Прочность бетона при длительном действии нагрузки
Прочность бетона при длительном действии нагрузки
Под прочностью твердого тела понимают его способность сопротивляться воздействию внешних сил, не разрушаясь. Прочность бетона зависит от многочисленных факторов: структуры, марки и вида цемента, водоцементного отношения, вида и прочности крупных и мелких заполнителей, условий твердения, вида напряженного состояния, формы и размера образцов, длительности загружения. Определяющее влияние на прочность бетона оказывает взаимодействие твердой кристаллической части цементного камня с его пластичной гелевой частью. Во времени гелевая составляющая уменьшается, а кристаллическая — увеличивается. Соотношение во времени между двумя составляющими цементного камня в основном зависит от марки цемента и тонкости помола. Чем тоньше помол цемента, тем быстрее рост твердой кристаллической части.
В нашей стране в основном производится алитовый портландцемент. После твердения он обладает наибольшим отношением твердой кристаллической к пластичной гелевой составляющей цементного камня. Вследствие этого алитовый портландцемент оказывается наиболее прочным. При одноосном сжатии растягивающие напряжения в сплошной среде отсутствуют, хотя вокруг пор и пустот по продольным площадкам возникают растягивающие структурные напряжения, уравновешиваемые сжимающими напряжениями. Поэтому местные структурные напряжения в явном виде не учитывают, полагая, что влияние их сказывается при определении нормативных прочностных и деформативпых характеристик бетона.
Вследствие частого и хаотического расположения пустот происходит взаимное наложение растягивающих напряжений (появляется вторичное поле напряжений). Концентрация местных растягивающих напряжений приводит к появлению и развитию микротрещин в бетоне еще задолго до его разрушения. В случае одноосного сжатия небольшое количество микротрещин возникает уже при напряжениях (временное сопротивление сжатию призмы). Отсутствие закономерности в расположении заполнителей в затвердевшем бетоне, а также в размерах и расположении пор приводит к существенному разбросу показателей прочности эталонных образцов, изготовленных из одного бетона. Поэтому данные о фактической прочности и деформативности бетона основывают на большом числе экспериментов, выполненных в лабораторных и натурных условиях.
Кубиковая прочность.
В железобетонных конструкциях бетон преимущественно используется для восприятия сжимающих напряжений. Поэтому за основную характеристику (эталон) прочностных и деформативных свойств бетона принята его прочность на осевое сжатие. Все другие прочностные характеристики (на растяжение, местное сжатие и др.) и модуль деформаций зависят от прочности бетона на осевое сжатие и определяются по эмпирическим формулам с помощью экспериментальных коэффициентов.
В общем случае прочность бетона при осевом сжатии имеет три характерные границы. Первой границей является величина прочности бетона на многократно повторную нагрузку (предел выносливости бетона), второй — предел длительного сопротивления бетона, и третий — кратковременное сопротивление бетона или призменная прочность бетона.
Прочность на смятие (местное сжатие).
Опыты показывают, что при действии сжимающей силы напряжения в толщу бетона распространяются под углом 45 градусов. При этом бетон под площадкой смятия может выдерживать напряжения, значительно превышающие призменную прочность бетона. Повышение прочности бетона на нагруженной части объясняется удерживающим влиянием бетона ненагруженной части (бетонной обоймой) и в железобетонных конструкциях многоэтажных зданий встречается часто: под опорами балок, в стыках сборных колонн, под анкерами предварительно напряженных конструкций.
Прочность на осевое растяжение.
Из-за трудностей центровки растягивающей силы истинное временное сопротивление бетона на осевое растяжение получить трудно, поэтому на практике определяют его косвенными методами — по результатам испытания цилиндрических образцов на раскалывание или изгиба опытных балочек. Прочность бетона на осевое растяжение зависит от прочности на растяжение цементного камня и его сцепления с зернами крупного заполнителя, от увлажнения. Причинами низкой прочности при осевом растяжении является неоднородность структуры бетона, наличие внутренних напряжений, слабое или нарушенное сцепление между цементным камнем и заполнителями.
Прочность при срезе и скалывании.
Под чистым срезом понимают разделение элемента на части по сечению, к которому приложены перерезывающие силы, т. е. такое напряженное состояние, при котором главные напряжения равны 0. Под чистым скалыванием понимают взаимное смещение (сдвиг) частей элемента между собой под действием скалывающих (сдвигающих) усилий. Железобетонные конструкции редко работают на срез и скалывание. Обычно срез сопровождается действием продольных сил, а скалывание — действием поперечных сил. Сопротивление срезу может возникать в шпоночных соединениях и у опор балок, а сопротивление скалыванию — при изгибе преднапряженных балок до появления в них наклонных трещин, если не обеспечена надежная связь между верхней и нижней частями бетона на опорах.
Прочность при длительном действии нагрузки.
Пределом длительного сопротивления бетона называют наибольшие статические неизменные во времени напряжения, которые он может выдерживать неограниченно долгое время без разрушения. При длительном действии нагрузки бетонный образец разрушается при напряжениях меньших, чем при кратковременной нагрузке. Это обусловливается влиянием развивающихся значительных неупругих деформаций и изменением структуры бетона и зависит от режима нагружения, начальной прочности и возраста образцов.
Прочность при многократном действии нагрузки.
Под прочностью бетона при многократно повторных (подвижных или пульсирующих) нагрузках (предел выносливости бетона) понимают напряжение, при котором количество циклов, необходимых для разрушения образца, составляет не менее 1000000. Установлено, что предел выносливости бетона уменьшается с уменьшением коэффициента асимметрии цикла. Предел выносливости связан с нижней границей образования микротрещин. Если многократно повторная тающего упруго в течение короткого промежутка нагружения динамической нагрузкой.
Динамическое упрочнение.
При кратковременной (ударная, импульсная) динамической нагрузке большой интенсивности получают увеличение временного сопротивления бетона — динамическое упрочнение. Оно тем больше, чем меньше время нагружения образца. Динамическое временное сопротивление
Бетоны высоких классов не дают заметного прироста прочности во времени. Твердение бетона значительно ускоряется с повышением температуры и влажности среды. Поэтому на предприятиях сборного железобетона изделия подвергают тепловлажностной обработке (температура до 90 С и влажность до 100%) или специальной автоклавной обработке при высоком давлении пара и температуре порядка 170 °С. Эти способы позволяют за сутки получить прочность бетона, равную 70% от проектной прочности.
Противоморозные добавки (хлористые соли, углекислый калий, азотистокислый натрий) обеспечивают твердение бетона при температурах до — 10 С. Добавку принимают не более 15% от массы цемента. Лишнее количество добавки вредно действует на бетон и вызывает коррозию арматуры.
3.5.6. Прочность бетона при длительном действии нагрузки
Предел длительного сопротивления бетона осевому сжатию составляет Rbl ≈ 0,9Rb, т.к. при длительном действии нагрузки под влиянием развивающихся значительных неупругих деформаций бетон разрушается при напряжениях, меньших, чем Rb.
3.5.7. Прочность бетона при многократно повторяемых нагрузках
При действии многократно повторяемых нагрузок прочность бетона сжатию под влиянием развития структурных микротрещин уменьшается. Предел прочности бетона (предел выносливости) Rf зависит от числа циклов нагрузки – разгрузки n и отношения попеременно возникающих минимальных и максимальных напряжений .
10 7 Rf ≈ 0,5÷0,7 Rb.
3.5.8. Динамическая прочность бетона
При динамической нагрузке большой интенсивности, но малой продолжительности, имеет место увеличенное временное сопротивление бетона – динамическая прочность. Это явление объясняется энергопоглощающей способностью бетона, работающего только упруго в течение короткого промежутка нагружения динамической нагрузкой. Чем меньше время τ нагружения, тем больше коэффициент динамической прочности бетона . Приτ=0,1 сек Rd ≈ 1,2Rb.
3.6. Деформативность бетона
Виды деформаций бетона:
Объемные – во всех направлениях под влиянием усадки, изменения температуры и влажности.
Силовые – от действия внешних сил.
Бетону свойственно нелинейное деформирование, поэтому силовые деформации в зависимости от характера приложения нагрузки и длительности ее действия делят на 3 вида: деформации при однократном загружении кратковременной нагрузкой, деформации при длительном действии нагрузки и деформации при многократно повторяющемся действии нагрузки.
3.6.1. Деформации при однократном загружении кратковременной нагрузкой
Деформация бетона: (рис. 7),
где εе – упругая деформация, εpl – упругопластическая деформация.
Если образец загружать по этапам и замерять деформации дважды – сразу после приложения нагрузки и через некоторое время после выдержки под нагрузкой, получим ступенчатую линию (рис. 8). При достаточном числе загружений, ступенчатая линия зависимости σb – εb может быть заменена плавной кривой. Таком образом, упругие деформации бетона соответствуют лишь мгновенной скорости загружения образца, а неупругие развиваются во времени.
Рис. 7. Диаграмма зависимости между напряжениями и деформациями в бетоне
При сжатии и растяжении:
I – область упругих деформаций; II – область пластических деформаций;
1 – загрузка; 2 – разгрузка; εbu – предельная сжимаемость;εbtu – предельная растяжимость;
εер – доля неупругих деформаций, восстанавливающихся после разгрузки.
С увеличением скорости загружения V при одном и том же напряжении σb неупругие деформации уменьшаются (рис. 9).
Рис. 8. Диаграмма σb – εb в сжатом бетоне при Рис. 9. Диаграмма σb – εb в сжатом бетоне при
различном числе этапов загружения. различной скорости загружения.
3.6.2. Деформации при длительном действии нагрузки
При длительном действии нагрузки обнаруживается постепенное снижение сопротивления бетона (ниспадающая ветвь диаграммы σb – εb). При длительном действии нагрузки неупругие деформации бетона с течением времени увеличиваются.
Участок 0-1 (рис. 10) характеризует деформации, возникающие при загружении. Участок 1-2 характеризует нарастание неупругих деформаций при постоянном значении напряжений.
Свойство бетона, характеризующееся нарастанием неупругих деформаций с течением времени при постоянных напряжениях, называютползучестью бетона
3.5.6. Прочность бетона при длительном действии нагрузки
Предел длительного сопротивления бетона осевому сжатию составляет Rbl ≈ 0,9Rb, т.к. при длительном действии нагрузки под влиянием развивающихся значительных неупругих деформаций бетон разрушается при напряжениях, меньших, чем Rb.
3.5.7. Прочность бетона при многократно повторяемых нагрузках
При действии многократно повторяемых нагрузок прочность бетона сжатию под влиянием развития структурных микротрещин уменьшается. Предел прочности бетона (предел выносливости) Rf зависит от числа циклов нагрузки – разгрузки n и отношения попеременно возникающих минимальных и максимальных напряжений .
10 7 Rf ≈ 0,5÷0,7 Rb.
3.5.8. Динамическая прочность бетона
При динамической нагрузке большой интенсивности, но малой продолжительности, имеет место увеличенное временное сопротивление бетона – динамическая прочность. Это явление объясняется энергопоглощающей способностью бетона, работающего только упруго в течение короткого промежутка нагружения динамической нагрузкой. Чем меньше время τ нагружения, тем больше коэффициент динамической прочности бетона . Приτ=0,1 сек Rd ≈ 1,2Rb.
2.8. Деформативность бетона
Начальный модуль упругости бетона при сжатии – это величина, соответствующая тангенсу угла наклона касательной к функции диаграммы , проходящей через начало координат(рис.2.11).
или (2.8)
Модуль касательных деформаций бетона при сжатии – это величина, соответствующая тангенсу угла наклона касательной к кривой деформаций в любой заданной точке (рис.2.11) .
(2.9)
Для расчёта железобетонных конструкций используют модуль упругопластичности (секущий модуль) бетона при сжатии–это величина, соответствующая тангенсу угла наклона секущей, проходящей через начало координат и точку на диаграмме полных деформаций (рис.2.11).
(2.10)
Рис. 2.11. Схема для определения модулей деформаций в бетоне
Если выразить одно и то же напряжение через упругие деформациии полные деформации, то получим
(2.11)
Коэффициент пластичности бетона равен
(2.12)
Коэффициент упругопластической деформации бетона равен
(2.13)
Используя (2.11) и (2.12) получим зависимость между секущим и начальным модулями (2.14)
(2.14)
Коэффициент упругопластической деформации можно выразить через коэффициент пластичности:
(2.15)
Для идеально упругого материала пластические деформации малы, т.е. .
Для идеально пластического материала упругие деформации малы, т.е. .
Зависимость между напряжениями и деформациями ползучести выражаются мерой ползучести . Используя формулы (2.11), (2.12), (2.14), получим:
(2.16)
где .
Мера ползучести зависит от класса бетона и его начального модуля деформаций. Мера ползучести – это удельная деформация ползучести.
Начальный модуль упругости бетона (рис. 12) при сжатии Еb соответствует лишь упругим деформациям, возникающим при мгновенном загружении:
.
Модуль полных деформаций бетона (рис.12) при сжатии соответствует полным деформациям; является величиной переменной:
,
где α – угол наклона касательной к кривой σb – εb в точке с заданным напряжением.
Железобетонные конструкции - Грушевский Г.М.. Федеральное агентство по образованию
Прочность бетона определяется его сопротивлением различным силовым воздействиям – сжатию, растяжению, изгибу, срезу. Один и тот же бетон имеет разное временное сопротивление при различных силовых воздействиях. Исследования показали, что теории прочности, предложенные для других материалов, к бетону не применимы. Поэтому количественная оценка прочности бетона в настоящее время основывается на осреднённых опытных данных, которые принимаются в качестве исходных при проектировании любых бетонных и железобетонных конструкций.
Отсутствие закономерности в расположении отдельных частиц, составляющих бетон, приводит к тому, что при испытании образцов, изготовленных из одной и той же бетонной смеси, получают различные показатели временного сопротивления – разброс прочности. Кроме того, необходимо помнить, что механические свойства цементного камня и заполнителей существенно отличаются друг от друга; к тому же структура бетона изобилует дефектами, которыми, помимо пор, являются пустоты около зёрен заполнителя, возникающие при твердении бетона.
Прочность бетона на осевое сжатие считается основной его характеристикой, так как наиболее ценным качеством бетона является его высокая прочность на сжатие. В лабораторных условиях она может определяться на образцах в форме кубов, призм или цилиндров. У нас в стране для оценки прочности бетона при сжатии используют преимущественно кубы.
Так как бетон представляет собой неоднородный искусственный каменный материал, то для получения достоверных сведений о его прочности в соответствии с действующими стандартами испытывают партию образцов и определяют (средний предел прочности на осевое сжатие бетонных кубов с ребром 150 мм) и (средний предел прочности на осевое сжатие эталонных бетонных образцов призм).
Кубиковая прочность. При осевом сжатии кубы (как и другие сжатые образцы) разрушаются вследствие разрыва бетона в поперечном направлении. Наклон трещин обусловлен влиянием сил трения, которые развиваются на контактных поверхностях между подушками пресса и опорными гранями куба (рис. 7, а). Силы трения, направленные внутрь, препятствуют свободным поперечным деформациям бетона вблизи опорных поверхностей и тем самым повышают его прочность на сжатие (создаётся эффект обоймы). Удерживающее влияние сил трения по мере удаления от торцевых граней куба уменьшается, поэтому после разрушения куб приобретает форму четырех усеченных пирамид, сомкнутых малыми основаниями. Если при осевом сжатии куба удаётся устранить или значительно уменьшить (с помощью смазки контактных поверхностей, например, парафином или картонных прокладок) влияние сил опорного трения, то характер его разрушения и прочность изменяются (рис. 7, б).
Рис. 7. Характер разрушения бетонных кубов:
а – при наличии трения по опорным плоскостям; б – при отсутствии трения; 1 – силы трения; 2 – трещины; 3 – смазка
В этом случае поперечные деформации проявляются свободно и трещины разрыва становятся вертикальными, параллельными действию сжимающей силы, а временное сопротивление бетона сжатию существенно уменьшается. Согласно стандарту кубы испытывают без смазки контактных поверхностей и при отсутствии прокладок.
Опытами установлено, что прочность бетона одного и того же состава зависит от размеров куба. За стандартные (эталонные) лабораторные образцы принимают кубы с ребром 150 мм. При использовании кубов иных размеров результаты их испытаний с помощью поправочных коэффициентов приводят к результатам испытаний эталонных кубов.
Призменная прочность. Реальные железобетонные конструкции по своей форме и размерам существенно отличаются от лабораторных кубов. В них чаще всего один размер превышает два других (например, пролёт – ширину и высоту изгибаемого элемента; высота сжатого элемента – размеры его поперечного сечения).
В связи с тем, что при испытаниях бетона при переходе от образца в форме куба к образцу в форме призмы (при одинаковой площади их сечения) временное сопротивление сжатию при увеличении h уменьшается (рис. 8), кубиковая прочность не может быть непосредственно использована в расчётах прочности элементов конструкций, а служит только для контроля качества бетона в производственных условиях.
Рис. 8. График зависимости призменной прочности бетона от отношения размеров испытываемого образца
Уменьшение временного сопротивления бетона сжатию при переходе от образцов в форме куба к образцам в форме призмы объясняется тем, что при увеличении отношения h/aпостепенно ослабевает влияние сил трения, возникающих между торцами образца и плитами пресса, на напряжённое состояние образца в его средней по высоте части, а для призм с h/a ≥ 4 это влияние практически полностью исключено.
Принято определять призменную прочность бетона –основную и наиболее стабильную характеристику прочности бетона на сжатие, используемую в расчётах на прочность сжатых и изгибаемых элементов – на эталонных призмах с размерами 150 150 600 мм (h/ a= 4).
Опытами установлено, что при 4 ≤ h/a Прочность бетона на осевое растяжение kt зависит от сопротивления цементного камня растяжению и прочности его сцепления с зёрнами заполнителя. Согласно опытным данным:
где – средний предел бетона на осевое растяжение.
Причём относительная прочность бетона при осевом растяжении ktуменьшается с повышением прочности бетона на сжатие. Причинами низкой прочности бетона на растяжение являются неоднородность его структуры, наличие начальных напряжений, слабое сцепление цементного камня с крупным заполнителем. Некоторое повышение (примерно на 15. 20%) может быть достигнуто увеличением расхода цемента на единицу объёма бетона, уменьшением W/C, применением вместо гравия щебня с шероховатой поверхностью, промывкой заполнителя.
Имеется несколько лабораторных методик определения . Однако при испытаниях по этим методикам наблюдается ещё больший разброс показателей прочности по сравнению с испытаниями бетона на осевое сжатие, так как образцы трудно центрировать. Поэтому, если известна прочность бетона при сжатии, иногда определяют теоретически, например, по формуле:
Прочность бетона при длительном действии нагрузки. При испытаниях бетонных образцов в лабораторных условиях нагружение осуществляется достаточно быстро, со скоростью 20. 30 Н/(см 2 • с). Реальные же конструкции находятся под действием нагрузки десятки лет. Согласно опытным данным при длительном действии нагрузки и высоких напряжениях под влиянием развивающихся значительных неупругих деформаций и структурных изменений бетон разрушается при напряжениях, меньших, чем временное сопротивление осевому сжатию при однократном кратковременном загружении .
Разница между кратковременным сопротивлением бетона и длительным может достигать 25%, если за время выдержки под нагрузкой прочность бетона не нарастает или нарастает незначительно, т. е. предел длительного сопротивления бетона сжатию находится в интервале:
Если конструкция эксплуатируется в благоприятных для нарастания прочности бетона условиях и уровень напряжений постепенно снижается, отрицательное влияние фактора длительности загружения может и не проявиться.
Динамическая прочность бетона. Нагружение считают динамическим в тех случаях, когда скорость нагружения от нуля до максимальных напряжений составляет 0,001. 1с. К конструкциям, работающим на динамические нагрузки, относятся мосты, шпалы, подкрановые балки, покрытия дорог и аэродромов и др.
При динамической нагрузке особо малой продолжительности, имеющей место при ударных, взрывных и других воздействиях, наблюдается повышение временного сопротивления бетона – динамическая прочность ().Чем меньше время нагружения бетонного образца динамической нагрузкой (τ)(или, что то же самое, чем больше скорость роста напряжений, МПа/с), тем больше коэффициент динамической прочности бетона:
Это явление объясняется энергопоглощающей способностью бетона, работающего в течение короткого времени нагружения динамической нагрузкой только упруго вследствие запаздывания развития неупругих деформаций.
Кроме ударных и взрывных воздействий к нагрузкам особо малой продолжительности можно отнести порывы ветра, сейсмические нагрузки, нагрузку, действующую на конструкцию в момент передачи предварительного напряжения с арматуры на бетон.
Зависимость предела прочности бетона от времени действия нагрузки представлена на рис. 9, в.
Рис. 9. Зависимость предела прочности бетона:
а – от числа циклов загружений; б – от характеристиики цикла на базе N = 2 • 10 6 ; в – от времени действия нагрузки; 1 – бетон класса В40; 2 – бетон класса В25
Прочность бетона при многократно повторяющихся нагрузках. Многократно повторяющиеся нагрузки в зависимости от скорости нагружения могут иметь статический и динамический характер.
По количеству циклов «нагрузка – разгрузка» различают два вида повторного нагружения бетона: малоцикловое нагружение бетона (до 100. 200 циклов) случайной по величине и периоду повторения нагрузкой с последующей разгрузкой (например, при забивке свай или шпунта) и многократно повторяющееся нагружение цикловой нагрузкой при коэффициенте ассиметрии (характеристике) цикла:
где и – соответственно наименьшее и наибольшее нормальные напряжения материала в пределах изменения цикла нагрузки.
При малоцикловой загрузке и разгрузке бетона сжимающими напряжениями небольшой величины происходит уплотнение и упрочнение бетона как при длительном сжатии. Когда сжимающие напряжения при этом колеблются в пределах между верхней и нижней границами микроразрушения бетона (), то малоцикловое нагружение практически не влияет на его прочность, т.е. не снижает её по сравнению с однократным нагружением. Здесь – то наименьшее сжимающее напряжение в бетоне, при котором по границе цементно-песчаного камня и крупного заполнителя образуются микротрещины; – сжимающее напряжение в бетоне, соответствующее верхней границе образования микротрещин и цементно-песчаном камне.
Прочность бетона на сжатие при действии на него многократно повторяющихся нагрузок, с повторяемостью несколько миллионов циклов, под влиянием развития структурных микротрещин и в результате постепенного накопления пластических деформаций снижается по сравнению с однократным кратковременным загружением. Степень её понижения зависит от характеристики цикла , количества циклов нагрузки и разгрузки N и относительного уровня напряжений . Это следует учитывать при проектировании мостов, шпал, подкрановых балок, перекрытий некоторых промышленных зданий, транспортных эстакад, станин мощных прессов и других конструкций, испытывающих подобные нагрузки.
Предел прочности бетона при многократно повторяющейся нагрузке называют пределом выносливости.
Различают абсолютный предел выносливости , т.е.наибольшее напряжение, которое бетон способен выдерживать, не разрушаясь, при неограниченном увеличении числа циклов, и практический предел выносливости , полученный на ограниченной базе N = 2•10 6 . Последний зависит от характеристики цикла почти линейно. Его наименьшее значение для наиболее тяжелого цикла при бетоне класса В25 составляет = 0,5 (рис. 9, б). С увеличением N происходит постепенное снижение , однако после N = (1,5. 2) • 10 6 циклов это снижение незначительно (рис. 9, а).
Наименьшее значение абсолютного предела выносливости, как показали исследования, связано с нижней границей образования структурных микротрещин так, что . Такая связь между и позволяет находить предел выносливости по первичному загружению, определяя ультразвуковой аппаратурой.
Прочностные свойства бетона.
Под прочностью бетона понимают его способность сопротивляться воздействию внешних сил, не разрушаясь.
Прочность бетона зависит от многочисленных факторов: структуры, марки и вида цемента, водоцементного отношения, вида и прочности крупных и мелких заполнителей, вида напряженного состояния, формы и размеров образца, длительности загружения.
На прочность бетона большое влияние оказывает скорость загружения образцов. При замедленном их нагружении, прочность бетона оказывается на 10…15% меньше, чем при кратковременном статическом. При быстром загружении прочность бетона возрастает до 20 %.
Бетон имеет различную прочность при разных силовых воздействиях: сжатии, растяжении, изгибе, срезе. В связи с этим различают несколько характеристик прочности бетона: кубиковую и призменную прочность, прочность при растяжении, срезе и скалывании; прочность при многократных повторных нагрузках, прочность при кратковременном, длительном и динамическом действии нагрузок.
В железобетонных конструкциях бетон преимущественно используется для восприятия сжимающих напряжений. Поэтому за основную характеристику прочностных свойств бетона принята его прочность на осевое сжатие, устанавливаемая, как правило, путем испытания стандартных кубов размером 150×150×150 мм, испытанных при температуре (20 ± 2) °С через 28 дней твердения в нормальных условиях (температуре воздуха 15. 20 °С и относительной влажности 90. 100%). Реже испытания проводят па цилиндрах диаметром (d) 100, 150, 200 и 300 мм с высотой h = 2d.
За кубиковую прочность бетона принимают временное сопротивление R эталонных кубов, определяемое по выражению:
где F – разрушающая нагрузка, Н;
А – средняя рабочая площадь образца, мм2;
α – переводный коэффициент, зависящий от размеров образца. С уменьшением размеров поперечного сечения коэффициент а уменьшается. Это объясняется изменением эффекта обоймы с изменением размеров образца и расстояния между его торцами.
Различное сопротивление сжатию образцов разной величины (и формы) объясняется влиянием сил трения, возникающих между гранями образца и опорными плитами пресса.
Вблизи опорных плит пресса силы трения, направленные внутрь, создают как бы обойму и тем самым увеличивают прочность образцов при сжатии. По мере удаления от торцов влияние сил трения уменьшается. Поэтому бетонный куб получает форму двух усеченных пирамид (рис.2, а). При отсутствии (или существенном уменьшении) сил трения характер разрушения меняется, происходит раскалывание куба по плоскостям, параллельным направлению действующей внешней нагрузки (рис.2, б).
Рис. 2. Характер разрушения бетонных кубов; а - при наличии трения по опорным плоскостям; б - при отсутствии трения по опорным плоскостям
Реальные железобетонные конструкции по своей форме значительно отличаются от кубов. Поэтому кубиковая прочность не может непосредственно характеризовать прочность сжатых участков железобетонных конструкций. Для этой цели используют другую характеристику - призменную прочность бетона.
Железобетонные конструкции по форме отличаются от кубов, поэтому кубиковая прочность бетона не может быть непосредственно использована в расчетах прочности элементов конструкции. Основной характеристикой прочности бетона сжатых элементов является призменная прочность. Под призменной прочностью σbu понимают временное сопротивление осевому сжатию призмы с отношением высоты призмы h к размеру а квадратного основания, равным 4.
В реальных конструкциях напряженное состояние бетона сжатой зоны приближается к напряженному состоянию призм. Образцы призматической формы, для которых влияние сил трения меньше, чем для кубов, при одинаковом поперечном сечении показывают меньшую прочность на сжатие. При отношении высоты призмы к стороне основания h /a > 4 влияние сил трения практически исчезает, и прочность становится постоянной и равной ≈ 0,75 R.
Прочность на осевое растяжение
Прочность бетона на осевое растяжение зависит от прочности при растяжении цементного камня и его сцепления с зернами крупного заполнителя.
Рис.3. Схемы испытаний образцов для определения прочности бетона на растяжение
Опытным путем она определяется испытаниями на разрыв образцов в виде восьмерок, на раскалывание образцов в виде цилиндров, кубов или на изгиб бетонных балочек.
Прочность бетона на осевое растяжение имеет сравнительно небольшое значение.
σbtu =0,1σbu . 0,05 σbu
Ориентировочное значение σbt можно определить по эмпирической формуле Фере: Ориентировочное значение σbt можно определить по эмпирической формуле Фере:где γ = 0,8 – коэффициент для бетонов класса В25 и ниже, γ = 0,7 – для бетонов класса В30 и ниже
Прочность бетона при срезе и скалывании
Под чистым срезом понимают разделение элемента на части по сечению, к которому приложены перерезывающие силы.
Под чистым скалыванием понимают взаимное смещение (сдвиг) частей элемента между собой под действием скалывающих (сдвигающих) усилий.
Железобетонные конструкции редко работают на чистый срез и скалывание. Обычно срез сопровождается действием продольных сил, а скалывание - действием поперечных сил.
Сопротивление срезу может возникать в шпоночных соединениях и у опор балок, а сопротивление скалыванию – при изгибе преднапряженных балок до появления в них наклонных трещин, если не обеспечена надежная связь между верхней и нижней частями бетона на опорах.
В нормах временное сопротивление срезу и скалыванию не приводится, и его принимают приблизительно равным 2 σbtu
Прочность бетона при длительном действии нагрузки
Пределом длительного сопротивления бетона называют наибольшие статические неизменные во времени напряжения, которые он может выдерживать неограниченно долгое время без разрушения.
При длительном действии нагрузки бетонный образец разрушается при напряжениях, меньших, чем при кратковременной нагрузке. Это обусловлено влиянием развивающихся неупругих деформаций изменением структуры бетона.
При расчете прочности элементов в расчетное сопротивление бетона сжатию Rb и растяжению Rbt вводят коэффициент условия работы γb2 , учитывающий влияние на прочность бетона вероятной длительности действии я расчетных усилий и условий возрастания прочности бетона во времени.
Прочность бетона при многократном действии нагрузки
Под прочностью бетона при многократно повторных (подвижных или пульсирующих) нагрузках σf (предел выносливости бетона) понимают напряжение, при котором количество циклов нагрузки и разгрузки, необходимых для разрушения образца, составляет не менее 1 000 000.
Предел выносливости бетона связан с нижней границей образования микротрещин. Если многократно повторная нагрузка вызывает в бетоне напряжения, превышающие границы трещинообразования, то при большом количестве циклов наступает его разрушение.
Предел выносливости бетона σf определяют посредством умножения временных сопротивлений σbu и σbtu бетона на коэффициент условий работы бетона γb1 .
Удаление и снос бетона
- Как удалить старый бетон
Следующее предназначено только для общего информационного использования. Это очень общий обзор процесса выдачи разрешений для проектов по сносу. Фактический процесс может широко варьироваться между регионами страны, округами и муниципалитетами.
Вы также найдете обзор распространенных методов и инструментов сноса. Сравните ваши варианты того, как снести существующий бетон, а также какое оборудование использовать. Кроме того, вы сможете найти информацию о безопасности и предупреждения о возможных опасностях во время сноса.
Бетон Информация о сносе
УСЛОВИЯ ВЫЗОВА БЕТОНА ДЛЯ СНЯТИЯ И ЗАМЕНЫ
Существуют определенные условия, при которых использование исправляющего состава и продукта для шлифовки приведет к кратковременному исправлению. В этих условиях исправление бетона перед повторной шлифовкой или нанесение декоративного покрытия будет пустой тратой времени и денег, поскольку поверхность или покрытие вскоре будут иметь те же характеристики, что и бетон, который вы пытались починить.
Эти условия включают в себя:
- Глубокие, широко распространенные трещины , где произошло заселение. Это может быть связано с весом больших грузовиков, неправильной подготовкой подкласса, эрозией подкласса или по другим причинам.
- Бетонные плиты, которые утонули , что может произойти, если подкласс не был подготовлен должным образом. Свободная грязь, возможно, использовалась для подкласса. Когда эта грязь оседает - иногда из-за разбрызгивателя или дождевой воды, идущей под бетоном - бетон не поддерживается и будет более подвержен погружению.Также возможно, что подкласс был уплотнен, а бетон подвергся чрезмерному весу, что привело к падению бетона.
- Бетонные плиты с явными признаками морозного пучения . Морозные пучки очень распространены в холодном климате. Влага в земле замерзает и бетон поднимается вверх.
- Бетонные плиты, которые имеют так много отколов или точечной коррозии на поверхности, что выгоднее заменить бетон, чем подготовить всю поверхность к повторной шлифовке и шлифовке бетона.
При любом из вышеперечисленных условий лучше снять и заменить бетон.
Найдите местных подрядчиков по бетону, которые могут вырвать ваш старый бетон и заменить его новым красивым декоративным бетоном.
Существует множество других причин, по которым необходимо удалять бетон в проекте:
- Пристройка к коммерческому или жилому зданию требует удаления бетона, который мешает пристройке.
- Удаляется вся конструкция, из которой бетон является частью конструкции.
- Существует неисправная бетонная конструкция, которую владелец хочет вырвать и заменить.
- Старый бордюр должен быть удален для улучшения улиц, расширения дорог и т. Д.
БЕТОННЫЕ МЕТОДЫ РАЗРУШЕНИЯ
Разрывное давление
Разрыв под давлением может использоваться в тех случаях, когда предпочтительным является относительно тихий, беспыльный контролируемый снос.
Как механическое, так и химическое разрушение под давлением расщепляют бетон либо с помощью расщепляющей машины, работающей на гидравлическом давлении, обеспечиваемом двигателем в случае механического разрушения, либо путем введения расширяющейся суспензии в заранее определенный рисунок скважин в случае химического взрыва.
Затем расщепленный бетон легко удаляется вручную или краном.
Гидравлическое и химическое разрывное давление разрушает бетонные конструкции с минимальным уровнем шума и летящих обломков. Оба метода работают путем приложения боковых сил к внутренним отверстиям, просверленным в бетоне, и могут выполнять практически любую работу, на которую способны другие методы разрушения. Однако, вместо того, чтобы разрушить мошенник
Читайте также: