Расчетное положение расчетной нагрузки при расчете монолитного бетонного покрытия
Принципы рассчета монолитных (ж/б) колонн.
я использую не "экспертизу колонны", а "сопротивление ж/б сечений".
на вкладке усилия справа сверху есть кнопочка, с помощью которой можно автоматически загрузить РСУ, вытащенные из скада. так проще =)
п.с. а на тему моментов. случай малых эксцентриситетов, случай больших эксцентриситетов - берите учебник по ЖБК, или руководство по проектированию, ну или НормКад на крайняк и проектируйте =)
__________________.: WikiЖБК + YouTube :. Я этими учебниками сейчас обложен. Улицкие с Линовичами скоро сниться будут . СНиП перечитываю, по Пособию считаю. Но вопрос все равно возник.
Просто арбат видимо считает на все подряд. А на что в действительности нужно считать?
Видимо опыт это самое важное. И я как раз в начальной стадии его накопления Я этими учебниками сейчас обложен. Улицкие с Линовичами скоро сниться будут . СНиП перечитываю, по Пособию считаю. Но вопрос все равно возник.
Просто арбат видимо считает на все подряд. А на что в действительности нужно считать?
Видимо опыт это самое важное. И я как раз в начальной стадии его накопления Деформации Вам надо получать из расчёта всего каркаса здания, по данным одной отдельной колонны это бессмысленно. А остальное вот что "арбат" вам показывает, это и есть необходимый набор показателей, определяющих прочность колонны. Исходные данные для расчёта в принципе известны: размеры колонны, данные по бетону и арматуре и нагрузки на неё, а там уж что получится, лишнего арбат считать не будет.
экспертиза пром безопасности
Санкт-Петербург град Воронеж Деформации Вам надо получать из расчёта всего каркаса здания, по данным одной отдельной колонны это бессмысленно. А остальное вот что "арбат" вам показывает, это и есть необходимый набор показателей, определяющих прочность колонны. Исходные данные для расчёта в принципе известны: размеры колонны, данные по бетону и арматуре и нагрузки на неё, а там уж что получится, лишнего арбат считать не будет.2 troja
Я думаю здесь перепутаны деформации и перемещения.
2 Александр Андреевич
Арбат в отчете выдает ссылки на пункты СП по которым дет проверка, я думаю достаточно их просмостреть и все станет понятно. Расчет на предельные относительные деформации в данном случае относится к 1-ой ! группе пред. сост.
С уважением,
yarrus77 Последний раз редактировалось yarrus77, 21.05.2009 в 11:55 .
Арбат в отчете выдает ссылки на пункты СП по которым дет проверка, я думаю достаточно их просмостреть и все станет понятно. Расчет на предельные относительные деформации в данном случае относится к 1-ой ! группе пред. сост.
Я конечно смотрел ссылки и в конец запутался потому, что при расчете внецентренно сжатой колонны Арбат ведет проверку как для изгибаемых элементов. пп.3.15-3.20. Не одна из книг и пособий не дает таких рекомендаций.
Почему расчет на предельные относительные деформации в данном случае относится к 1-ой ! группе пред. сост.? Мне кажется вы ошибаетесь.
Согласен, конечно учет совместной работы конструкций эффективнее, но хочется проверить вручную. И при этом понимать как. Ведь считали же раньше. Причем например расчет колонны среднего ряда при шарнирном опирании конструкций покрытия почти не зависит от остального здания. В принципе ветер, который и передастся можно учесть(хотя-бы просто из общей расчетной схемы вытащив).
А вообще кто-нибудь считает вручную? В каком вы виде расчеты выполняете? Ведь какой-нибудь не снятый "флажек" в расчетной программе может и к аварии привести. хотя и в калькуляторе можно не там запятую поставит. или запас в 2 раза? а что на это скажет заказчик, ведь ему из кармана своего вытащить этот запас?
град Воронеж Я конечно смотрел ссылки и в конец запутался потому, что при расчете внецентренно сжатой колонны Арбат ведет проверку как для изгибаемых элементов. пп.3.15-3.20. Не одна из книг и пособий не дает таких рекомендаций.Почему расчет на предельные относительные деформации в данном случае относится к 1-ой ! группе пред. сост.? Мне кажется вы ошибаетесь. На счет 1-й группы посмотрите СП. ЯТД здесь деформации завязаны на диаграммы, и дублируют расчеты по усилиям.
На счет внецентренносжатых (изгибаемых) колонн вы ошибаетесь здесь терминология - именно "как для изгибаемых элементов" это случай 1-х=<ксиR*h0 - сжатая арматура не учитывается, характер разрушения как у изгибаемых элементов (все в слове КАК ) __________________
С уважением,
yarrus77 Последний раз редактировалось yarrus77, 21.05.2009 в 14:28 .
1.10. Бетонные и железобетонные конструкции должны удовлетворять требованиям расчета по несущей способности (предельные состояния первой группы) и по пригодности к нормальной эксплуатации (предельные состояния второй группы).
а) Расчет по предельным состояниям первой группы должен обеспечивать конструкции от:
хрупкого, вязкого или иного характера разрушения (расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением);
потери устойчивости формы конструкции (расчет на устойчивость тонкостенных конструкций и т. д.) или ее положения (расчет на опрокидывание и скольжение подпорных стен; расчет на всплывание заглубленных или подземных резервуаров, насосных станций и т. п.);
усталостного разрушения (расчет на выносливость конструкций, находящихся под воздействием многократно повторяющейся нагрузки - подвижной или пульсирующей: подкрановых балок, шпал, рамных фундаментов и перекрытий под некоторые неуравновешенные машины и т. п.);
разрушения под совместным воздействием силовых факторов и неблагоприятных влияний внешней среды (периодического или постоянного воздействия агрессивной среды, действия попеременного замораживания и оттаивания, воздействия пожара и т. п.).
б) Расчет по предельным состояниям второй группы должен обеспечивать конструкции от:
образования трещин, а также их чрезмерного или продолжительного раскрытия (если по условиям эксплуатации образование или продолжительное раскрытие трещин недопустимо);
чрезмерных перемещений (прогибов, углов перекоса и поворота, колебаний).
Это из оглавления Снипа
Я конечно смотрел ссылки и в конец запутался потому, что при расчете внецентренно сжатой колонны Арбат ведет проверку как для изгибаемых элементов. пп.3.15-3.20. Не одна из книг и пособий не дает таких рекомендаций.
Почему расчет на предельные относительные деформации в данном случае относится к 1-ой ! группе пред. сост.? Мне кажется вы ошибаетесь.
Согласен, конечно учет совместной работы конструкций эффективнее, но хочется проверить вручную. И при этом понимать как. Ведь считали же раньше. Причем например расчет колонны среднего ряда при шарнирном опирании конструкций покрытия почти не зависит от остального здания. В принципе ветер, который и передастся можно учесть(хотя-бы просто из общей расчетной схемы вытащив).
А вообще кто-нибудь считает вручную? В каком вы виде расчеты выполняете? Ведь какой-нибудь не снятый "флажек" в расчетной программе может и к аварии привести. хотя и в калькуляторе можно не там запятую поставит. или запас в 2 раза? а что на это скажет заказчик, ведь ему из кармана своего вытащить этот запас?
Расчетное положение расчетной нагрузки при расчете монолитного бетонного покрытия
ОТРАСЛЕВОЙ ДОРОЖНЫЙ МЕТОДИЧЕСКИЙ ДОКУМЕНТ
Методика расчета армированных цементобетонных покрытий дорог и аэродромов на укрепленных основаниях
1 РАЗРАБОТАН Федеральным государственным бюджетным образовательным учреждением высшего профессионального образования "Московский автомобильно-дорожный государственный технический университет (МАДИ)".
Коллектив авторов: канд. техн. наук А.А.Чутков (руководитель работ), д-р техн. наук А.П.Степушин, канд. техн. наук В.В.Татаринов, канд. техн. наук В.Д.Садовой, канд. техн. наук В.А.Сабуренкова, канд. техн. наук А.А.Фотиади.
2 ВНЕСЕН Управлением проектирования и строительства автомобильных дорог Федерального дорожного агентства.
4 ИМЕЕТ РЕКОМЕНДАТЕЛЬНЫЙ ХАРАКТЕР.
5 ВВЕДЕН ВПЕРВЫЕ.
1 Область применения
1.1 Настоящий отраслевой дорожный методический документ (далее - методический документ) разработан в развитие Методических рекомендаций по проектированию жестких дорожных одежд (взамен ВСН 197-91), СП 34.13330.2012 (СНиП 2.05.02-85*), СП 121.13330.2012 (СНиП 32-03-96), Федеральных авиационных правил "Технологическое проектирование и строительство аэродромов ГА" и распространяется на вновь строящиеся автомобильные дороги и аэродромы с покрытиями из монолитного армированного цементобетона на укрепленных основаниях.
1.2 Положения настоящего методического документа не распространяются на проектирование автомобильных дорог и аэродромов, располагаемых в районах со сложными инженерно-геологическими условиями.
2 Нормативные ссылки
В настоящем методическом документе использованы нормативные ссылки на следующие документы:
ГОСТ 3344-83 Щебень и песок шлаковые для дорожного строительства. Технические условия
ГОСТ 8736-93 Песок для строительных работ. Технические условия
ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования
ГОСТ 25607-2009 Смеси щебеночно-гравийно-песчаные для покрытий и оснований автомобильных дорог и аэродромов. Технические условия
ГОСТ 25820-2000 Бетоны легкие. Технические условия
ГОСТ 26633-91 Бетоны тяжелые и мелкозернистые. Технические условия
ГОСТ 30491-2012 Смеси органоминеральные и грунты, укрепленные органическими вяжущими, для дорожного и аэродромного строительства. Технические условия
ГОСТ 30740-2000 Материалы герметизирующие для швов аэродромных покрытий. Общие технические условия
СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения (актуализированная редакция СНиП 52-01-2003)
СП 131.13330.2012 Строительная климатология (актуализированная редакция СНиП 23-01-99*)
СП 121.13330.2012 Аэродромы (актуализированная редакция СНиП 32-03-96)
СП 52-101-2003 Бетонные и железобетонные конструкции без предварительного напряжения арматуры
3 Термины и определения
В настоящем методическом документе применены следующие термины с соответствующими определениями:
3.1 покрытие: Верхняя часть дорожной одежды, воспринимающая непосредственно усилия от колес автомобилей и опор самолетов, подвергающаяся непосредственному воздействию атмосферных факторов.
3.2 основание дорожной одежды: Несущая часть дорожной одежды, обеспечивающая совместно с покрытием перераспределение и снижение давления на расположенные ниже дополнительные слои основания или грунт земляного полотна.
3.3 искусственное укрепленное основание: Конструктивный слой, расположенный под покрытием, обеспечивающий совместно с покрытием перераспределение и снижение давления на нижележащие дополнительные слои или грунт земляного полотна, состоящий из обработанных вяжущим материалов, для которых нормировано расчетное сопротивление растяжению при изгибе.
3.4 искусственное неукрепленное основание: Конструктивный слой между искусственным укрепленным основанием и грунтом земляного полотна, выполняющий морозозащитную, дренирующую и теплоизолирующую функции.
3.5 жесткое покрытие: Покрытие, работающее под нагрузкой как пластина на упругом основании, к таким покрытиям относятся цементобетонные покрытия.
3.6 армобетонное покрытие: Покрытие из цементобетона, армированного металлической сеткой, предназначенной для восприятия температурных напряжений и расположенной на расстоянии, равном 1/3-1/2 толщины плиты от поверхности покрытия.
3.7 железобетонное покрытие: Армированное цементобетонное покрытие, в котором необходимую площадь сечения арматуры определяют расчетом на прочность и ширину раскрытия трещин.
3.8 предельное состояние: Состояние конструкции, при наступлении которого она становится неспособной сопротивляться внешним воздействиям или получает недопустимые по условиям эксплуатации повреждения.
3.9 нормативная нагрузка: Установленное нормами значение массы транспортного средства или категории,
3.10 расчетная нагрузка: Установленное значение для расчета дорожной одежды и покрытия аэродрома, учитывающее условия эксплуатации и конфигурацию шасси транспортного средства или его категорию.
3.11 расчетный изгибающий момент: Внутреннее усилие в сечении плиты покрытия, вызванное внешней силовой нагрузкой.
3.12 предельный изгибающий момент: Предельное значение внутреннего усилия в сечении плиты покрытия, вызванное внешней силовой нагрузкой, при которой наступает предельное состояние.
4 Нормативные и расчетные нагрузки на армированные цементобетонные покрытия автомобильных дорог и аэродромов
4.1 Нормативные и расчетные нагрузки на армированные цементобетонные покрытия автомобильных дорог
4.1.1 Согласно существующему положению о расчете дорожных одежд с цементобетонным покрытием, расчет покрытий автомобильных дорог ведется от нагрузки на колесо автомобиля или прицепа (часто наиболее нагруженного колеса задней оси) или другого колесного средства. В качестве расчетной схемы нагружения конструкции колесом автомобиля принимается гибкий круговой штамп, передающий равномерно распределенную нагрузку.
Таблица 1 - Нормативные нагрузки на автомобильные дороги
Нормативные нагрузки, МН, в зависимости от категории автомобильной дороги
Расчетное положение расчетной нагрузки при расчете монолитного бетонного покрытия
ПОСОБИЕ
ПО ПРОЕКТИРОВАНИЮ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ИЗ ТЯЖЕЛОГО БЕТОНА БЕЗ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ АРМАТУРЫ
(к СП 52-101-2003)
Содержит указания СП 52-101-2003 по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры; положения, детализирующие эти указания, примеры расчета, а также рекомендации, необходимые для проектирования.
Для инженеров-проектировщиков, а также студентов строительных вузов.
ПРЕДИСЛОВИЕ
В Пособии приведены все указания по проектированию СП 52-101-2003, положения, детализирующие эти указания, примеры расчета элементов, а также рекомендации по проектированию.
Материалы по проектированию редко встречаемых конструкций с ненапрягаемой высокопрочной арматурой (классов А600 и выше) в настоящее Пособие не включены, а приведены в "Пособии по проектированию предварительно напряженных железобетонных конструкций из тяжелого бетона".
В Пособии не приведены особенности проектирования конструкций отдельных видов зданий и сооружений, связанные с определением усилий в этих конструкциях. Эти вопросы освещены в соответствующих Сводах Правил и пособиях.
Единицы физических величин, приведенные в Пособии: силы выражены в ньютонах (Н) или килоньютонах (кН); линейные размеры - в мм (для сечений) или в м (для элементов или их участков); напряжения, сопротивления, модули упругости - мегапаскалях (МПа); распределенные нагрузки и усилия - в кН/м или Н/мм. Поскольку 1 МПа =1 Н/мм, при использовании в примерах расчета формул, включающих величины в МПа (напряжения, сопротивления и т.п.), остальные величины приводятся только в Н и мм (мм).
В таблицах нормативные и расчетные сопротивления и модули упругости материалов приведены в МПа и в кгс/см.
Пособие разработано "ЦНИИПромзданий" (инженер И.К.Никитин, доктора технических наук Э.Н.Кодыш и Н.Н.Трёкин) при участии "НИИЖБ" (доктора технических наук А.С.Залесов, Е.А.Чистяков, А.И.Звездов, Т.А.Мухамедиев).
1. ОБЩИЕ РЕКОМЕНДАЦИИ
ОСНОВНЫЕ ПОЛОЖЕНИЯ
1.1. Рекомендации настоящего Пособия распространяются на проектирование бетонных и железобетонных конструкций зданий и сооружений, выполняемых из тяжелого бетона классов по прочности на сжатие от В10 до В60 без предварительного напряжения арматуры и эксплуатируемых при систематическом воздействии температур не выше 50 °С и не ниже минус 40 °С в среде с неагрессивной степенью воздействия при статическом действии нагрузки.
Рекомендации Пособия не распространяются на проектирование бетонных и железобетонных конструкций гидротехнических сооружений, мостов, тоннелей, труб под насыпями, покрытий автомобильных дорог и аэродромов и некоторых других специальных сооружений.
Примечание. Термин "тяжелый бетон" применен в соответствии с ГОСТ 25192.
1.2. При проектировании бетонных и железобетонных конструкций, кроме выполнения расчетных и конструктивных требований настоящего Пособия, должны выполняться технологические требования по изготовлению и возведению конструкций, а также должны быть обеспечены условия для надлежащей эксплуатации зданий и сооружений с учетом требований по экологии согласно соответствующим нормативным документам.
1.3. В сборных конструкциях особое внимание должно быть уделено на прочность и долговечность соединений.
1.4. Бетонные элементы применяют:
а) преимущественно в конструкциях, работающих на сжатие при расположении продольной силы в пределах поперечного сечения элемента;
б) в отдельных случаях в конструкциях, работающих на сжатие при расположении продольной силы за пределами поперечного сечения элемента, а также в изгибаемых конструкциях, когда их разрушение не представляет непосредственной опасности для жизни людей и сохранности оборудования (например, элементы, лежащие на сплошном основании).
Конструкции рассматривают как бетонные, если их прочность в стадии эксплуатации обеспечена одним бетоном.
1.5. Расчетная зимняя температура наружного воздуха принимается как средняя температура воздуха наиболее холодной пятидневки в зависимости от района строительства согласно СНиП 23-01-99. Расчетные технологические температуры устанавливаются заданием на проектирование.
ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ
1.6. Расчеты бетонных и железобетонных конструкций следует производить по предельным состояниям, включающим:
- предельные состояния первой группы (по полной непригодности к эксплуатации вследствие потери несущей способности);
- предельные состояния второй группы (по непригодности к нормальной эксплуатации вследствие образования или чрезмерного раскрытия трещин, появления недопустимых деформаций и др.).
Расчеты по предельным состояниям первой группы, содержащиеся в настоящем Пособии, включают расчеты по прочности с учетом в необходимых случаях деформированного состояния конструкции перед разрушением.
Расчеты по предельным состояниям второй группы, содержащиеся в настоящем Пособии, включают расчеты по раскрытию трещин и по деформациям.
Расчет бетонных конструкций по предельным состояниям второй группы не производится.
Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов следует, как правило, производить для всех стадий - изготовления, транспортирования, возведения и эксплуатации, при этом расчетные схемы должны отвечать принятым конструктивным решениям.
1.7. Определение усилий и деформаций от различных воздействий в конструкциях и в образуемых ими системах зданий и сооружений следует производить с учетом возможного образования трещин и неупругих деформаций в бетоне и арматуре (физическая нелинейность), а также с учетом в необходимых случаях деформированного состояния конструкций перед разрушением (геометрическая нелинейность).
Для статически неопределимых конструкций, методика расчета которых с учетом физической нелинейности не разработана, допускается определять усилия в предположении линейной упругости материала.
1.8. Нормативные значения нагрузок и воздействий, коэффициенты сочетаний, коэффициенты надежности по нагрузке, коэффициенты надежности по назначению, а также подразделение нагрузок на постоянные и временные (длительные и кратковременные) принимают согласно СНиП 2.01.07-85*.
1.9. При расчете элементов сборных конструкций на воздействие усилий, возникающих при их подъеме, транспортировании и монтаже, нагрузку от веса элемента следует принимать с коэффициентом динамичности, равным: 1,60 - при транспортировании, 1,40 - при подъеме и монтаже. В этом случае следует учитывать также коэффициенты надежности по нагрузке.
Допускается принимать более низкие, обоснованные в установленном порядке, значения коэффициентов динамичности, но не ниже 1,25.
2. МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ
БЕТОН
ПОКАЗАТЕЛИ КАЧЕСТВА БЕТОНА И ИХ ПРИМЕНЕНИЕ ПРИ ПРОЕКТИРОВАНИИ
2.1. Для бетонных и железобетонных конструкций следует предусматривать бетоны следующих классов и марок:
а) классов по прочности на сжатие:
B10; B15; B20; B25; B30; B35; B40; B45; B50; B55; B60;
б) классов по прочности на осевое растяжение:
0,8; 1,2; 1,6; 2,0; 2,4; 2,8; 3,2;
в) марок по морозостойкости:
F50; F75; F100; F150; F200; F300; F400; F500;
г) марок по водонепроницаемости:
W2; W4; W6; W8; W10; W12.
2.2. Возраст бетона, отвечающий его классу по прочности на сжатие и на осевое растяжение (проектный возраст), назначают при проектировании, исходя из возможных реальных сроков загружения конструкции проектными нагрузками. При отсутствии этих данных класс бетона устанавливают в возрасте 28 суток.
Значение отпускной прочности бетона в элементах сборных конструкций следует назначать в соответствии с ГОСТ 13015.0* и стандартами на конструкции конкретных видов.
* На территории Российской Федерации документ не действует. Действует ГОСТ 13050-2003. - Примечание изготовителя базы данных.
2.3. Класс бетона по прочности на сжатие назначается во всех случаях.
Класс бетона по прочности на осевое растяжение назначается в случаях, когда эта характеристика имеет главенствующее значение, и ее контролируют на производстве (например, для бетонных изгибаемых элементов).
Марку по морозостойкости назначают для конструкций, подверженных в процессе эксплуатации попеременному замораживанию и оттаиванию (надземные конструкции, подвергающиеся атмосферным воздействиям, находящиеся во влажном грунте или под водой и др.).
Марку по водонепроницаемости назначают для конструкций, к которым предъявляют требования ограничения водопроницаемости (резервуары, подпорные стены и др.).
2.4. Для железобетонных конструкций рекомендуется принимать класс бетона на сжатие не ниже В15; при этом для сильно нагруженных сжатых стержневых элементов рекомендуется принимать класс бетона не ниже B25.
Для бетонных сжатых элементов не рекомендуется применять бетон класса выше B30.
2.5. Для надземных конструкций, повергаемых атмосферным воздействиям окружающей среды при расчетной зимней температуре наружного воздуха от минус 5 °С до минус 40 °С, принимают марку бетона по морозостойкости не ниже F75; при этом, если такие конструкции защищены от непосредственного воздействия атмосферных осадков, марку по морозостойкости можно применять не ниже F50.
При расчетной зимней температуре выше минус 5 °С в указанных выше конструкциях марку бетона по морозостойкости не нормируют.
Примечание. Расчетная зимняя температура наружного воздуха принимается согласно п.1.5.
НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА
2.6. Нормативные значения сопротивления бетона осевому сжатию (призменная прочность) и осевому растяжению (при назначении класса по прочности на сжатие) принимают в зависимости от класса бетона B согласно табл.2.1.
Нормативные сопротивления бетона и и расчетные значения сопротивления бетона для предельных состояний второй группы и , МПа (кгс/см) при классе бетона по прочности на сжатие
Расчёт монолитного железобетонного перекрытия.
Перекрыть таким способом можно помещения практически любых габаритов. Единственное условие для перекрытия больших помещений – это необходимость в дополнительных опорах. Монолитные перекрытия обладают высокой звукоизоляцией – при своей сравнительно небольшой толщине они полностью подавляют все посторонние шумы.
Кроме того, вы экономите на отделочных работах. На монолитном ж/б перекрытии можно использовать практически любой тип чистового пола. Высокая несущая способность монолитного ж/б перекрытия обеспечивается арматурой, заложенной в нижней, растягивающейся зоне . Диаметр рабочей арматуры и ее шаг должен быть определен по расчету монолитного ж/б перекрытия . Диаметр вспомогательной арматуры , не должен быть менее 6 мм.
Для проектирования оптимальных по стоимости железобетонных изделий рекомендуется принимать:
μ% = 1÷2%, ξ = 0.3÷0.4 - для балок
μ% = 0.3÷0.6%, ξ = 0.1÷0.15 - для плит перекрытия
Требуемая площадь сечения арматуры:
Fa = M/η×h0×Ra = 4050/(0,925×0,16×36000000) = 0,00076 м2 = 7,6 см2.
На каждом метре монолитного перекрытия должно быть 5 стержней арматуры Alll d14мм (шаг 20 см). Основная рабочая арматура Аlll d14мм располагается параллельно короткой стороне дома (6м), центр ее сечения находится на расстоянии 4 см от низа перекрытия.
Fa(факт)= 1,439×5=7,695см²
Fa ≤ Fa(факт)
7,6 см² < 0,7695 см²
Условие выполняется.
Коэффициент армирования -
μ = Fa/b×h,
Процент армирования - μ% = 100×μ
μ% = 100×7,695/100×20 = 0,385 %
0,385% находится в рекомендуемых пределах для плит (0,3-0,6).
Проверка соблюдения граничных условий:
ξ ≤ ξR
ξR = ξ0/
ξ0 = a - 0.008Rпр,
где Rпр принимается в МПа; коэффициент а = 0.85 для тяжелого бетона и а = 0.8 для бетона на пористых заполнителях.
ξ0 = 0.85 - 0.008·11,5 = 0,758
ξR = ξ0/
ξR = 0.758/(1 + 365/400(1 + 0.758/1.1)) = 0,2984
0,15 < 0,2984
Граничное условие выполнено.
Проверка прочности по касательным напряжениям.
Так как арматуру в верхнем слое и поперечное армирование в монолитном перекрытии (хомуты или вертикальные стержни) мы не предусматривали, то следует проверить прочность монолитного перекрытия по касательным напряжениям :
Условия прочности по касательным напряжениям выполняется и в этом случае расчёта поперечной арматуры по сечениям, наклонным к продольной оси, не требуется. Однако это вовсе не означает, что арматура в верхней части ж/б перекрытия и поперечная арматура совсем не нужны. Дело в том, что мы рассчитывали монолитную плиту перекрытия на равномерно распределенную нагрузку, в действительности же нагрузка далеко не всегда может рассматриваться как равномерно распределенная. При установке тяжёлых предметов и мебели на монолитную плиту перекрытия часть нагрузок будет сосредоточенными. В таких случаях и значение момента может быть несколько больше, но самое главное, возникают значительные местные напряжения. Арматура верхнего пояса и поперечная арматура перераспределяет внутренние напряжения, а потому использование арматуры в верхнем поясе и поперечной арматуры необходимо в плитах перекрытия, для которых все возможные нагрузки и их сочетания предусмотреть не возможно. Диаметр стержней арматуры верхнего пояса и поперечной арматуры можно выбрать меньше диаметра рабочей арматуры.
Делаем железобетонные перекрытия
По мнению участника форума ontwerper из Москвы, монолитные железобетонные перекрытия не так уж сложно сделать своими силами. Он приводит в качестве аргументов общеизвестные и малоизвестные соображения по их изготовлению. По его мнению, делать перекрытия своими руками выгодно по нескольким причинам:
- Доступность технологий и материалов;
- Удобство и практичность с архитектурной и инженерной точек зрения;
- Подобные перекрытия долговечны, пожаробезопасны и обладают шумоизолирующими качествами;
- Финансовая целесообразность.
Монолитные работы
Перед тем как заливать бетон ontwerper советует тщательно продумать весь процесс и прежде всего заказать бетон на заводе. Он лучше самодельного - там есть контроль качества и количества наполнителей, улучшающих бетон и долго не дающие ему расслаивается. Состав должен состоять из тяжелых заполнителей, иметь класс прочности В20-В30 (М250-М400), и морозостойкость от F50.
Не ленитесь и проконтролируйте по документам отпускные параметры, класс-марку и время до момента схватывания бетона.
Если вам нужно подать бетон на второй, третий этаж или на большое расстояние то сделать это без бетононасоса вам не удастся, а перекатывание бетона лопатами по бесконечным желобам очень тяжёлое и неудобное занятие.
В зимнее время бетон можно заказать с противоморозными добавками, учитывая, что добавки обычно повышают время набора прочности, некоторые из них провоцируют коррозию арматуры, но это допустимо, если добавка заводская.
ontwerper предпочитает зимой строительство не вести, и вам не рекомендует. В крайнем случае сами раствор не готовьте, воспользуйтесь заводским бетоном.
Монтаж опалубки
Главное назначение опалубки - выдержать массу свеженалитого бетона и не деформироваться. Для вычисления прочности нужно знать, что один 20 сантиметровый слой бетонной смеси давит на квадратный метр опалубки с силой 500 кг, к этому нужно добавить давление смеси при её падении из шланга, и вы поймете, что все элементы конструкции должны быть надёжными.
Армирование
Для этого ontwerper рекомендует призвать на помощь арматуру периодического профиля A-III, А400, А500. В плите перекрытия всегда имеется четыре ряда арматуры.
Нижний - вдоль пролета, нижний - поперек пролета, верхний - поперек пролета, верхний - вдоль пролета.
Пролет – расстояние между опорными стенами (для прямоугольной плиты по короткой стороне). Самый нижний ряд укладывается на пластиковые сухарики, специально предназначенные для этого, их высота составляет 25-30мм. Верхний ряд – перекрывает его поперек и вяжется проволокой во всех пересечениях.
Затем на очереди – установка разделителя сеток – детали из арматуры с определенным шагом, её можно сделать по своему желанию. На разделители – верхняя поперек, - вязать, на нее верхняя вдоль, - вязать проволокой во всех пересечениях. Верхняя точка каркаса (верх верхнего стержня) должна быть ниже верхней грани стенки опалубки на 25-30 мм, или толщина бетона выше верхней арматуры на 25-30 мм.
После окончания армирования каркас должен представлять жёсткую конструкцию, которая не должны сдвигаться при заливке бетона из насоса. Перед заливкой проверьте соответствие шага и диаметра арматуры проекту.
Заливка бетона
Уход за бетоном
После заливки плиты её нужно укрыть, чтобы предотвратить попадание осадков, и постоянно поливать внешнюю поверхность, чтобы она была влажной. Приблизительно через месяц можно снять опалубку, а в случае крайней необходимости это можно сделать не раньше, чем через неделю и снимать только щиты. Для этого нужно осторожно снять щит, а плиту обратно подпереть стойкой. Стойки поддерживают плиту до её полной готовности, около месяца.
Прочность монолитного перекрытия: расчет
Он сводится к сравнению между собой двух факторов:
- Усилий, действующих в плите;
- Прочностью ее армированных сечений.
Первое должно быть меньше второго.
Стены на монолитную плиту перекрытия: рассчитываем нагрузки
Произведем расчеты постоянных нагрузок на монолитную плиту перекрытия.
Собственный вес плиты монолитной перекрытия с коэффициентом надежности по нагрузке 2.5т/м3 х 1.2 =2.75т/м3.
- Для плиты 200мм - 550кг/м3
Собственный Вес пола толщиной 50мм-100мм – стяжка – 2,2т/м2 х 1,2= 2,64т/м3
- для пола 50мм - 110кг/м3
Перегородки из кирпича размером 120мм приведите к площади плиты. Вес 1-го погонного метра перегородки высотой 3м 0.12м х1.2х1.8 т/м3 х 3м = 0,78т/м, при шаге перегородок длиной 4м получается примерно 0,78/4= 0,2т/м2. Таким образом приведенный вес перегородок = 300 кг/м2.
Полезная нагрузка для 1-й группы предельных состояний (прочность) 150кг/м3 – жилье, с учетом коэффициента надежности 1.3 примем. Временная 150х1,3= 195кг/м2.
Полная расчетная нагрузка на плиту - 550+110+300+195=1150кг/м2. Примем для эскизных расчетов нагрузку в - 1.2т/м2.
Определение моментных усилий в нагруженных сечениях
Изгибающие моменты определяют на 95% армирование изгибных плит. Нагруженные сечения– это середина пролета, другими словами – центр плиты.
Изгибающие моменты в квадратной в плане плите разумной толщины, шарнирно опертой - незащемленной по контуру ( на кирпичные стены ) по каждому из направлений Х,Y примерно могут быть определены как Mx=My=ql^2/23. Можно получить некоторые значения для частных случаев.
- Плита в плане 6х6м - Мх=My= 1.9тм;
- Плита в плане 5х5м - Мх=My= 1.3тм;
- Плита в плане 4х4м - Мх=My= 0,8тм.
Это усилия, которые действуют и вдоль и поперек плиты, поэтому нужно проверить прочность двух взаимно перпендикулярных сечений.
Проверка прочности к продольной оси
При проверке прочности к продольной оси сечения по изгибающему моменту (пусть момент положительный, т.е брюхом вниз) в сечении есть сжатый бетон сверху и растянутая арматура снизу. Они образуют силовую пару, воспринимающие приходящее на нее моментное усилие.
Определение усилия в этой паре
Высота пары может быть грубо определена, как 0.8h, где h – высота сечения плиты. Усилие в арматуре определим как Nx(y)=Mx(y)/(0.8h). Получим в представлении на 1 м ширины сечения плиты.
- Плита в плане 6х6м -Nx(y)= 11,9т;
- Плита в плане 5х5м - Мх=My= 8,2т;
- Плита в плане 4х4м - Мх=My= 5т.
Под эти усилия подберите арматуру класса A-III (А400) – периодического профиля. Расчетное сопротивление арматуры разрыву равно R=3600кг/см2. площадь сечения арматурного стержня при диаметре Ф8=0,5см2, Ф12=1,13см2, Ф16=2,01см2, Ф20=3,14см2.
Несущая способность стержня равна Nст=Aст*R Ф8=1,8т, Ф12=4,07т, Ф16=7,24т, Ф20=11,3т. Отсюда можно получить требуемый шаг арматуры. Шаг= Nст/ Nx(y)
- Плита в плане 6х6м для арматуры Ф12 Шаг=4,07т/ 11,9т=34см;
- Плита в плане 5х5м - для арматуры Ф8 Шаг=1,8/ 8,2=22см;
- Плита в плане 4х4м - Ф8 Шаг=1,8/ 5=36см.
Это армирование по прочности по каждому из направлений X и Y, т.е квадратная сетка из стержней в растянутой зоне бетона.
Кроме прочности необходимо уменьшить образование трещин. Для плит домов и жилых помещений пролетом до 6м толщиной 200мм, опертых по контуру (т.е. по четырем сторонам) при любом соотношении а/b можно принимать нижнее рабочее армирование из стержней А III по двум направлениям с шагом 200х200 диаметром 12мм, верхнее (конструктивное) - то же из Ф8, тоньше и меньше не следует.
Все это является частным случаем общего подхода, демонстрирующим специфику задачи, но для её реализации необходимо смотреть глубже и обращаться к специалистам.
Самостоятельный расчет плиты перекрытия: считаем нагрузку и подбираем параметры будущей плиты
Монолитная плита перекрытия всегда была хороша тем, что изготавливается без применения подъемных кранов – все работы ведутся прямо на месте. Но при всех очевидных преимуществах сегодня многие отказываются от такого варианта из-за того, что без специальных навыков и онлайн-программ достаточно сложно точно определить такие важные параметры, как сечение арматуры и площадь нагрузки.
В этой статье мы поможем вам изучить расчет плиты перекрытия и его нюансы, а также познакомим с основными данными и документами. Современные онлайн-калькуляторы – дело хорошее, но если речь идет о таком ответственном моменте, как перекрытие жилого дома, советуем вам перестраховаться и лично все пересчитать!
Содержание
Шаг 1. Составляем схему перекрытия
Давайте начнем с того, что монолитная железобетонная плита перекрытия – это конструкция, которая лежит на четырех несущих стенах, т.е. опирается по своему контуру.
И не всегда плита перекрытия представляет собой правильный четырехугольник. Тем более, что сегодня проекты жилых домов отличаются вычурностью и многообразием сложных форм.
В этой статье мы научим вас рассчитывать нагрузку на 1 кв. метр плиты, а общую нагрузку вам нужно будет вычислять по математическим формулам. Если сложно – разбейте площадь плиты на отдельные геометрические фигуры, рассчитайте нагрузку каждой, затем просто суммируйте.
Шаг 2. Проектируем геометрию плиты
Теперь рассмотрим такие основные понятия, как физическая и проектная длина плиты. Т.е. физическая длина перекрытия может быть любой, а вот расчетная длина балки уже имеет другое значение. Ею называют минимальное расстояние между наиболее удаленными соседними стенами. По факту физическая длина плиты всегда длиннее, чем проектная длина.
Вот хороший видео-урок о том, как производится расчет монолитной плиты перекрытия:
Важный момент: несущий элемент плиты может быть как шарнирная бесконсольная балка, так и балка жесткого защемления на опорах. Мы будем приводить пример расчета плиты на бесконсольную балку, т.к. такая встречается чаще.
Чтобы рассчитать всю плиту перекрытия, нужно рассчитать один ее метр для начала. Профессиональные строители используют для этого специальную формулу. Так, высота плиты всегда значится как h, а ширина как b. Давайте рассчитаем плиту с такими параметрами: h=10 см, b=100 см. Для этого вам нужно будет познакомиться с такими формулами:
Шаг 3. Рассчитываем нагрузку
Плиту перекрытия легче всего рассчитать, если она имеет квадратную форму и если вы знаете, какая нагрузка запланирована. При этом какая-то часть нагрузки будет считаться длительной, которую определяет количество мебели, техники и этажности, а другая – кратковременной, как строительное оборудование во время стройки.
Кроме того, плита перекрытия должна выдерживать и другого рода нагрузки, как статистические и динамические, при этом сосредоточенная нагрузка всегда измеряется в килограммах или в ньютонах (например, нужно будет ставить тяжелую мебель) и распределительная нагрузка, измеряемая в килограммах и силе. Конкретно сам расчет плиты перекрытия всегда нацелен на определение распределительный нагрузки.
Вот ценные рекомендации, какой должна быть нагрузка на плиту перекрытия в плане расчета на изгиб:
Еще один немаловажный момент, который тоже нужно учитывать: на какие стены будет опираться монолитная плита перекрытия? На кирпичные, каменные, бетонные, пенобетонные, газобетонные или из шлакоблока? Вот почему так важно рассчитать плиту не только с позиции нагрузки на нее, но и с точки зрения ее собственного веса. Особенно если ее устанавливают на недостаточно прочные материалы.
Сам расчет плиты перекрытия, если мы говорим о жилом доме, всегда нацелен на нахождение распределительной нагрузки. Она рассчитывается по формуле: q1=400 кг/м². Но к этому значению добавьте вес самой плиты перекрытия, а это обычно 250 кг/м², а бетонная стяжка и чистовой пол дадут еще дополнительные 100 кг/м². Итого имеем 750 кг/м².
Учитывайте при этом, что изгибающее напряжение плиты, которая по своему контуру опирается на стены, всегда приходится на ее центр.
Шаг 4. Подбираем класс бетона
Именно монолитную плиту перекрытия, в отличие от деревянных или металлических балок, рассчитывают по поперечному сечению. Ведь бетон само по себе – неоднородный материал, и его предел прочности, текучести и других механических характеристик имеет значительный разброс.
Что удивительно, даже при изготовлении образцов из бетона, даже из одного замеса получаются разные результаты. Ведь здесь много зависит от таких факторов, как загрязненность и плотности замеса, способов уплотнения и других технологических факторов, даже так называемой активности цемента.
При расчете монолитной плиты перекрытия всегда учитывается и класс бетона, и класс арматуры. Само сопротивление бетона принимается всегда на значение, на какое идет сопротивление арматуры. Т.е., по сути, на растяжение работает именно арматура. Сразу оговоримся, что здесь существует несколько расчетных схем, которые учитывают разные факторы. Например, силы, которые определяют основные параметры поперечного сечения по формулам, или расчет относительно центра тяжести сечения.
Шаг 5. Подбираем сечение арматуры
Разрушение в плитах перекрытия происходит тогда, когда арматура достигает своего предела прочности при растяжении или текучести. Т.е. почти все зависит от нее. Второй момент, если прочность бетона уменьшается в 2 раза, тогда и несущая способность армирования плиты уменьшается с 90 на 82%. Поэтому доверимся формулам:
Происходит армирование при помощи обвязки арматуры из сварной сетки. Ваша главная задача – рассчитать процент армирования поперечного профиля продольными стержнями арматуры.
Как вы наверняка не раз замечали, самые распространенные ее виды сечения – это геометрические фигуры: форма круга, прямоугольника, трапеции. А расчет самой площади сечения происходит по двум противоположным углам, т.е. по диагонали. Кроме того, учитывайте, что определенную прочность плите перекрытия придает также дополнительное армирование:
Если рассчитывать арматуру по контуру, тогда вы должны выбрать определенную площадь и просчитывать ее последовательно. Далее, на самом объекте проще рассчитывать сечение, если взять ограниченной замкнутой объект, как прямоугольник, круг или эллипс и производить расчет в два этапа: с использованием формирования внешнего и внутреннего контура.
Например, если вы рассчитываете армирование прямоугольного монолитного перекрытия в форме прямоугольника, тогда нужно отметить первую точку в вершине одного из углов, затем отметить вторую и произвести расчет всей площади.
Согласно СНиПам 2.03.01-84 «Бетонные и железобетонные конструкции» сопротивление растягивающим усилиям в отношении арматуры А400 составляет Rs=3600 кгс/см², или 355 МПа, а вот для бетона класса B20 значение Rb=117кгс/см² или 11.5 МПа:
Согласно нашим вычислениям, для армирования 1 погонного метра понадобится 5 стержней с сечением 14 мм и с ячейкой 200 мм. Тогда площадь сечения арматуры будет равняться 7.69 см². Чтобы обеспечить надежность по поводу прогиба, высоту плиты завышают до 130-140 мм, тогда сечение арматуры составляет 4-5 стержней по 16 мм.
Итак, зная такие параметры, как необходимая марка бетона, тип и сечение арматуры, которые нужны для плиты перекрытия, вы можете быть уверены в ее надежности и качестве.
Читайте также: