксплуатации здания не возникает, однако некоторые эстетические повреждения все-таки имеются. Ультразвуковой же метод неразрушающего контроля бетона не оставляет никаких повреждений на поверхности исследуемого участка конструкции, тем самым становясь приоритетным для современных строителей.
Рассмотрим же принцип работы прибора и весь процесс ультразвукового исследования бетона. Сначала в приборе генерируется импульс, который преобразовывается в волну и предается по бетону вплоть до приемника сигнала, который принимает, а затем усиливает сигнал, передавая данные на развертку, которая фактически отображает все данные исследования. За долгое время существования этого прибора были определены различные функции зависимости, в частности было написано более 10-ти уравнений, связывающих скорость передачи ультразвукового импульса и прочность бетона. В уравнениях присутствуют коэффициенты a, b и c, отражающие разные характеристики испытуемых конструкций. Нахождение этих параметров в уравнении делало их громоздкими, а также вынуждало проводить испытания образцов, полученных в лабораторных условиях из того же бетона, что и конструкция. Это создавало множество неудобств.
Многие российские ученые думали над этим вопросом и в конце концов вывели следующую формулу: R=abV3,75. Коэффициент a выражал тип заполнителя, применяемого в конструкции, ведь для каждого заполнителя, будь то щебень или известняк, время распространения ультразвука разное. Коэффициент b является градуировочным. Для определения градуировочных зависимостей производится испытание не менее 15-ти кубов бетона с ребром 0,1 метра, которые твердеют в течение 5 суток.
Но это все касается именно лабораторных испытаний бетона непосредственно перед производством строительных работ. Как применить этот метод для уже существующих конструкций? Лучше всего заказать услуги лаборатории, которая проведет точные исследования и даст вам полную картину прочностных характеристик бетонной конструкции. Если же вы сам решитесь на подобные исследования, то вам необходимо учитывать следующие моменты:
1) Измерять конструкцию нужно таким образом, чтобы импульс был направлен перпендикулярно рабочей арматуре.
2) Если производится поверхностное прозвучивание бетона, то необходимо провести 2 испытания, результаты должны отклоняться друг от друга не более чем на 1 %. Для сквозного – 1 прозвучивание.
3) Необходимо получить градуировочные зависимости для исследуемого типа бетона, а для этого необходимо дополнительно провести испытания или разрушающим методом, или методом отрыва со скалыванием.
4) Согласно ГОСТ 17624-2012, необходимо производить вычисления по формуле R=aH+b, где R – это прочность, H – скорость или время ультразвука, a и b – коэффициенты вычисляемой градуировочной зависимости.Читайте также: