Расчет прочности бетона на сжатие формула
Прочностные свойства бетона.
Под прочностью бетона понимают его способность сопротивляться воздействию внешних сил, не разрушаясь.
Прочность бетона зависит от многочисленных факторов: структуры, марки и вида цемента, водоцементного отношения, вида и прочности крупных и мелких заполнителей, вида напряженного состояния, формы и размеров образца, длительности загружения.
На прочность бетона большое влияние оказывает скорость загружения образцов. При замедленном их нагружении, прочность бетона оказывается на 10…15% меньше, чем при кратковременном статическом. При быстром загружении прочность бетона возрастает до 20 %.
Бетон имеет различную прочность при разных силовых воздействиях: сжатии, растяжении, изгибе, срезе. В связи с этим различают несколько характеристик прочности бетона: кубиковую и призменную прочность, прочность при растяжении, срезе и скалывании; прочность при многократных повторных нагрузках, прочность при кратковременном, длительном и динамическом действии нагрузок.
В железобетонных конструкциях бетон преимущественно используется для восприятия сжимающих напряжений. Поэтому за основную характеристику прочностных свойств бетона принята его прочность на осевое сжатие, устанавливаемая, как правило, путем испытания стандартных кубов размером 150×150×150 мм, испытанных при температуре (20 ± 2) °С через 28 дней твердения в нормальных условиях (температуре воздуха 15. 20 °С и относительной влажности 90. 100%). Реже испытания проводят па цилиндрах диаметром (d) 100, 150, 200 и 300 мм с высотой h = 2d.
За кубиковую прочность бетона принимают временное сопротивление R эталонных кубов, определяемое по выражению:
где F – разрушающая нагрузка, Н;
А – средняя рабочая площадь образца, мм2;
α – переводный коэффициент, зависящий от размеров образца. С уменьшением размеров поперечного сечения коэффициент а уменьшается. Это объясняется изменением эффекта обоймы с изменением размеров образца и расстояния между его торцами.
Различное сопротивление сжатию образцов разной величины (и формы) объясняется влиянием сил трения, возникающих между гранями образца и опорными плитами пресса.
Вблизи опорных плит пресса силы трения, направленные внутрь, создают как бы обойму и тем самым увеличивают прочность образцов при сжатии. По мере удаления от торцов влияние сил трения уменьшается. Поэтому бетонный куб получает форму двух усеченных пирамид (рис.2, а). При отсутствии (или существенном уменьшении) сил трения характер разрушения меняется, происходит раскалывание куба по плоскостям, параллельным направлению действующей внешней нагрузки (рис.2, б).
Рис. 2. Характер разрушения бетонных кубов; а - при наличии трения по опорным плоскостям; б - при отсутствии трения по опорным плоскостям
Реальные железобетонные конструкции по своей форме значительно отличаются от кубов. Поэтому кубиковая прочность не может непосредственно характеризовать прочность сжатых участков железобетонных конструкций. Для этой цели используют другую характеристику - призменную прочность бетона.
Железобетонные конструкции по форме отличаются от кубов, поэтому кубиковая прочность бетона не может быть непосредственно использована в расчетах прочности элементов конструкции. Основной характеристикой прочности бетона сжатых элементов является призменная прочность. Под призменной прочностью σbu понимают временное сопротивление осевому сжатию призмы с отношением высоты призмы h к размеру а квадратного основания, равным 4.
В реальных конструкциях напряженное состояние бетона сжатой зоны приближается к напряженному состоянию призм. Образцы призматической формы, для которых влияние сил трения меньше, чем для кубов, при одинаковом поперечном сечении показывают меньшую прочность на сжатие. При отношении высоты призмы к стороне основания h /a > 4 влияние сил трения практически исчезает, и прочность становится постоянной и равной ≈ 0,75 R.
Прочность на осевое растяжение
Прочность бетона на осевое растяжение зависит от прочности при растяжении цементного камня и его сцепления с зернами крупного заполнителя.
Рис.3. Схемы испытаний образцов для определения прочности бетона на растяжение
Опытным путем она определяется испытаниями на разрыв образцов в виде восьмерок, на раскалывание образцов в виде цилиндров, кубов или на изгиб бетонных балочек.
Прочность бетона на осевое растяжение имеет сравнительно небольшое значение.
σbtu =0,1σbu . 0,05 σbu
Ориентировочное значение σbt можно определить по эмпирической формуле Фере: Ориентировочное значение σbt можно определить по эмпирической формуле Фере:где γ = 0,8 – коэффициент для бетонов класса В25 и ниже, γ = 0,7 – для бетонов класса В30 и ниже
Прочность бетона при срезе и скалывании
Под чистым срезом понимают разделение элемента на части по сечению, к которому приложены перерезывающие силы.
Под чистым скалыванием понимают взаимное смещение (сдвиг) частей элемента между собой под действием скалывающих (сдвигающих) усилий.
Железобетонные конструкции редко работают на чистый срез и скалывание. Обычно срез сопровождается действием продольных сил, а скалывание - действием поперечных сил.
Сопротивление срезу может возникать в шпоночных соединениях и у опор балок, а сопротивление скалыванию – при изгибе преднапряженных балок до появления в них наклонных трещин, если не обеспечена надежная связь между верхней и нижней частями бетона на опорах.
В нормах временное сопротивление срезу и скалыванию не приводится, и его принимают приблизительно равным 2 σbtu
Прочность бетона при длительном действии нагрузки
Пределом длительного сопротивления бетона называют наибольшие статические неизменные во времени напряжения, которые он может выдерживать неограниченно долгое время без разрушения.
При длительном действии нагрузки бетонный образец разрушается при напряжениях, меньших, чем при кратковременной нагрузке. Это обусловлено влиянием развивающихся неупругих деформаций изменением структуры бетона.
При расчете прочности элементов в расчетное сопротивление бетона сжатию Rb и растяжению Rbt вводят коэффициент условия работы γb2 , учитывающий влияние на прочность бетона вероятной длительности действии я расчетных усилий и условий возрастания прочности бетона во времени.
Прочность бетона при многократном действии нагрузки
Под прочностью бетона при многократно повторных (подвижных или пульсирующих) нагрузках σf (предел выносливости бетона) понимают напряжение, при котором количество циклов нагрузки и разгрузки, необходимых для разрушения образца, составляет не менее 1 000 000.
Предел выносливости бетона связан с нижней границей образования микротрещин. Если многократно повторная нагрузка вызывает в бетоне напряжения, превышающие границы трещинообразования, то при большом количестве циклов наступает его разрушение.
Предел выносливости бетона σf определяют посредством умножения временных сопротивлений σbu и σbtu бетона на коэффициент условий работы бетона γb1 .
Удаление и снос бетона
- Как удалить старый бетон
Следующее предназначено только для общего информационного использования. Это очень общий обзор процесса выдачи разрешений для проектов по сносу. Фактический процесс может широко варьироваться между регионами страны, округами и муниципалитетами.
Вы также найдете обзор распространенных методов и инструментов сноса. Сравните ваши варианты того, как снести существующий бетон, а также какое оборудование использовать. Кроме того, вы сможете найти информацию о безопасности и предупреждения о возможных опасностях во время сноса.
Бетон Информация о сносе
УСЛОВИЯ ВЫЗОВА БЕТОНА ДЛЯ СНЯТИЯ И ЗАМЕНЫ
Существуют определенные условия, при которых использование исправляющего состава и продукта для шлифовки приведет к кратковременному исправлению. В этих условиях исправление бетона перед повторной шлифовкой или нанесение декоративного покрытия будет пустой тратой времени и денег, поскольку поверхность или покрытие вскоре будут иметь те же характеристики, что и бетон, который вы пытались починить.
Эти условия включают в себя:
- Глубокие, широко распространенные трещины , где произошло заселение. Это может быть связано с весом больших грузовиков, неправильной подготовкой подкласса, эрозией подкласса или по другим причинам.
- Бетонные плиты, которые утонули , что может произойти, если подкласс не был подготовлен должным образом. Свободная грязь, возможно, использовалась для подкласса. Когда эта грязь оседает - иногда из-за разбрызгивателя или дождевой воды, идущей под бетоном - бетон не поддерживается и будет более подвержен погружению.Также возможно, что подкласс был уплотнен, а бетон подвергся чрезмерному весу, что привело к падению бетона.
- Бетонные плиты с явными признаками морозного пучения . Морозные пучки очень распространены в холодном климате. Влага в земле замерзает и бетон поднимается вверх.
- Бетонные плиты, которые имеют так много отколов или точечной коррозии на поверхности, что выгоднее заменить бетон, чем подготовить всю поверхность к повторной шлифовке и шлифовке бетона.
При любом из вышеперечисленных условий лучше снять и заменить бетон.
Найдите местных подрядчиков по бетону, которые могут вырвать ваш старый бетон и заменить его новым красивым декоративным бетоном.
Существует множество других причин, по которым необходимо удалять бетон в проекте:
- Пристройка к коммерческому или жилому зданию требует удаления бетона, который мешает пристройке.
- Удаляется вся конструкция, из которой бетон является частью конструкции.
- Существует неисправная бетонная конструкция, которую владелец хочет вырвать и заменить.
- Старый бордюр должен быть удален для улучшения улиц, расширения дорог и т. Д.
БЕТОННЫЕ МЕТОДЫ РАЗРУШЕНИЯ
Разрывное давление
Разрыв под давлением может использоваться в тех случаях, когда предпочтительным является относительно тихий, беспыльный контролируемый снос.
Как механическое, так и химическое разрушение под давлением расщепляют бетон либо с помощью расщепляющей машины, работающей на гидравлическом давлении, обеспечиваемом двигателем в случае механического разрушения, либо путем введения расширяющейся суспензии в заранее определенный рисунок скважин в случае химического взрыва.
Затем расщепленный бетон легко удаляется вручную или краном.
Гидравлическое и химическое разрывное давление разрушает бетонные конструкции с минимальным уровнем шума и летящих обломков. Оба метода работают путем приложения боковых сил к внутренним отверстиям, просверленным в бетоне, и могут выполнять практически любую работу, на которую способны другие методы разрушения. Однако, вместо того, чтобы разрушить мошенник
Одним из важных этапов строительства дома является определение прочности бетона, который будет использоваться. Такое исследование необходимо для прогнозирования поведения материала при механических и физических нагрузках. Лаборатория проводит испытания по контрольным образцам, которые отбираются в соответствии рецептурой материала. При этом применяют разрушающие или неразрушающие методы.
Зачем проверять?
Домостроительство — очень ответственное дело. Стройматериалы должны соответствовать всем ГОСТам. Чтобы проверить прочностные показатели бетона проводятся исследования образцов, изготовленных в нужных пропорциях и придерживаясь технологии. Некачественный бетонный кубик не должен крошиться и растрескиваться. Если такие требования не выполняются, то строить из этого материала запрещено. Испытание бетона на прочность показывает, какую нагрузку может выдержать материал. Особенно это важно при многоэтажном строительстве. Так как при использовании одинакового сырья несколько образцов может иметь разную прочность, специалисты используют понятие расчетное сопротивление.
От чего зависит прочность?
Класс бетона В15 и марка М200 обозначает стойкость к сжатию 15 МПа и предел прочности 200 кгс/м2.
При изготовлении бетонных изделий рекомендуется придерживаться всех стандартов и правильной технологии производства. Требуемая прочность бетона приобретается через 1 месяц после заливки. При этом в течение этого времени должен быть обеспечен надлежащий уход. Для ускорения набора необходимых характеристик используют способ пропаривания бетона. Факторы, влияющие на прочность в бетонных конструкциях выделяют такие:
- активные свойства вяжущего компонента;
- объем воды в растворе и ее качество;
- степень уплотнения;
- температура и влажность внешней среды;
- марка выбранного бетона;
- режимы обработки;
- однородность смешивания компонентов смеси.
Таблица зависимости класса бетона от прочности:
Подготовка образцов
Лабораторные исследования бетонного изделия проводится на основании подготовленных кубов из этого материала. Главным условием приготовления образцов является замес такого же раствора, как у планируемой конструкции. Изменять марку бетона, добавлять или исключать из состава какие-либо добавки или присадки не допустимо. Раствор заливается в формы и выдерживается 28 дней, при котором достигается максимальная длительная прочность. Для ускорения затвердения используется тепловлажностная обработка или пропарка бетона. Только после этого времен можно начинать проведение физико-механических испытаний на изгиб или растяжение. Готовые изделия не рационально удерживать на заводе до полного затвердения, поэтому их отправляют на продажу, когда ими достигается передаточная прочность бетона (Rbp), составляющая не менее 70% от проектной.
Как определяется?
Определить прочность бетона можно в лабораторных условиях. Для проведения понадобится пресс и другие средства для механического воздействия на отобранные образцы. Чаще всего испытания бетона на прочность проводятся комплексно и результат делается на основании нескольких методов. Распалубочная прочность бетона позволяет перемещать не полностью застывшие объекты внутри предприятия. Достижение изделием необходимых характеристик сопровождается контролем. При этом измеряется относительная влажность бетона. Проверка предусматривает использовать измеритель влажности — влагомер.
Ориентировочно определит прочность (Рб) можно по формуле, для которой нужно знать марку цемента (Rц) и цементно-водное соотношение (Ц/В). Используемый коэффициент А при нормальном качестве заполнителя равен 0,6. Формула выглядит таким образом:
- Rb = А*Rц*(Ц/В-0,5).
Неразрушающие методы
Механические
ГОСТ 22690–2015 предусматривает такую классификацию способов проверки:
- Методом упругого отскока. Учитывается связь бетонного изделия со значением отскакивания бойка от исследуемой поверхности.
- Пластическая деформация. Для измерения прочности изучают глубину и диаметр углубления, образованного при ударе с использованием специального молотка. Определяется поверхностная твердость стройматериала.
- Ударный импульс. Сила удара соотносится с видоизменениями бетонной поверхности, что помогает для измерения прочности.
Градуировочная зависимость предусматривает сравнение результатов по нескольким образцам. Ультразвуковые волны требуют изучения не менее 15 объектов, в то время как отрыв со скалыванием всего лишь 3.
Зимнее строительство может привести к замерзанию рабочего материала, поэтому применяются присадки для смеси.
Строительство зимой предусматривает замерзание изделия. Критическая прочность бетона показывает минимальное значение показателя, при котором замораживание не приведет к потере прочностных и других характеристик. Если изделие не достигает этого показателя и замерзает, то это разрушит его. Чтобы предотвратить этот процесс и повысить морозоустойчивость можно добавить присадки для бетона.
Физические
Динамическая прочность бетона обозначает способность выдерживать условие длительных нагрузок с прогрессивной динамикой. Основными способами физических проверок являются такие:
- Импульсные. Самым популярным является ультразвуковое испытание, которое основывается на скорости передачи волн по бетонному объекту. Прибор имеет УЗ-датчики, которые помогают определить показатель.
- Радиоизотопные. С помощью радиоактивных изотопов определяется плотность стройматериала, а подготовленные зависимости помогут определить прочность ячеистых бетонных изделий.
Разрушающие методы
СНИПом предусмотрено обязательное применение подобных методов исследования. Испытания проводятся с применением заготовленных образцов, извлечения части бетонной конструкции или самостоятельно изготовленных изделий. Отпускная прочность бетона регулируется ГОСТом или документацией производителя, при определении которой учитываются условия транспортировки и хранения изделий. Разрушающий метод контроля включает такие мероприятия:
- Испытания на сжатие. Проводится с помощью пресса, между плитами которого устанавливается изготовленный образец. Нижняя часть остается недвижима, а верхняя — сдавливает исследуемый куб до полного разрушения. Результат устанавливается на основании состояния раскола образца, который соответствует нормам, предусмотренных специальной документацией.
- Отрыв со скалыванием. Методы заключаются в усилии оторвать от бетонной конструкции кусок бетона либо отколоть с помощью вибро-машинки.
Основной закон прочности определяет зависимость показателя от качества используемого сырья.
Способы исследования бетона разрушающего типа считаются самыми точными, но в то же время трудоемкими. Большинство предприятий, которые не имеют собственной лаборатории проверяют прочностные характеристики материала с помощью неразрушающих методов. Если такие результаты не являются удовлетворительными, то отобранные образцы проверяют в частной компании. Европейские нормы имеют более высокие стандарты.
Класс и марка бетона по прочности
Строительство – постоянный процесс. Всегда есть нужда в новом здании, дороге или архитектурном объекте. Среди множества строительных материалов особой популярностью пользуется бетон. Его востребованность обусловлена повышенной прочностью, долговечностью и надежностью. Срок эксплуатации бетонных сооружений может доходить до десятков и сотен лет.
Что такое бетон
Бетон – монолитный камень искусственного происхождения, применяемый при строительстве различных объектов. Процесс изготовления представляет собой смешивание вяжущего вещества, наполнителей, разных химических добавок и воды.
Классический состав бетона:
- песок;
- вода;
- щебень;
- цемент.
Соотношение компонентов различается в зависимости от производственной необходимости и качества сухих составляющих раствора.
Строительная сфера находится в постоянном развитии. Это не обошло стороной и бетон. Применение различных наполнителей позволяет улучшать качественные характеристики строительного камня и расширяет его разновидности:
- пескобетон;
- гипсобетон;
- силикатный бетон;
- шлакобетон;
- пемзобетон;
- туфобетон;
- сталебетон;
- железобетон;
- полимербетон.
При добавлении различных химических добавок и присадок можно менять свойства бетонной смеси:
- водонепроницаемость;
- морозоустойчивость;
- быстрое или медленное схватывание;
- подвижность;
- усадка;
- пластичность.
В зависимости от структуры заполнителя бетон различается по типам:
- особо легкий – вес кубического метра раствора не превышает 500 кг;
- легкий – вес составляет 500-1800 кг/м 3 ;
- тяжелый – вес находится в диапазоне 1800-2700 кг/м 3 ;
- особо тяжелый – вес превышает 2700 кг/м 3 .
Многообразие состава позволяет применять бетон для строительства объектов различной направленности.
Отличие марки от класса
Прочность – главное качество, которое ценится в бетоне. Она позволяет зданиям и конструкциям выдерживать необходимые нагрузки и противостоять условиям внешней среды.
Марка бетона
Марка – показатель, зависящий от количества и качества цемента в бетонном растворе. Обозначается латинской буквой М, а цифра рядом с ней показывает прочность в кгс/см 2 . Учитывает только процентное содержания цемента в строительной смеси.
Класс бетона по прочности
Класс – показатель, определяющий уровень прочности бетона на сжатие. Обозначается латинской буквой В, а цифра рядом показывает значение в МПа.
В проектной строительной документации всегда указывается класс бетона.
Сравнение и различие
Хотя и марка, и класс обозначают прочность бетона, между ними есть и принципиальные отличия.
Марка указывает на технические свойства бетона, а класс – на уровень прочности при эксплуатации. Первый параметр учитывает соотношение цемента в растворе, а второй показывает предельную нагрузку, которую должна вынести конструкция.
Понятия марки и класса взаимосвязаны, их точные значения помогут сделать правильный выбор при закупке материалов для строительства.
Цифра рядом с буквенным показателем класса и марки бетона является показателем прочности. Таблица соотношений по ГОСТ 26633-91 поможет подробнее в этом разобраться. Также это способ точно определить технические характеристики строительной смеси для лучшего применения в частном и промышленном возведении конструкций и зданий.
Таблица 1 – Прочность бетона на сжатие по марках и классам
Класс бетона | Марка бетона | Средняя прочность на сжатие, кгс/см 2 |
В3,5 | М50 | 45,8 |
В5 | М75 | 65,5 |
В7,5 | М100 | 98,2 |
В10 | М150 | 131,0 |
В12,5 | М150 | 163,7 |
В15 | М200 | 196,5 |
В20 | М250 | 261,9 |
В22,5 | М300 | 294,7 |
В25 | М350 | 327,4 |
В27,5 | М350 | 360,2 |
В30 | М400 | 392,9 |
В35 | М450 | 458,4 |
В40 | М550 | 523,8 |
В45 | М600 | 589,4 |
В50 | М700 | 654,8 |
В55 | М700 | 720,3 |
В60 | М800 | 785,8 |
В65 | М900 | 851,3 |
В70 | М900 | 916,8 |
В75 | М1000 | 982,3 |
В80 | М1000 | 1047,7 |
В90 | М1150 | 1178,7 |
В100 | М1300 | 1309,6 |
В110 | М1450 | 1440,6 |
В120 | М1500 | 1571,6 |
Также различают отдельный класс жаропрочных бетонов – табл. 2.
Таблица 2 – Классификация жаропрочных бетонов
Класс бетона по предельно допустимой температуре применения | Предельно допустимая температура применения, °С |
И3 | 300 |
И6 | 600 |
И7 | 700 |
И8 | 800 |
И9 | 900 |
И10 | 1000 |
И11 | 1100 |
И12 | 1200 |
И13 | 1300 |
И14 | 1400 |
И15 | 1500 |
И16 | 1600 |
И17 | 1700 |
И18 | 1800 |
Способы определения прочности бетона
Для установки и точного определения марки и класса бетона проводятся испытания в лабораторных условиях. Образцы подготавливаются в соответствии с требованиями ГОСТ 10180-2012:
- в качестве образцов могут использоваться только трехмерные объемные фигуры – куб и цилиндр. Ребро куба измеряется в мм и может иметь только определенные значения – 100, 150, 200, 250, 300. Требования для цилиндра следующие – диаметр 100, 150, 200, 250 и 300 мм, а высота не должна быть меньше диаметра основания;
- образцы изготовляются при температуре 20℃ и влажности 40-60%;
- образцы набирают прочность в течение 28 дней.
Контроль прочности осуществляется двумя способами:
- механический. На образец оказывают физическое воздействие с нарастанием усилий. Для оценки используют молоток весом 400-600 г или зубило. Используя эти инструменты, проводят удары по поверхности бетонного куба или цилиндра и оценивают следы, которые они оставляют на поверхности;
Важно, чтобы удар был звонким. Это свидетельствует, что в образце не содержится пустот и воздушных полостей, которые могут влиять на результаты испытаний.
- ультразвуковой. Вариант, который не оказывает разрушительного воздействия на образец. Прибор определяет скорость ультразвуковых волн, проходящих через бетонный куб или цилиндр.
Факторы, оказывающие влияние на прочность бетона
Бетон – строительная смесь, прочность которой зависит от многих переменных:
- качество связующего вещества – цемента. При использовании марок цемента низкого качество снижаются и технические характеристики бетона;
- количество цемента в бетонном растворе. Чем больше вяжущего вещества в бетонной смеси, тем прочнее окажется готовое изделие. Важно не переусердствовать в процентном содержании цемента. Это ухудшает подвижность строительной смеси, она быстро схватывается, оставляя пустоты и воздушные полости;
- соотношение воды и цемента. Оптимальное количество жидкости подбирается в зависимости от фракции сухих компонентов. Излишнее содержание воды приводит к тому, что увеличивается подвижность бетонной смеси, она расплывается, образуются поры, снижающие прочность готового продукта;
- размер гранул и минеральный состав крупного и мелкого заполнителей. Фракции подбираются с небольшим расхождением значений для однородности раствора при перемешивании;
- отсутствие мусора и примесей. Наличие частиц пыли и глины, а также веществ органического происхождения в сухих компонентах снижает прочностные характеристики конечного продукта;
- вода. Для замешивания качественного бетонного раствора подходит только техническая вода без примесей солей и органики;
- вибрирование. Очень важная операции при укладке бетона. Позволяет заполнить все уголки формы. Сжижение строительной смеси выводит все пузырьки воздуха, не позволяет образовываться порам и полостям;
- соблюдение внешних условий. Резкие перепады температуры и быстрое испарение воды нарушают технологию производства. Это приводит к образованию трещин, бетон крошится, и ухудшается его прочность.
Сфера применения бетона в зависимости от класса и марки
Марка и класс бетона | Область применения |
М50; В3,5 |
При строительстве одного здания может применяться бетон разных марок и классов. Основание, фундамент, подвал, стены нижних и верхних этажей, лестницы и площадки требуют разного состава строительной смеси. Это обусловлено различием в нагрузке, которую они должны выдерживать.
Заключение
Марка и класс бетона – важнейшие показатели, которые учитываются при планировании строительства любого объекта. Это первое, на что обращают внимание при закупке материалов.
Прочность – величина, не отличающаяся стабильностью. Она зависит от множества факторов. Прочность и долговечность конечного продукта повысит правильная технология производства и подбор качественных компонентов.
При строительстве важно в самом начале определиться с маркой и классом бетона, которые подходят для возведения конкретного объекта. Так можно по максимуму использовать прочностные характеристики бетона, не переплачивая за более дорогой состав.
Прочность бетона на сжатие
Когда перед человеком возникает вопрос о покупке бетонной смеси или готового изделия, то в первую очередь он задумывается о качестве продукции, ведь это напрямую связано с безопасностью строительного сооружения.
Определение понятия прочности бетона: марка и класс
Основополагающей характеристикой бетона является его показатель прочности, который выражается в виде класса и марки.
Для выполнения необходимых задач в строительстве пользуются соответствующими классами. Так, для гидросооружений нужен один класс, а при бетонировании фундамента под одноэтажный дом – другой.
Марка бетона «М» выражает усреднённые значения прочности, единицы измерения – кгс/см 2 , класс бетона обозначается литерой «В» и выражается в МПа. Разница между этими двумя понятиями выражается не только в виде буквы и единицы измерения.
Главное отличие заключается в том, что марка указывает на среднюю величину предела прочности, а класс – на точные значения, расхождение составляет меньше 5%. Для сложных расчётов используют класс бетона, т. к. с применением марки возникает риск ошибки, при котором настоящие показатели окажутся меньше расчётных. Например, в характеристиках указывается М100 и В7,5. Расшифровывается это так: точное усилие, необходимое для разрушения, составит 7,5 МПа, а обобщенная нагрузка равна 100 кгс/см 2 , т. е. фактически эта цифра может быть и 105, и 103,6, и 93, и 97,2 и пр.
Класс и марка бетона по прочности на сжатие по ГОСТ
Таблица 1 – Сравнительная характеристика бетонов разных классов и марок
Документы, которые применяются при определении прочности
Требуемая прочность жёстко регулируется. Есть в наличии несколько основных документов для вычисления этой характеристики:
- ГОСТ 10180-2012 – применяется для образцов из готовой бетонной смеси;
- ГОСТ 28570-2019 – рассчитан для бетонных образцов;
- ГОСТ 22690-2015 – для крупных сооружений без создания проб-образцов.
Способы определения прочности: испытание бетона на сжатие
Существует два метода:
- разрушающий;
- неразрушающий.
При первом способе измеряют минимальные усилия, приложенные для поломки кубов и цилиндров, которые вырезают, выпиливают или выбуривают из целых изделий. Скорость увеличения силы нагрузки при этом постоянна. После выполнения испытания вычисляется итоговое значение таких усилий.
При втором способе нахождения требуемого показателя воздействуют механически на заданное место (удар, отрыв, скол, вдавливание, отрыв со скалыванием, упругий отскок). Точка приложения прибора не должна быть на краю или напротив арматуры. Далее находят результат по выраженной градации.
Рассчитывать на полную правдивость не стоит, имеется погрешность до 10 % для каждого из видов проверок.
Как выбирают образцы при разрушающем методе
- Пробы из бетонной смеси.
Для испытаний приготавливают образцы кубической и цилиндрической формы. Эталонным считается куб с длинной грани 150 мм.
- Все экземпляры создают в специальных формах, перед использованием конструкции смазывают маслом. Далее наполнят её бетонной смесью и уплотняют.
- Утрамбовывают при помощи штыкования стальным стержнем, виброплощадки или глубинного вибратора.
- Через сутки все затвердевшие образцы достают и размещают в боксе с нормальными условиями (влажность – 95%, температура – +20 °С). Иногда заготовки размещают в водной среде или в автоклаве.
- Образцы из готовых бетонных изделий.
Экземпляры для проверки прочности получают методом вырубки, выпиливания или выбуривания из целых изделий. В месте отбора не должно быть арматуры в точке, где извлечение не понесёт за собой снижение несущей способности. Пробы делают вдали от стыков и края изделия. Образцы извлекают из средней части пробы как на рисунке.
Предварительная подготовка к испытаниям
Прежде чем приступить непосредственно к испытаниям, все образцы измеряют и осматривают – нет ли трещин, сколов, рытвин. Если имеются скалывания более 10 мм, рытвины диаметром 10 мм и более и глубиной от 5 мм, образцы выбраковывают.
Также производят обмеры на наличие линейной погрешности, несоответствие перпендикулярности близлежащих граней, смещения от прямолинейности и плоскостности. Если обнаружены такие недочёты, грани и плоскости подвергают шлифованию или выравнивают быстротвердеющим веществом толщиной не больше 5 мм.
Как образцы бетона проходят испытания
Все приготовленные образцы одной группы испытывают на прочность в течение одного часа. Силовое нагружение производят не прерываясь, с постоянной скоростью увеличения нагрузки до разрушения. При этом, время от начала нагружения до его окончания – не меньше 30 с.
Во время проверки пользуются специальными строительными стендами:
- образцы кладут на нижнюю плиту пресса по центру;
- после совмещают верхнюю плиту и экземпляр, чтобы они находились плотно друг к другу;
- далее подают силовую нагрузку со скоростью 0,6±0,2 МПа/с.
Расчёты испытаний: формула
Прочность бетона на сжатие (R, МПа) считают с погрешностью до 0,1 МПа по формуле:
Обозначения:
- F – максимальная сила, Н;
- A – площадь грани под нагрузкой, мм;
- α – масштабный коэффициент, который приводит прочность к эталонной;
- KW – коэффициент, необходимый для ячеистого бетона, учитывающий влажность образцов.
Коэффициенты высчитывались экспериментально и представлены в таблице 2.
Таблица 2 – Масштабный коэффициент α
KW = 1, исключение – ячеистый бетон, его можно найти в таблице ГОСТа 10180.
Показатель прочности бетона рассчитывают как среднее арифметическое от прочности всех образцов, участвовавших в проверке: если образцов 3, то среднее арифметическое значение двух образцов с высшей прочностью.
Показатель прочности на сжатие – это такой показатель, который невозможно подделать. Проверку этой характеристики выполняют только аккредитованные лаборатории и строительные организации, которые сами подвергаются неоднократным проверкам – у них есть лицензии, подтверждающие право на выполнение тех или иных работ.
Расчет прочности бетона на сжатие формула
Министерство регионального развития и строительства
5 В настоящем стандарте учтены основные нормативные положения европейского стандарта ЕН 206-1:2000* "Бетон - Часть 1. Общие технические требования, эксплуатационные характеристики, производство и критерии соответствия" (EN 206-1:2000 "Concrete - Part 1: Specification, performance, production and conformity", NEQ) в части контроля и оценки прочности бетона
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
7 ПЕРЕИЗДАНИЕ. Август 2018 г.
1 Область применения
Настоящий стандарт распространяется на все виды бетонов, для которых нормируется прочность, и устанавливает правила контроля и оценки прочности бетонной смеси, готовой к применению (далее - БСГ), бетона монолитных, сборно-монолитных и сборных бетонных и железобетонных конструкций при проведении производственного контроля прочности бетона.
Правила настоящего стандарта могут быть использованы при проведении обследований бетонных и железобетонных конструкций, а также при экспертной оценке качества бетонных и железобетонных конструкций.
Выполнение требований настоящего стандарта гарантирует обеспечение принятых при проектировании расчетных и нормативных сопротивлений бетона конструкций.
2 Нормативные ссылки
В настоящем стандарте приведены ссылки на следующие стандарты:
ГОСТ 7473-2010 Смеси бетонные. Технические условия
ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам
ГОСТ 13015-2003 Изделия железобетонные и бетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения
ГОСТ 17624-87 Бетоны. Ультразвуковой метод определения прочности
ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля
ГОСТ 27006-86 Бетоны. Правила подбора состава
ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Термины, определения и обозначения
3.1 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1.1 нормируемая прочность бетона: Прочность бетона в проектном возрасте или ее доля в промежуточном возрасте, установленная в нормативном или техническом документе, по которому изготавливают БСГ или конструкцию.
Примечание - В зависимости от вида прочности в проектном возрасте устанавливают следующие классы бетона по прочности:
- класс бетона по прочности на сжатие;
- класс бетона по прочности на осевое растяжение;
- класс бетона по прочности на растяжение при изгибе.
3.1.2 требуемая прочность бетона: Минимально допустимое среднее значение прочности бетона в контролируемых партиях БСГ или конструкций, соответствующее нормируемой прочности бетона при ее фактической однородности.
3.1.3 фактический класс бетона по прочности: Значение класса бетона по прочности монолитных конструкций, рассчитанное по результатам определения фактической прочности бетона и ее однородности в контролируемой партии.
3.1.4 фактическая прочность бетона: Среднее значение прочности бетона в партиях БСГ или конструкций, рассчитанное по результатам ее определения в контролируемой партии.
3.1.5 проба бетонной смеси: Объем БСГ одного номинального состава, из которого одновременно изготавливают одну или несколько серий контрольных образцов.
3.1.6 серия контрольных образцов: Несколько образцов, изготовленных из одной пробы БСГ или отобранных из одной конструкции, твердеющих в одинаковых условиях и испытанных в одном возрасте для определения фактической прочности одного вида.
3.1.7 партия бетонной смеси: Объем БСГ одного номинального состава, изготовленный или уложенный за определенное время.
3.1.8 партия монолитных конструкций: Часть монолитной конструкции, одна или несколько монолитных конструкций, изготовленных за определенное время.
3.1.9 партия сборных конструкций: Конструкции одного типа, последовательно изготовленные по одной технологии в течение не более одних суток из материалов одного вида.
3.1.10 контролируемый участок конструкции: Часть конструкции, на которой проводят определение единичного значения прочности бетона неразрушающими методами.
3.1.11 зона конструкции: Часть контролируемой конструкции, прочность бетона которой отличается от средней прочности этой конструкции более чем на 15%.
3.1.12 анализируемый период: Период времени, за который вычисляют среднее значение коэффициента вариации прочности бетона для партий БСГ или конструкций, изготовленных за этот период.
3.1.13 текущий коэффициент вариации прочности бетона: Коэффициент вариации прочности бетона в контролируемой партии БСГ или конструкций.
3.1.14 средний коэффициент вариации прочности бетона: Среднее значение коэффициента вариации прочности бетона за анализируемый период при контроле по схемам А и В.
3.1.15 скользящий коэффициент вариации прочности бетона: Коэффициент вариации прочности бетона, рассчитываемый как средний для текущей партии и предыдущих проконтролированных партий БСГ или конструкций при контроле по схеме Б.
3.1.16 контролируемый период: Период времени, в течение которого требуемая прочность бетона принимается постоянной в соответствии с коэффициентом вариации за предыдущий анализируемый период.
3.1.17 текущий контроль: Контроль прочности бетона партии БСГ или конструкций, при котором значения фактической прочности и однородности бетона по прочности (текущего коэффициента вариации) рассчитывают по результатам контроля этой партии.
3.1.18 разрушающие методы определения прочности бетона: Определение прочности бетона по контрольным образцам, изготовленным из бетонной смеси по ГОСТ 10180 или отобранным из конструкций по ГОСТ 28570.
3.1.19 прямые неразрушающие методы определения прочности бетона: Определение прочности бетона по "отрыву со скалыванием" и "скалыванию ребра" по ГОСТ 22690.
3.1.20 косвенные неразрушающие методы определения прочности бетона: Определение прочности бетона по предварительно установленным градуировочным зависимостям между прочностью бетона, определенной одним из разрушающих или прямых неразрушающих методов, и косвенными характеристиками прочности, определяемыми по ГОСТ 22690 и ГОСТ 17624.
3.1.21 захватка: Объем бетона монолитной конструкции или ее части, уложенный при непрерывном бетонировании одной или нескольких партий БСГ за определенное время.
3.1.22 единичное значение прочности: Значение фактической прочности бетона нормируемого вида, учитываемое при расчете характеристик однородности бетона:
- для БСГ - среднее значение прочности бетона пробы бетонной смеси;
- для сборных конструкций - среднее значение прочности бетона пробы бетонной смеси или среднее значение прочности бетона участка конструкции, или среднее значение прочности бетона одной конструкции;
- для монолитных конструкций - среднее значение прочности бетона участка конструкции или бетона одной конструкции.
3.2 Обозначения
- проектный класс прочности бетона, МПа;
- фактический класс прочности бетона, МПа;
, , - единичное, минимальное и максимальное значения прочности бетона в партии, МПа;
Читайте также: