Призменная прочность бетона в15
Что такое марка и класс бетона по прочности — таблица соответствия
Строительство потребляет огромный объем бетона, и он постоянно растет. Для каждого вида работ предназначается своя смесь, они отличаются составом, техническими характеристиками, ценой. Основными параметрами являются класс бетона и его марка – показывающие прочность состава после его полного отвердевания.
Классификация бетонных смесей нужна, чтобы определить их назначение в конкретном виде работ. При необходимости учитываются водостойкость, морозостойкость и другие свойства, определяющие долговечность конструкций из этого материала.
СодержаниеЧто означает марка бетона?
Марки бетона определяются по прочности на сжатие, они показывают, какую нагрузку выдерживает до разрушения образец на площади 1 см², обозначается буквой «М» с индексом. Например, М200 выдерживает нагрузку в 200 кг/см². Этот показатель зависит от соотношения основных компонентов, а также способа приготовления раствора, где учитываются:
- Цемент должен быть как можно более высокой марки, при изготовлении полностью выдерживается соотношение компонентов;
- Излишки воды в растворе приводят к избыточной пористости, ухудшая характеристики состава;
- Заполнители – песок и щебень, должны быть равномерной фракции, без пыли, глины, органических и других включений;
- Все составляющие должны тщательно перемешиваться для обеспечения однородности смеси;
- Идеальная температура, при которой проходит затвердевание – около 20°С, чтобы обеспечить гидратацию цемента при отрицательных температурах в состав вводят добавки.
Чтобы подобрать материал для строительства нужно знать, какие марки бетона бывают. Согласно СП 63.13330.2012, ГОСТ 7473-2010 этот показатель может изменяться от М100 до М500. Также существуют смеси, с узким диапазоном применения. Расшифровка маркировки бетонных растворов позволяет определить пропорции компонентов, которые в них входят. Для этого используются специальные таблицы. В зависимости от характеристик определяется стоимость материала. Чем выше марка, тем дороже будет раствор.
Что такое класс?
Класс бетона – гарантированная по прочности на сжатие нагрузка, которая им выдерживается, измеряется в МПа (мегапаскалях). Эта характеристика введена, чтобы уточнить свойства застывшего раствора, поскольку для одной марки они могут разниться. Этот параметр позволяет определить его фактическую прочность, так как рассчитывается для случаев, когда она будет подтверждаться не менее чем в 95%.
Класс бетона по прочности обозначается символом «В» с индексами от 5 до 60, которые показывают значение давления в мегапаскалях, выдерживаемого материалом до разрушения. Этот показатель соотносится с маркой, более привычной для строителей.
Соответствие марки и класса
При строительстве зданий или других объектов, нужно уметь разбираться в соотношении марок и классов применяемого бетона, что позволит исключить ошибки. Классы и марки заносятся в таблицы, которые можно найти в специализированной литературе.
Необходимо учитывать, что марочная прочность бетона допускает отклонения. Например, у М150 может быть устойчивость давлению в МПа В10 и В12,5, поэтому эта характеристика считается точнее. Иногда классы и марки современного бетона по его прочности определяются как допустимые параметры снижения качества раствора при сохранении технических и эксплуатационных характеристик. На это влияют пропорции и взаимосвязи компонентов раствора, рекомендуемых для изготовления согласно ГОСТ. Например, для смеси со средним показателем прочности М250 или В20 требуется соотношение цемента, песка и щебня по массе 1:4,6:7,0.
Характеристики и применение разных марок
Подбирая марку бетона и соответствующий ей класс бетона, необходимо понимать, где они будут применяться. Учитываются нагрузка на конструкцию, условия, где эксплуатируются здания и сооружения, другие сопутствующие факторы.
В проектной документации чаще указывается показатель В, как более точный параметр.
Кроме того, учитываются водонепроницаемость (W) и морозоустойчивость (F). Образец материала, водонепроницаемостью W2 и морозоустойчивостью F50 соответствует раствору М100-М150.
Основные области применения марок бетона, их характеристики:
- М100 – тощие растворы, используется при устройстве дренажей, тонких стяжек, подготовке основания под фундамент;
- М150 – легкий бетон, применяется для бордюров, пешеходных дорожек, стяжек;
М200 – подходит для стяжки пола, строительства подпорных элементов, фундаментов под одноэтажные здания; - М250 – популярна в частном строительстве, обладает достаточной прочностью для возведения частных домов;
- М300 – повышенная устойчивость, применяется для производства дорожных плит, лестничных маршей;
- М350 – необходима при строительстве многоэтажных зданий и высотных сооружений, производства перекрытий с пустотами, устройства бассейнов, взлетно-посадочных полос, других объектов с повышенной нагрузкой;
- М400 – сверхтяжелый раствор для промышленных зданий, возведения основ под сооружения на болотистых и влажных грунтах;
- М450-М500 – применяются для строительства гидротехнических объектов, тоннелей, мостов и других спецсооружений.
Призменная прочность бетона в15
СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ
БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ БЕЗ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ АРМАТУРЫ
Concrete and reinforced concrete structures without prestressing
Дата введения 2004-03-01
1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (ГУП "НИИЖБ") Госстроя России
ВНЕСЕН Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России
2 ОДОБРЕН для применения постановлением Госстроя России от 25.12.2003 N 215
Документ не применяется в связи с отказом в госрегистрации Министерства юстиции Российской Федерации (Письмо Минюста Российской Федерации от 24.01.2005 N 01/463-ВЯ). - Примечание изготовителя базы данных.
3 ВВЕДЕН ВПЕРВЫЕ
ВВЕДЕНИЕ
Настоящий Свод правил содержит рекомендации по расчету и проектированию бетонных и железобетонных конструкций промышленных и гражданских зданий и сооружений из тяжелого бетона без предварительного напряжения арматуры, которые обеспечивают выполнение обязательных требований СНиП 52-01-03 "Бетонные и железобетонные конструкции. Основные положения".
Решение вопроса о применении Свода правил при проектировании бетонных и железобетонных конструкций конкретных зданий и сооружений относится к компетенции заказчика или проектной организации. В случае если принято решение о применении настоящего Свода правил, должны быть выполнены все установленные в нем требования.
Приведенные в Своде правил единицы физических величин выражены: силы - в ньютонах (Н) или в килоньютонах (кН); линейные размеры - в мм (для сечений) или в м (для элементов или их участков); напряжения, сопротивления, модули упругости - в мегапаскалях (МПа); распределенные нагрузки и усилия - в кН/м или Н/мм.
Свод правил разработали д-ра техн. наук А.С.Залесов, А.И.Звездов, Т.А.Мухамедиев, Е.А.Чистяков (ГУП "НИИЖБ" Госстроя России).
1 ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящий Свод правил распространяется на проектирование бетонных и железобетонных конструкций зданий и сооружений различного назначения, выполненных из тяжелого бетона классов по прочности на сжатие от В10 до В60 без предварительного напряжения арматуры и эксплуатируемых в климатических условиях России, в среде с неагрессивной степенью воздействия, при статическом действии нагрузки.
Свод правил не распространяется на проектирование бетонных и железобетонных конструкций гидротехнических сооружений, мостов, покрытий автомобильных дорог и аэродромов и других специальных сооружений.
2 НОРМАТИВНЫЕ ССЫЛКИ
В настоящем Своде правил использованы ссылки на следующие нормативные документы:
СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения
СНиП 2.01.07-85* Нагрузки и воздействия
СНиП 23-01-99* Строительная климатология
ГОСТ 13015.0-2003* Конструкции и изделия бетонные и железобетонные сборные. Общие технические требования
* На территории Российской Федерации действует ГОСТ 13015-2012, здесь и далее по тексту. - Примечание изготовителя базы данных.
3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
В настоящем Своде правил использованы термины по СНиП 52-01 и другим нормативным документам, на которые имеются ссылки в тексте.
4 ОБЩИЕ УКАЗАНИЯ
4.1 ОСНОВНЫЕ ПОЛОЖЕНИЯ
4.1.1 Бетонные и железобетонные конструкции должны быть обеспечены с требуемой надежностью от возникновения всех видов предельных состояний расчетом, выбором показателей качества материалов, назначением размеров и конструированием согласно указаниям настоящего Свода правил. При этом должны быть выполнены технологические требования при изготовлении конструкций и соблюдены требования по эксплуатации зданий и сооружений, а также требования по экологии, устанавливаемые соответствующими нормативными документами.
4.1.2 Конструкции рассматривают как бетонные, если их прочность обеспечена одним только бетоном.
Бетонные элементы применяют:
а) преимущественно на сжатие при расположении продольной сжимающей силы в пределах поперечного сечения элемента;
б) в отдельных случаях в конструкциях, работающих на сжатие, при расположении продольной сжимающей силы за пределами поперечного сечения элемента, а также в изгибаемых конструкциях, когда их разрушение не представляет непосредственной опасности для жизни людей и сохранности оборудования и когда применение бетонных конструкций целесообразно.
4.2 ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ
4.2.1 Расчеты бетонных и железобетонных конструкций следует производить по предельным состояниям, включающим:
- предельные состояния первой группы (по полной непригодности к эксплуатации вследствие потери несущей способности);
- предельные состояния второй группы (по непригодности к нормальной эксплуатации вследствие образования или чрезмерного раскрытия трещин, появления недопустимых деформаций и др.).
Расчеты по предельным состояниям первой группы, содержащиеся в настоящем СП, включают расчет по прочности с учетом в необходимых случаях деформированного состояния конструкции перед разрушением.
Расчеты по предельным состояниям второй группы, содержащиеся в настоящем СП, включают расчеты по раскрытию трещин и по деформациям.
4.2.2 Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов следует, как правило, производить для всех стадий: изготовления, транспортирования, возведения и эксплуатации; при этом расчетные схемы должны отвечать принятым конструктивным решениям.
4.2.3 Расчеты железобетонных конструкций необходимо, как правило, производить с учетом возможного образования трещин и неупругих деформаций в бетоне и арматуре.
Определение усилий и деформаций от различных воздействий в конструкциях и в образуемых ими системах зданий и сооружений следует производить по методам строительной механики, как правило, с учетом физической и геометрической нелинейности работы конструкций.
4.2.4 При проектировании бетонных и железобетонных конструкций надежность конструкций устанавливают расчетом путем использования расчетных значений нагрузок и воздействий, расчетных значений характеристик материалов, определяемых с помощью соответствующих частных коэффициентов надежности по нормативным значениям этих характеристик с учетом степени ответственности зданий и сооружений.
Нормативные значения нагрузок и воздействий, коэффициентов сочетаний, коэффициентов надежности по нагрузке, коэффициентов надежности по назначению конструкций, а также подразделение нагрузок на постоянные и временные (длительные и кратковременные) принимают согласно СНиП 2.01.07.
4.2.5 При расчете элементов сборных конструкций на воздействие усилий, возникающих при их подъеме, транспортировании и монтаже, нагрузку от веса элементов следует принимать с коэффициентом динамичности, равным: 1,60 - при транспортировании, 1,40 - при подъеме и монтаже. Допускается принимать более низкие, обоснованные в установленном порядке, значения коэффициента динамичности, но не ниже 1,25.
4.2.6 При расчете по прочности бетонных и железобетонных элементов на действие сжимающей продольной силы следует учитывать случайный эксцентриситет , принимаемый не менее:
1/600 длины элемента или расстояния между его сечениями, закрепленными от смещения;
1/30 высоты сечения;
Для элементов статически неопределимых конструкций значение эксцентриситета продольной силы относительно центра тяжести приведенного сечения принимают равным значению эксцентриситета, полученного из статического расчета, но не менее .
Для элементов статически определимых конструкций эксцентриситет принимают равным сумме эксцентриситетов - из статического расчета конструкций и случайного.
5 МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ
5.1 БЕТОН
Показатели качества бетона и их применение при проектировании
5.1.1 Для бетонных и железобетонных конструкций, проектируемых в соответствии с требованиями настоящего Свода правил, следует предусматривать конструкционный тяжелый бетон средней плотности от 2200 кг/м до 2500 кг/м включительно.
5.1.2 Основными показателями качества бетона, устанавливаемыми при проектировании, являются:
а) класс бетона по прочности на сжатие В;
б) класс по прочности на осевое растяжение (назначают в случаях, когда эта характеристика имеет главенствующее значение и ее контролируют на производстве);
в) марка по морозостойкости F (назначают для конструкций, подвергаемых действию попеременного замораживания и оттаивания);
г) марка по водонепроницаемости W (назначают для конструкций, к которым предъявляют требования ограничения водопроницаемости).
Классы бетона по прочности на сжатие В и осевое растяжение отвечают значению гарантированной прочности бетона, МПа, с обеспеченностью 0,95.
5.1.3 Для бетонных и железобетонных конструкций следует предусматривать бетоны следующих классов и марок:
а) классов по прочности на сжатие:
В10; В15; В20; В25; В30; В35; В40; В45; В50; В55; В60;
б) классов по прочности на осевое растяжение:
0,8; 1,2; 1,6; 2,0; 2,4; 2,8; 3,2;
в) марок по морозостойкости:
F50; F75; F100; F150; F200; F300; F400; F500;
г) марок по водонепроницаемости: W2; W4; W6; W8; W10; W12.
5.1.4 Возраст бетона, отвечающий его классу по прочности на сжатие и осевое растяжение (проектный возраст), назначают при проектировании исходя из возможных реальных сроков загружения конструкций проектными нагрузками. При отсутствии этих данных класс бетона устанавливают в возрасте 28 сут.
Значение отпускной прочности бетона в элементах сборных конструкций следует назначать в соответствии с ГОСТ 13015.0 и стандартами на конструкции конкретных видов.
5.1.5 Для железобетонных конструкций рекомендуется применять класс бетона по прочности на сжатие не ниже В15.
5.1.6 Марку бетона по морозостойкости назначают в зависимости от требований, предъявляемых к конструкциям, режима их эксплуатации и условий окружающей среды.
Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной отрицательной температуре наружного воздуха в холодный период от минус 5 °С до минус 40 °С, принимают марку бетона по морозостойкости не ниже F75, а при расчетной температуре наружного воздуха выше минус 5 °С в указанных выше конструкциях марку бетона по морозостойкости не нормируют.
В остальных случаях требуемые марки бетона по морозостойкости устанавливают в зависимости от назначения конструкций и условий окружающей среды по специальным указаниям.
5.1.7 Марку бетона по водонепроницаемости назначают в зависимости от требований, предъявляемых к конструкциям, режима их эксплуатации и условий окружающей среды.
Для надземных конструкций, подвергаемых атмосферным воздействиям при расчетной отрицательной температуре наружного воздуха выше минус 40 °С, а также для наружных стен отапливаемых зданий марку бетона по водонепроницаемости не нормируют.
Призменная прочность бетона в15
Методы определения призменной прочности, модуля упругости и коэффициента Пуассона
Concretes. Methods of prismatic, compressive strength, modulus of elasticity and Poisson's ratio determination
Дата введения 1982-01-01
Постановлением Государственного комитета СССР по делам строительства от 18 ноября 1980 г. N 177 дата введения установлена 01.01.82
ПЕРЕИЗДАНИЕ. Ноябрь 2005 г.
Настоящий стандарт распространяется на все виды бетонов, применяемых в промышленном, энергетическом, транспортном, водохозяйственном, жилищно-гражданском и в других видах строительства, в том числе подвергающиеся в процессе эксплуатации нагреву, насыщению водой, нефтепродуктами и другими жидкостями.
Стандарт устанавливает методы определения призменной прочности, модуля упругости и коэффициента Пуассона бетона.
Испытание для определения указанных показателей свойств бетона производится путем постепенного (ступенями) нагружения образцов-призм или образцов-цилиндров стандартных размеров осевой сжимающей нагрузкой до разрушения при определении призменной прочности и до уровня 30% разрушающей нагрузки с измерением в процессе нагружения образцов их деформации при определении модуля упругости и коэффициента Пуассона.
Призменная прочность, модуль упругости и коэффициент Пуассона вычисляются по определенным в процессе испытания нагрузкам (и 0,3) и продольным и поперечным относительным упругомгновенным деформациям ( и ).
Настоящий стандарт следует применять при определении показателей свойств бетонов различного вида и назначения в соответствии с требованиями стандартов, технических условий или рабочих чертежей на бетонные и железобетонные конструкции и изделия, а также при изучении свойств новых видов бетонов.
Стандарт соответствует рекомендации СЭВ РС 279-65 и РИЛЕМ Р8 в части требований к образцам.
1. МЕТОДЫ ИЗГОТОВЛЕНИЯ И ОТБОРА ОБРАЗЦОВ
1.1. Призменную прочность, модуль упругости и коэффициент Пуассона следует определять на образцах-призмах квадратного сечения или цилиндрах круглого сечения с отношением высоты к ширине (диаметру), равным 4. Ширина (диаметр) образцов должна приниматься равной 70, 100, 150, 200 или 300 мм в зависимости от назначения и вида конструкций и изделий. За базовый принимают образец размерами 150х150х600 мм.
Размеры образцов в зависимости от наибольшей крупности заполнителя должны удовлетворять требованиям ГОСТ 10180-78.
1.2. Отклонение размеров и формы образцов от номинальных, неплоскостность их опорных поверхностей, прилегающих к плитам пресса, а также отклонение от перпендикулярности опорных и боковых поверхностей образцов не должны превышать значений, установленных ГОСТ 10180-78.
1.3. Отбор проб и изготовление образцов из бетонной смеси либо отбор образцов, изготовленных путем выбуривания или выпиливания их из изделий, конструкций и сооружений, производят по ГОСТ 10180-78.
1.4. Образцы изготовляют сериями. Серия должна состоять из трех образцов.
1.5. Правила выдерживания образцов и сроки испытаний следует принимать по ГОСТ 10180-78, если нет других требований, предусмотренных стандартами или техническими условиями на бетонные и железобетонные конструкции и изделия или рабочими чертежами конструкций. Образцы, высверленные или выбуренные из конструкций или изделий, должны до испытания находиться под влажной тканью за исключением образцов, требующих иных условий твердения, предусмотренных ГОСТ 10180-78.
2. ОБОРУДОВАНИЕ И ПРИБОРЫ
2.1. Для измерения деформаций следует применять тензометры по ГОСТ 18957-73* и другие приборы, обеспечивающие измерение относительных деформаций с точностью не ниже 1·10.
* На территории Российской Федерации отменен (здесь и далее).
Допускается использовать проводниковые тензорезисторы по ГОСТ 21616-76*, наклеиваемые на поверхность бетона.
* На территории Российской Федерации документ не действует. Действует ГОСТ 21616-91. - Примечание изготовителя базы данных.
2.2. Термометры и индикаторы для измерения деформации устанавливают на образце с помощью прижимных приспособлений (рамок, струбцин, опорных вставок) в соответствии с фиксируемой базой измерения деформаций по п.3.5. Прижимные приспособления должны обеспечивать неизменное положение тензометров и индикаторов относительно образца в процессе измерения деформации.
2.3. Прессы и испытательные машины должны удовлетворять требованиям ГОСТ 28840-82*. Допускается применение другого испытательного оборудования, отвечающего требованиям ГОСТ 10180-78.
* На территории Российской Федерации документ не действует. Действует ГОСТ 28840-90. - Примечание изготовителя базы данных.
2.4. Формы для изготовления образцов следует применять в соответствии с требованиями ГОСТ 22685-89, а оборудование для изготовления образцов, приборы и инструменты для определения отклонений размеров и формы образцов от номинальных и отклонение от плоскостности их опорных поверхностей по ГОСТ 10180-78.
2.5. Для определения плотности (объемной массы) бетона образцов следует применять оборудование по ГОСТ 12730.0-78 и ГОСТ 12730.1-78.
2.6. Для определения призменной прочности, модуля упругости бетона, подвергающегося в процессе эксплуатации нагреву, насыщению водой, нефтепродуктами и другими жидкостями, дополнительно применяют оборудование по приложениям 1 и 2.
2.7. Испытательные машины (прессы) и приборы должны быть аттестованы и проверены в установленном порядке организациями Госстандарта или ведомственными метрологическими службами в соответствии с ГОСТ 8.001-80* и МУ 8.7-77.
* На территории Российской Федерации действуют ПР 50.2.009-94**.
3. ПОДГОТОВКА К ИСПЫТАНИЯМ
3.1. Перед испытанием образцы следует осмотреть, устранить имеющиеся дефекты, отдельные выступы на гранях снять наждачным камнем, измерить линейные размеры, проверить отклонение формы и размеров в соответствии с ГОСТ 10180-78.
3.2. Плотность (объемную массу) и влажность бетона в момент испытания (в тех случаях, когда это необходимо) определяют по ГОСТ 12730.1-78 и ГОСТ 12730.2-78.
3.3. Перед испытанием образцы должны не менее 2 ч находиться в помещении лаборатории, кроме образцов, испытываемых при нагреве.
3.4. Интервал рабочих температур помещения, где проводятся испытания, - от 10 °С до 30 °С по ГОСТ 18957-73.
3.5. На боковых поверхностях образцов следует разметить центральные линии для установки приборов для испытания деформаций и центрирования образцов по оси испытательной машины (пресса).
По центральным линиям размечают базы измерения продольных и поперечных деформаций образцов.
База измерения деформаций должна в 2,5 раза и более превышать наибольший размер зерен заполнителя и быть не менее 50 мм при использовании тензорезисторов и 100 мм - при использовании других приборов для измерения деформаций.
База измерения продольных деформаций должна быть не более высоты образца и располагаться на одинаковом расстоянии от его торцов.
3.6. Приборы для измерения деформаций образцов должны быть установлены по четырем его граням или по трем или четырем образующим цилиндра, развернутым под углом 120 или 90°. Приборы для измерения поперечных деформаций должны быть установлены посередине высоты образца нормально базам измерения продольных деформаций.
Для крепления индикаторов используют приспособления в виде стальных рамок, закрепляемых на образце с помощью четырех упорных винтов - по два с противоположных сторон образца - или опорных вставок, приклеиваемых на образце (см. чертеж).
Рамки следует изготовлять из стальных полос, опорные вставки - из стальных квадратов или прутков с отверстиями для крепления индикаторов. Масса соединительной вставки для измерения поперечных деформаций образца не должна превышать 10 г в соответствии с требованиями ГОСТ 18957-73. В качестве соединительной вставки для измерения продольных деформаций следует применять соединительные вставки-рамки, обеспечивающие возможность измерения деформаций до конца разрушения образца.
Для крепления опорных вставок следует применять быстрополимеризующийся клей с малым набуханием.
Перед наклеиванием поверхность образца следует обезжирить органическим растворителем, а затем нагреть опорную вставку до температуры 50 °С - 60 °С. Опорную вставку в горячем состоянии прижимают к поверхности образца, предварительно нанеся на нее клей.
Рекомендуемая схема установки приспособлений для крепления индикаторов при измерении продольных и поперечных деформаций образца приведены на чертеже.
3.7. Подготовку образцов, насыщенных водой, нефтепродуктами и другими жидкостями, проводят по методике, предусмотренной в приложении 1. Для устранения влагопотерь производят гидроизоляцию образцов в соответствии с ГОСТ 24544-81.
3.8. Призменную прочность и модуль упругости бетонов, подвергающихся в процессе эксплуатации нагреву, определяют с применением оборудования и выполнением дополнительных требований, предусмотренных в приложениях 2 и 3.
Схема установки приспособлений для крепления индикаторов при измерении продольных и поперечных деформаций образца
4. ПРОВЕДЕНИЕ ИСПЫТАНИЙ
4.1. При определении модуля упругости и коэффициента Пуассона шкалу силоизмерителя испытательного пресса (машин) выбирают из условия, что ожидаемое значение разрушающей нагрузки должно быть от 70% до 80% от максимальной, допускаемой выбранной шкалой. При определении призменной прочности шкалу силоизмерителя выбирают в соответствии с требованиями ГОСТ 10180-78.
4.2. Перед испытанием образец с приборами устанавливают центрально по разметке плиты пресса и проверяют совмещение начального отсчета с делением шкалы прибора.
4.3. Начальное усилие обжатия образца, которое в последующем принимают за условный нуль, должно быть не более 2% от ожидаемой разрушающей нагрузки.
Значение ожидаемой разрушающей нагрузки при испытании образцов устанавливают по данным о прочности бетона, принятой в технической документации, или по прочности на сжатие изготовленных из одного замеса образцов-кубов, определенной в соответствии с ГОСТ 10180-78. Ее значение при одинаковых сечениях кубов и призм следует принимать от 80 до 90% средней разрушающей нагрузки образцов-кубов.
4.4. При центрировании образцов необходимо, чтобы в начале испытания от условного нуля до нагрузки, равной (40±5%) отклонения деформаций по каждой грани (образующей) не превышали 15% их среднего арифметического значения.
При несоблюдении этого требования при нагрузке, равной или большей (15±5%) , следует разгрузить образец, сместить его относительно центральной оси разметки плиты пресса в сторону больших деформаций и вновь произвести его центрирование.
Образец бракуют после пяти неудачных попыток его центрирования.
4.5. При центрировании образцов деформации фиктивных волокон, совпадающих с центрами отверстий, в которых крепят индикаторы (см. чертеж), относят к граням образца и определяют по формулам:
где и - деформации фиктивных волокон на противоположных гранях образца;
и - деформации, отнесенные к граням образца;
- размер стороны образца;
- расстояние от грани образца до центра отверстий, в которых крепят индикаторы.
4.6. При определении призменной прочности, модуля упругости и коэффициента Пуассона бетона нагружение образца до уровня нагрузки, равной (40±5)%, следует производить ступенями, равными 10% ожидаемой разрушающей нагрузки, сохраняя в пределах каждой ступени скорость нагружения (0,6±0,2) МПа/с.
На каждой ступени следует производить выдержку нагрузки от 4 до 5 мин (при нагреве - до 15 мин) и записывать отсчеты по приборам в начале и в конце выдержки ступени нагрузки в журнал по форме приложения 4.
При уровне нагрузки, равной (40±5)%, снимают приборы с образца, если нет других требований, предусмотренных программой испытания. После снятия приборов дальнейшее нагружение образца следует производить непрерывно с постоянной скоростью в соответствии с требованием ГОСТ 10180-78.
Уже несколько лет привычные марки прочности бетона (М) заменили более точными классами (В). Популярный класс В15 – это хорошо известная строителям марка М200, которая считается рядовой, то есть к ней не предъявляется никаких особо жестких требований. Она активно используется при ведении основных работ: от заливки небольших фундаментов, стяжки полов и дорожек до кладки блочных стен.
Состав и свойства
Класс бетона дает наиболее точное представление о его прочностных параметрах: на сжатие В15 гарантированно выдерживает 15 МПа (или 153 кГс/см2). В марке указывается лишь округленный средний показатель 196 кГс/см2, который может и не соответствовать факту в 5 % случаев, что обязательно следует учитывать при расчетах. Читайте о разнице между марками и классами бетона.
Для получения смеси с такими свойствами пользуются массовой пропорцией ЦПЩ 1÷2,8÷4,8 либо объемной 1÷2,5÷4,2 при использовании цемента М400. В случае применения вяжущего марки М500 цифры соответственно меняются:
- 1÷3,5÷5,6 по весу;
- 1÷3,2÷4,9 по объему.
Используют строительный песок крупностью 0,15-3,5 мм, а также щебень фракций 5-20 либо 10-40 мм при создании габаритных конструкций. В результате получают тяжелый мелкозернистый бетон плотностью 2300-2500 кг/м3. Для увеличения подвижности смеси и атмосферостойкости монолита допускается введение в раствор различных добавок: ПАВ или извести, а также соответствующих пластификаторов (С-3, ЛСТ).
Для большинства расчетов требуется более точный состав на 1 м3. В этом случае можно воспользоваться специальными калькуляторами или взять данные из приведенной ниже таблицы (соотношения указаны по весу в кг на кубометр).
Характеристики компонентов | В15 W4 F100 | В15 W6 F150 | |
Цемент | М400 | 290-295 | 320-335 |
Песок | 1,5-2,0 мм | 560-570 | 520-580 |
2,0-2,5 мм | 580-585 | 630-675 | |
Щебень | 5-20 мм | 1210-1225 | 1210-1220 |
Цемент | М500 | 250-260 | 280-300 |
Песок | 1,5-2,0 мм | 650-700 | 600-680 |
2,0-2,5 мм | 750-800 | 700-800 | |
Щебень | 5-20 мм | 1050-1150 | 1050-1150 |
Цемент | М600 | 220-240 | 250-270 |
Песок | 1,5-2,0 мм | 650-750 | 650-700 |
2,0-2,5 мм | 750-850 | 720-820 | |
Щебень | 5-20 мм | 1050-1150 | 1080-1150 |
Существует и классический раствор В15 с показателями W2 и F50, но широкого применения он не нашел именно из-за своих невысоких характеристик. Для внутренних работ эта марка бетона вполне годится. На 1 м3 такой смеси понадобится:
- 265 кг вяжущего;
- 860 кг речного или мытого карьерного песка;
- 1050 кг щебня;
- 180 л воды для затворения, плюс пластификатор.
Щебень в общей массе бывает любым – известняковым, гранитным или гравийным – главное, чтобы его собственная прочность была не ниже М400. С течением времени монолит В15 еще будет набирать крепость – заявленные характеристики являются нормативными только в возрасте искусственного камня 28 суток. Через несколько лет класс бетона может увеличиться вдвое, сравнявшись с прочностью крупнофракционного заполнителя, для чего гравию и нужен запас по крепости.
Для получения монолита с повышенными показателями влаго- и морозостойкости рекомендуется использовать еще более тяжелый щебень марки М600. Это увеличит плотность раствора и готового камня, улучшив его эксплуатационные характеристики. Здесь уже жестче нормируется содержание цемента в составе – при марочной прочности М400-М500 оно не должно быть меньше 280 кг на 1 м3 смеси, чтобы получился монолит с минимальным количеством капиллярных пор. Соотношение ВЦ также выдерживается не выше 0,6-0,67.
Прочие технические характеристики бетона В15 М200 зависят от особенностей компонентов, а также присутствия специальных добавок:
1. Морозостойкость – соответствует марке F100, то есть готовое изделие без серьезного разрушения и при сохранении 95% прочности способно выдержать до 100 полных циклов заморозки/оттаивания. Это очень хороший показатель долговечности, но и он может быть увеличен до F.
2. Водонепроницаемость – в случае с В15 отвечает классу W4-W6, то есть 15-сантиметровый слой выдерживает напор воды под давлением до 0,6 атм.
3. Подвижность смеси – обычно достаточно показателя П2-П3. Но при подаче раствора насосом, а также для заполнения узких пустот в него вводятся пластифицирующие добавки, повышающие удобоукладываемость до класса П4.
Прочие виды В15
С помощью применения других компонентов и технологий приготовления можно получить облегченный раствор со схожей несущей способностью:
1. Керамзитобетон – в его состав входят силикатный песок и вспученные глиняные гранулы, уменьшающие объемный вес готового камня до 1500-1700 кг/м3. Прочие характеристики остаются на прежнем уровне: водонепроницаемость – W4-W6, морозостойкость – F75-F100. Применяется для создания теплозащищенных чердачных, цокольных и межэтажных перекрытий, стяжки пола, изготовления стеновых строительных блоков.
2. Пемзобетон при плотности 1500-1800 кг/м3 приобретает свойства теплоизоляционного материала с проводимостью 0,5-0,7 Вт/м·°С. Он обладает еще меньшими показателями упругости, чем обычный бетон, что нередко приводит к растрескиванию конструкций при неравномерных нагрузках. Его лучше использовать в качестве дополнительного утепляющего слоя на жестком основании.
Самым низким весом обладают ячеистые бетоны, но их структура не позволяет получить заданную прочность.
Применение
Чаще всего класс В15 используют для формирования цементной стяжки, а также для возведения фундаментов под легкими хозяйственными постройками, банями, гаражами. Стандартный раствор с показателями W4 и F50-100 больше подходит для проведения внутренних работ:
- Строительства межкомнатных перегородок.
- Изготовления лестничных маршей.
- Заливки выравнивающей стяжки пола.
Для фундаментов, цокольных этажей, отмостки, заливки открытых автомобильных площадок и пешеходных дорожек лучше подходит марка М200 с водонепроницаемостью W6 и морозостойкостью хотя бы 150 циклов. ЖБИ также нередко производятся именно из таких растворов. Допускается использование В15 и в монолитном строительстве при условии, что здание будет не выше 5 этажей, хотя здесь все решает проект.
Иногда расчеты прочности небольших построек (хозблоков, кирпичных заборов, беседок) показывают относительно невысокое давление на фундамент. При этом для работ все равно рекомендуется купить М200, несмотря на слишком большой запас прочности. Причина в том, что В15 – самый низкий класс общестроительного бетона с оптимальным отношением цены и качества. Облегченные смеси уже не обладают достаточной степенью надежности, а более высокие марки в таких случаях приобретать нерентабельно.
Цена за куб с доставкой В15 во многом определяется выбранным минеральным заполнителем (раствор с гранитным щебнем всегда будет дороже, чем с гравием), а также наличием различных модификаторов. Придется учитывать и удаленность участка застройки от РБУ.
Заполнитель | Класс морозостойкости | Водонепроницаемость | Цена, руб/м3 |
Гравий | F100 | W2 | 3000-3200 |
W4 | 2800-3140 | ||
F150 | 3000-3360 | ||
F200 | W6 | 3900-4120 | |
Гранит | F50-75 | W2 | 3400-3500 |
F100 | 3280-3630 | ||
W4 | 3430-3850 | ||
F150 | W2 | 3400-3800 | |
W4 | 3400-4000 | ||
F200 | 3930-4200 |
Обычно стоимость доставки уже включена в прайс производителя, но если вы найдете, где заказать бетон по «чистой» цене, к ней придется прибавить еще 350-700 руб/м3 на транспортные расходы.
Разъясните еще раз про прочность бетона по СП и ГОСТу
Кубик может быть 15, 10 или 20. И прочность зависит от размеров. Заводы обычно давят минимальный, а затем приводят к ГОСТовскому размеру.
И плюс статистика.
----- добавлено через 43 сек. -----
Да, и призменной прочностью заводы не оперируют.
В конструктивных дискуссиях каждый участник укрепляется в своих заблуждениях.
АлександрКрск,
кубиковая - цифры после B
призменная нормативная от кубиковой - таблица 6.7 СП 63
Призменная нормативная 12.75 - это B15.
Смотрим в книгу, видим . Почитайте внимательно СП 63. 11,5 МПа это расчетное сопротивление бетона В20. Нормативное сопротивление бетона В20 15 МПа, что практически у Вас и получается. Никакого подвоха))) Смотрим в книгу, видим . Почитайте внимательно СП 63. 11,5 МПа это расчетное сопротивление бетона В20. Нормативное сопротивление бетона В20 15 МПа, что практически у Вас и получается. Никакого подвоха)))я знаю, что это расчетное, читать умею, так что получается ? Это В20 или В15? по вашему
АлександрКрск,
кубиковая - цифры после B
призменная нормативная от кубиковой - таблица 6.7 СП 63
Призменная нормативная 12.75 - это B15.
а почему от нормативной ? т 6.8 СП 63 там призменная от расчетной например
13 мин. -----
Товарищи, как то не в ту сторону идем.
упрощу вопрос.
забудем про классы, про бетон
Пусть будет любой материал например вата с закладываемой прочностью 10, вату испытали , оказалась прочность 17. Вопрос эта вата нас устраивает?
"Тщательное планирование – ключ к безопасному и быстрому путешествию."
Одиссей (с) ссылка мертвая.
Ну по сути не трогаем ни какие коэффициенты вариации, доверимся лаборатории , лаборатория потрогала все коэффициенты их это устроило, мы им доверяем, они нам выдали конечную цифру ваты 12.75Мпа, а расчет мы делали на 11.5Мпа . Значит вата то что надо ? выдали конечную цифру ваты 12.75Мпа, а расчет мы делали на 11.5Мпа . Значит вата то что надо ? Если коэффициент надежности по материалу 1.1 - то да. То есть выданную лабораторией цифру надо сравнивать с нормативной прочностью, а не с расчетной. Хотя, я могу ошибаться) Ну по сути не трогаем ни какие коэффициенты вариации, доверимся лаборатории обе живые, специально проверил. По сути: проблема завода/изготовителя сделать смесь определенного класса по прочности. Вы не поймете, нельзя определить прочность, опираясь на один лишь результат (если принять коэфф. вариации=13.5%, как было раньше, то можно перейти от R к B как логично написал v.psk). __________________
"Тщательное планирование – ключ к безопасному и быстрому путешествию."
Одиссей (с) Вы не поймете, нельзя определить прочность, опираясь на один лишь результат Да, сейчас живые. Но это не интересно. Этот и еще пяток ГОСТов мы в свое время по стройматам зубрили. там нет ответа.
А почему Вы решили что там один результат ?, а почему Вы решили, что там принят к.вар. 13.5% , а откуда Вы знаете какого размера кубики были и тд. Я же говорю , плевать на внутреннюю кухню лаборатории , они выдают конечный результат в котором я не хочу сомневаться.
Суть то в чем , в том что выданный в цифрах конечный результат устраивает. Запас по прочности на лицо, даже с применением разных коэффициентов. Но вот только название этого результата противоречит его сути.
И я в тупике. А конкретно. Заказчик задает вопрос ,- расчетные характеристики бетона устраивают, я- да. Но это В15?, я-Да, так исправь в проекте на В15, я-не могу, потому что придется расчетное сопротивление закладывать 8.5Мпа. А у меня критические напряжения по бетону около 10. И замкнутый круг Если закладываю В20 с расчетным 11.5 то все ок. Но это В15 по ГОст. Вот в чем ж.
2 АлександрКрск, что бы Вам разобраться в данном вопросе скачайте книжку Залесова Лемыша Кодыша, и прочтите раздел надежности..
кратко так. строительные конструкции должны обладать заданной надежностью, для этого обеспеченность расчетных зависимостей должна быть не ниже 0,9986 (или 3 стандарта).
В расчетные зависимости входят множество параметров (прочности материалов, геометрические размеры) которые обладают изменчивостью. что бы покрыть возможные негативные отклонения (изменчивость бетона, стали, положение арматуры по сечению, размеры сечений) в расчете принимают не фактические характеристики, а расчетные с заданной обеспеченностью (нормативные значения / на коэф. запаса). В этом коэфф. сидят как изменчивость свойств материала, так и изменчивость геометрических параметров..
что касается бетона, то завод или строительная лаборатория должны оценить класс бетона, после чего Вы как проектировщик должны принять расчетное сопротивление исходя из фактического класса бетона с учетом занормированных коэфф. безопасности по материалу.
принимать в расчете нормативные значения прочности (установленные при оценке класса) или тем более средние ни в коем разе нельзя, бетон это весьма неоднородный материал, а тем более геометрия монолитных конструкций (защитные слои зачастую гуляют так, что никаким СП 70 и ГОСТ 13015 не снилось)
Последний раз редактировалось An2, 07.12.2015 в 16:07 . Да это все понятно, это все само сабой , в проектировании для надежности кстати существуют коэффициенты надежности , ответственности и условий работы. В лаборатории - вариации. Позвонил я в наши три лаборатории и там тоже вразумительного ответа никто не дал. И все предлагают одно - поменять в проекте на В15 , а это расчетное 8.5 , а мне надо больше 10, при этом оно по факту то есть , оно больше 10, но это В15 и опять по кругу . ну так если у Вас не хватает 10МПа, и Вы понимаете что должны сохранить требую нормами надежность, то что Вас терзает? ). говорите что Вам не достаточно В15 и разрабатывайте усиление (но чувствую что Вы все таки не до конца разобрались в вопросе (средняя прочность - нормативная прочность - расчетное сопротивление) ну так если у Вас не хватает 10МПа, и Вы понимаете что должны сохранить требую нормами надежность, то что Вас терзает? ). говорите что Вам не достаточно В15 и разрабатывайте усиление (но чувствую что Вы все таки не до конца разобрались в вопросе (средняя прочность - нормативная прочность - расчетное сопротивление) __________________"Тщательное планирование – ключ к безопасному и быстрому путешествию."
Одиссей (с) ну так если у Вас не хватает 10МПа, и Вы понимаете что должны сохранить требую нормами надежность, то что Вас терзает? ). говорите что Вам не достаточно В15 и разрабатывайте усиление (но чувствую что Вы все таки не до конца разобрались в вопросе (средняя прочность - нормативная прочность - расчетное сопротивление)
12,5 как раз хватает , да и 10 хватило бы, только В15 это 8.5
4 мин. -----
и я понимаю что раз уж средняя 22 ,то этого бетона хватает с запасом на 200%.
Почему расчетная прочность бетона в СНиП отличается от ГОСТа
В15=М150 это ближе к научной фантастике. Вы хоть раз такое видели?
Сергей_Кр возьмите СП по обследованию конструкций и посмотрите от чего зависит класс бетона. Класс бетона равен В=M/10*(1-V*ta) и обычно V*ta на заводах не превышает 0,135*1,64 тоесть В=М/10*0,78. дальше от кубиковой прочности необходимо перейти к призменной по формуле B*(0.77-0.01B)-это нормативная прочность призмы, дальше значение делим на 1,3 и получаем расчетное значение прочности бетона.
Читайте также: