Предельная деформативность бетона при осевом кратковременном сжатии
1.2. Деформативность бетона
Виды деформаций. В бетоне различают деформации двух основных видов: объемные, развивающиеся во всех направлениях под влиянием усадки, изменения температуры и влажности, и силовые, развивающиеся главным образом вдоль направления действия сил. Силовым продольным деформациям соответствуют некоторые поперечные деформации, начальный коэффициент поперечной деформации бетонаν=0,2 (коэффициент Пуассона); Бетон представляет собой упругопластический материал. Начиная с малых напряжений, в нем помимо упругих восстанавливающихся деформаций развиваются неупругие остаточные или пластические деформации. Поэтому силовые деформации в зависимости от характера приложения нагрузки и длительности ее действия подразделяют на три вида: при однократном загружении кратковременной нагрузкой, при длительном действии нагрузки и при много кратно повторном действии нагрузки.
Объемные деформации.Деформации, вызванные усадкой бетона, изменяются в довольно широком диапазоне: по данным опытов, для тяжелых бетонов εsl≈ 3-10 -4 и более, а для бетонов на пористых заполнителях εsl≈ 4,5*10 -4 . Деформация бетона при набухании в 2—5 раз меньше, чем при усадке.
Деформации бетона, возникающие под влиянием изменения температуры, зависят от коэффициента линейной температурной деформации бетона. При изменений температуры среды от -50 до -50 0 С для тяжелого бетона и бетона на пористых: заполнителях с кварцевым песком αbt=1*10 -5 °С -1 . Этот коэффициент зависит от вида цемента, заполнителей,, влажностного состояния бетона и может изменяться в пределах ±30 %. Так, αbt=0,7*10 -5 °С
1 для бетонов на пористых заполнителях с пористым песком.
Деформации при однократном загружении кратковременной нагрузкой. При однократном загружении бетонной призмы, кратковременно приложенной нагрузкой деформация бетонаεb = εe+εpl (I.1)
т. е. она образуется из εе— упругой и εpt— неупругой пластической деформаций
(рис, 1.5). Небольшая доля неупругих деформаций в течение некоторого периода времени после разгрузки восстанавливается (около 10 %). Эта доля называется деформацией упругого последействия εер. Если испытываемый образец загружать по этапам и замерять деформации на каждой ступени дважды (сразу после приложения нагрузки и через некоторое время после выдержки под нагрузкой), то на диаграмме σb-εbполучим ступенчатую линию.
Рис. 5. Общая диаграмма зависимости между напряжениями и деформациями в бетоне
С увеличением скорости загружения при одном и том же напряжении σb неупругие деформации уменьшаются. Для различных скоростей загружения σb>σ2> >Vs кривые зависимости σb—εb изображены на рис. 1.10,6. При растяжении бетонного образца также возникает деформация εbt=εet+εpl,t (I.6) состоящая из εet - упругой и εpl,t - пластической частей.
Деформации при длительном действии нагрузки.При длительном действии нагрузки неупругие деформации бетона с течением времени увеличиваются. Наибольшая интенсивность нарастания неупругих деформаций наблюдается первые 3—4 мес. и может продолжаться несколько лет. На диаграмме σb—εb участок 0—1 характеризует деформации, возникающие при загружении, кривизна этого участка зависит от скорости загружения; участок /—2 характеризует нарастание неупругих деформаций при постоянном значении напряжений.
Свойство бетона, характеризующееся нарастанием неупругих деформаций при длительном действии нагрузки, называют ползучестью бетона. Деформации ползучести могут в 3-4 раза превышать упругие деформации. При длительном действии постоянной нагрузки, если деформации ползучести нарастают свободно, напряжения бетоне остаются постоянными. Если же связи в бетоне (например, стальная арматура) стесняют свободное развитие ползучести, то ползучесть будет стесненной, при которой напряжения в бетоне уже не будут оставаться постоянными.
Ползучесть и усадка бетона развиваются совместно. Поэтому полная деформация бетона представляет - собой сумму деформаций: упругой εе, ползучести εpl и усадки εsl. Однако в то время как усадка носит характер объемной деформации, ползучесть развивается главным образом в направлении действия усилия.
Рис. 6 Диаграмма σb—εb при многократном повторном загружении образца
Деформации бетона при многократно повторном действии нагрузки.Многократное повторение циклов загружения и разгрузки бетонной призмы приводит к постепенному накапливанию неупругих деформаций. После достаточно большого числа циклов эти неупругие деформации, соответствующие данному уровню напряжений, постепенно выбираются, ползучесть достигает своего предельного значения, бетон начинает работать упруго. На рис. 1.6 показано, как с каждым последующим циклом неупругие деформации накапливаются, а кривая σb-εb постепенно выпрямляясь, становится прямой, характеризующей упругую работу. Такой характер деформирования наблюдается лишь при напряжениях, не превышающих предел выносливости σb≤Rr.
При больших напряжениях после некоторого числа циклов неупругие деформации начинают неограниченно расти, что приводит к разрушению образца, при этом кривизна линии σb-εb меняет знак, а угол наклона к оси абсцисс последовательно уменьшается.
Предельные деформациибетона перед разрушением - предельная сжимаемость εubи предельная растяжимость εubt— зависят от прочности бетона, его класса, состава, длительности приложения нагрузки. В опытах при осевом сжатии призм наблюдается предельная сжимаемость бетона εub= (0,8. 3) 10 -3 , в среднем ее принимают равной: εubt= 2*10 -3 . Сжимаемость бетона значительно возрастает, если при его загружении происходит пропорциональное возрастание деформаций; в этом случае на диаграмме напряжения - деформации появляется нисходящий участок. Учет работы бетона на нисходящем участке диаграммы имеет существенно важное значение для расчета ряда конструкций.
Предельная растяжимость бетона в 10—20 раз меньше предельной сжимаемости, в среднем ее принимают равной: εubt=1,5-10 -4 ; бетоны на пористых заполнителях имеют несколько большую предельную растяжимость. Предельная растяжимость бетона существенно влияет на сопротивление образованию трещин в растянутых зонах железобетонных конструкций.
Назначение и виды арматуры
Арматура в железобетонных конструкциях устанавливается для восприятия растягивающих усилий и усиления бетона сжатых зон конструкций. Необходимое количество арматуры определяют расчетом элементов конструкций на нагрузки и воздействия.
Арматура, устанавливаемая по расчету, носит название рабочей арматуры; устанавливаемая по конструктивным, технологическим соображениям, по условиям монтажа, носит название конструктивной арматуры. Конструктивная арматура обеспечивает проектное положение рабочей арматуры в конструкции и более равномерно распределяет усилия между отдельными стержнями рабочей арматуры. Кроме того, конструктивная арматура может воспринимать обычно не учитываемые расчетом усилия от усадки бетона, изменения температуры конструкции и т. п.
Рис. 7. Железобетонные элементы и их арматура
а —сетка; б —плоские каркасы; в — пространственный каркас; 1 —плита; 2 — балка; 3 —колонна
ПРЕДЕЛЬНАЯ ДЕФОРМАТИВНОСТЬ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ
Деформативность бетона под кратковременной нагрузкой при наличии его сцепления с арматурой характеризует распределение полного усилия в железобетонном элементе по мере роста нагрузки.
Степень вовлечения арматуры в совместную работу с бетоном различна на разных уровнях нагружения и ограничивается некоторым предельным значением деформаций бетона, которые могут быть достигнуты к моменту потери бетоном несущей способности или нарушения сцепления с арматурой.
Нормативные документы (СНиП; СН 365-67) рекомендуют учитывать предельную деформативность бетона при расчете элементов железобетонных конструкций на трещино - стойкость, а в некоторых случаях также на прочность. При этом предельная деформативность принимается в среднем равной: при сжатии = 200-10
5, а при растяжении в*р= 15-Ю-5.
Указанные величины следует рассматривать, однако, как сугубо ориентировочные. Опыты показывают, что фактические значения предельных деформаций бетона колеблются в довольно широких пределах в зависимости от состава бетонной смеси, качества составляющих, скорости загружения, а также от вида напряженного состояния (осевое или внецентренное сжатие, изгиб, растяжение и т. д.).
Проанализируем закономерности изменения предельной деформативности тяжелых бетонов в условиях осевого сжатия ERq при обычных лабораторных испытаниях кратковременной нагрузкой.
Развитие деформаций бетона с ростом нагрузки и форма кривой а — є существенно зависят от того, сохраняется
ли Постоянной в течение испытаний скорость Деформирования материала ^ = const или скорость подачи нагруз-
Ки = const. В первом случае после достижения максимального значения напряжений на кривой сг — є обнаруживается нисходящий участок, и дальнейшее нарастание деформаций сопровождается падением величины напряжений. Во втором случае достижение максимума напряжений приводит к быстрому исчерпанию несущей способности бетона, так что нисходящий участок кривой зафиксировать, как правило, не удается.
Учитывая указанные особенности кривой сг — є, условимся в дальнейшем, что независимо от режима нагру
Жения = const или —77 = const предельное значение
Деформаций бетона соответствует максимальным напряжениям на этой кривой. С учетом этого принципа были обработаны результаты испытаний бетонов обычной и высокой
Прочности, полученные при условии как - J] = const [148,
155], так и = const [15, 23, 66]. В зависимости от призменной прочности бетона в момент испытания на график наносили соответствующие удельные значения предельной деформации єдс//?пр (Рис - 43). Видно, что между рассматриваемыми величинами существует достаточно тесная корреляционная связь (коэффициент корреляции г = 0,95), которая аппроксимируется аналитическим выражением вида:
Наряду с этим необходимо учитывать, что в общем случае даже при одинаковом режиме нагружения зависимость
bRc = /(/?пр) носит, бероятно, неоднозначный Характер, обусловленный влиянием технологических параметров, не связанных непосредственно с прочностью бетона. Систематические исследования, которые позволили бы проверить это положение, пока не проводились. Однако можно полагать, что аналогично упругим деформациям (см. предыдущие разделы) предельные деформации бетона
Предельная деформативность бетона при неоднородных напряженных состояниях сжатия (внецентренное сжатие, сжатие при изгибе) может существенно отличаться от величин, соответствующих осевому сжатию за счет влияния соседних менее напряженных участков сжатой зоны. По некоторым опытным данным, предельные деформации сжатия в крайней фибре балок достигают (300700) 10—5, а в отдельных случаях 1000 х10
Экспериментальные исследования* проведенные в ЦНИИС по специальной методике [15], показали, что наиболее напряженные волокна работают в этом случае
Рис. 44 Зависимость предельных деформаций растяжения бетона от содержания крупного заполнителя в смеси, по данным
1—Каплана (раствор) [161]; 2— Каплана (бетон на щебне и гравий) [161]; З—Писанко и Голикова (бетон на щебне) [67]
В зоне нисходящего участка кривой сг — ей претерпевают поэтому значительные деформации вплоть до разрушения. Такое явление особенно сильно выражено в низкомарочных
Бетонах. Не исключено, что в этом случае характер взаимосвязи предельных деформаций и прочности бетона будет отличен от установленного при центральном сжатии (см. рис. 43).
Аналогичным образом влияет также арматура сжатой зоны, вследствие чего предельные деформации армирован-
Деформации бетона при растяжении едр значительно меньше по величине, чем при сжатии. Относительная предельная деформация растяжения составляет, согласно опытным данным (10ч-15) • Ю-5.
Эксперименты показывают [66, 161], что на предельную растяжимость бетона в значительной мере оказывает влияние присутствие крупного заполнителя. По данным Капла - на [161], величина заметно уменьшается по мере увеличения процентного содержания заполнителя (рис. 44). Из тех же данных следует, что деформации бетона, соответствующие моменту появления первых микротрещин в растянутой зоне балок и при раскалывании цилиндров, близки по величине к предельным деформациям осевого растяжения (рис. 45).
Основные физико-механические свойства бетона и арматуры
Физико-механические свойства бетона зависят от его состава, технологии изготовления конструкций и вида их напряженного состояния. Следует учитывать и тот факт, что с увеличением загрязнений и крупного заполнителя прочность бетона ухудшается. При постоянном водоцементном соотношении механические свойства цементного бетона практически не зависят от соотношения между количеством вяжущего и заполнителя.
Характерной особенностью для всех видов бетона является неоднородность структуры. Повышение структурной однородности бетона существенно влияет на улучшение его физико-механических свойств, что способствует значительному росту прочности бетона. Так как неоднородность и дефектность структуры бетона носят случайный характер, то механические свойства бетона целесообразно оценивать с точки зрения статистической механики твердого тела, т. е. с учетом вероятностного описания его напряженно-деформированного состояния.
Вследствие усадки цементного камня, в его соприкосновении с заполнителем возникают микротрещины сцепления ненагруженного бетона. Размеры этих трещин и их количество зависят от микро- и макроструктуры бетона. С увеличением сжимающей нагрузки силы сцепления ослабляются и происходит развитие микротрещин, несмотря на процесс уплотнения бетонной массы. Наряду с этим происходит увеличение растягивающих напряжений в направлении, перпендикулярном плоскости приложения внешней силы. При кратковременном однократном сжатии или растяжении уровень напряжений Rb1 при котором образуются трещины в цементном камне, называют нижней границей микроразрушения или пределом упругости бетона (рис. ниже). Эта величина характеризуется максимальным уплотнением сжатого бетона образца, что подтверждается изменением относительной скорости ультразвука.
Диаграммы деформаций бетона при кратковременном однократном действии нагрузки
В тех местах, где цементный камень ослаблен порами и дефектами, возникают концентрации напряжений. Это обстоятельство способствует (при увеличении нагрузки) началу разрушения цементного камня и снижению его сцепления с заполнителем. В результате происходит разуплотнение бетона. Уровень напряжений Rb2, при котором прекращается прирост объема образца, принимают за верхнюю границу микроразрушения. При дальнейшем увеличении нагрузки происходит интенсивное трещинообразование в бетоне и его отрыв от образца в поперечном направлении.
Уровни Rb1 и Rb2 при осевом сжатии бетона могут быть определены по зависимостям О.Я. Берга:
Физические процессы уплотнения, разуплотнения, микро- и макроразрушения бетона обусловливают характер его деформирования как при сжатии, так и при растяжении. Если статическая нагрузка возрастает мгновенно, то в бетоне развиваются упругие деформации, которые прямо пропорциональны напряжениям, т. е. подчиняются закону Гука. При напряжениях σb относительные величины деформаций составляют εb,el (рис. выше). При медленном увеличении нагрузки на образцы возникают пластические деформации бетона εb,pl, которые в теории железобетона называют деформациями быстронатекающей ползучести. При замедленном (длительном) увеличении нагрузки показатель прочности бетона может снизиться на 10% в сравнении с кратковременным (мгновенным) возрастанием нагрузки.
К основным физико-механическим свойствам бетона относятся прочность и деформативность, определяемые его структурой.
Прочность бетона. Бетон имеет капиллярно-пористую неоднородную структуру, образованную зернами заполнителя (песок, щебень или гравий), скрепленными цементным камнем в монолитный твердый материал. По данным исследований, поры и капилляры занимают около трети объема цементного камня. В таком неоднородном материале внешняя нагрузка создает сложное напряженное состояние.
В сжатом бетонном образце напряжения концентрируются на более твердых частицах и около пор и пустот. При этом растягивающие напряжения действуют по площадкам, параллельным направлению силы (рис. ниже). Так как в бетоне много хаотически расположенных пор и пустот, то растягивающие напряжения накладываются друг на друга.
Поскольку сопротивление бетона растяжению значительно меньше, чем сжатию, то разрушение сжимаемого образца происходит в результате разрыва бетона в поперечном направлении (рис. ниже). Отсутствие закономерности в расположении твердых частиц и пор приводит к существенному разбросу показателей прочности при испытании образцов из одного и того же бетона.
К бетону неприменимы классические теории прочности, так как они справедливы для материалов с идеальными свойствами. Поэтому данные о его прочности и деформативности основываются на большом числе экспериментов.
Схема напряженного состояния и разрушения сжатого бетонного образца
Прочность бетона зависит от многих факторов, основными из которых являются: время и условия твердения, вид напряженного состояния, форма и размеры образцов, длительность нагружения.
Опытами установлено, что прочность бетона нарастает в течение длительного времени, но наиболее интенсивный ее рост происходит в начальный период твердения (28 суток при применении портландцемента, 90 суток при пуццолановом и шлаковом портландцементе). В дальнейшем нарастание прочности значительно замедляется, но при положительной температуре и влажной среде продолжается еще годами (рис. ниже).
Нарастание прочности бетона во времени при хранении во влажной (а) и сухой (б) средах
Из рисунка видно, что в бетоне, хранившемся во влажной среде, увеличение прочности продолжается и по истечении 10 лет. В бетоне же, хранившемся только 7 дней во влажной среде, а затем в сухой, нарастание прочности почти прекратилось примерно через год. Опыты над образцами, хранившимися во влажной среде в течение 20 лет, показали, что прочность их непрерывно растет.
На прочность бетона большое влияние оказывает скорость нагружения образцов. При замедленном нагружении прочность бетона оказывается меньше на 10-15%, чем при кратковременном. При быстром нагружении (0,2 с и менее) прочность бетона, наоборот, возрастает до 20%. Бетон имеет различную прочность при разных силовых воздействиях: сжатии, растяжении, изгибе, срезе. В связи с этим различают несколько характеристик прочности бетона.
Кубиковая прочность бетона при сжатии является основной механической характеристикой (эталон прочности) материала. При осевом сжатии кубы разрушаются вследствие разрыва бетона в поперечном направлении. Однако силы трения, возникающие на опорных гранях, препятствуют поперечным деформациям куба вблизи торцов и создают эффект обоймы (рис. ниже). Если устранить влияние сил трения смазкой контактных поверхностей, то поперечные деформации проявляются свободно и куб раскалывается по трещинам, параллельным направлению действия сжимающей силы (рис. ниже), а его прочность уменьшается примерно вдвое. По ГОСТу кубы испытывают без смазки контактных поверхностей. Силы трения влияют на прочность кубов в зависимости от их размеров: чем меньше размер куба, тем больше его прочность. Так, если прочность куба с ребром 15 см равна R, то для куба с ребром 10 см она равна 1,12R, а с ребром 20 см
Кубиковая прочность бетона при сжатии необходима для производственного контроля и при проектировании не применяется, так как реальные конструкции по форме отличаются от куба и приближаются к форме призм. Поэтому за основную характеристику прочности батона сжатых элементов принята призменная прочность — временное сопротивление осевому сжатию бетонных призм с квадратным основанием а и высотой h.
Характер разрушения бетонных кубов при сжатии
Опыты показали, что с увеличением h/a влияние сил трения на торцах уменьшается и прочность призм снижается. Разрушение наступает от поперечного растяжения и образования продольных трещин (см. рис. выше). При h/a > 4 прочность призм становится постоянной и равной Rb
(0,7-0,8)R. Призменную прочность используют при расчете сжатых и изгибаемых элементов.
Прочность бетона при местном сжатии (смятии) учитывают при передаче давления только на часть площади (опирание балок, ферм, колонн и т. д.). Как показывают опыты, в этом случае загруженная часть площади обладает большей прочностью, чем Rb, так как в работе участвует также бетон, окружающий площадку смятия и создающий эффект обоймы. Прочность бетона на местное сжатие
где Alog1 — площадь смятия; Alog2 — расчетная площадь, включающая площадку смятия и дополнительный участок, как правило, симметричный по отношению к площади смятия.
Прочность бетона при растяжении зависит от прочности цементного камня, силы его сцепления с заполнителем и значительно меньше прочности при сжатии. При осевом растяжении прочность бетона R bt = (0,1-0,05)R.
Причем с увеличением кубиковой прочности относительная прочность бетона при растяжении уменьшается. Опытным путем Rbt определяют испытаниями на разрыв восьмерок или на раскалывание образцов в виде цилиндров и кубов.
Прочность бетона при срезе и скалывании в железобетонных конструкциях встречается редко. Обычно срез сопровождается действием нормальных сил. Под чистым срезом понимается разделение элемента на две части по сечению, в плоскости которого действуют перерезывающие силы. Прочность бетона при срезе можно определять по эмпирической зависимости:
Значительно чаще бетон в железобетонных конструкциях работает на скалывание, например, в балках под действием поперечных сил. Скалывающие (касательные) напряжения при изгибе изменяются по высоте сечения по квадратной параболе. Сопротивление бетона скалыванию, по опытным данным, в 1,5-2 раза больше прочности при осевом растяжении.
Прочность бетона при длительных, быстрых и многократно повторяющихся нагружениях. При длительном действии статической нагрузки бетон разрушается при меньших напряжениях, чем временное сопротивление кратковременной нагрузке. Это вызвано развитием значительных неупругих деформаций и структурных изменений в бетоне. Предел длительного сопротивления бетона при осевом сжатии, по опытным данным, составляет 0,9Rb. Если конструкция эксплуатируется в благоприятных для нарастания прочности бетона условиях (например, гидротехнические сооружения, эксплуатируемые во влажной среде), то уровень напряжений OtJRb постепенно уменьшается в связи с ростом Rh, и отрицательное влияние длительного загружения будет со временем проявляться меньше. При нагрузках малой продолжительности (порыв ветра, транспортные средства, краны, удар и т. д.) бетон разрушается при больших напряжениях (1,1-1,2)Rb.
Многократно повторяющиеся нагрузки снижают сопротивление бетона сжатию под влиянием развития микротрещин. Предел выносливости бетона зависит от числа циклов нагрузки, характеристики цикла ρb = σmin /σmax и принимается не менее 0,5Rb.
Его используют при расчете на выносливость железобетонных конструкций, испытывающих динамические нагрузки (подкрановые балки, пролетные строения мостов и т. д.).
Деформации бетона под нагрузкой. В бетоне различают деформации двух основных видов: силовые, развивающиеся под действием внешних сил, и температурно-влажностные.
Бетон является материалом с ярко выраженными упругопластичными свойствами. Уже при небольших напряжениях в нем кроме упругих (восстанавливающихся) деформаций развиваются пластические (остаточные) деформации, которые в основном зависят от характера приложения и длительности действия нагрузки. Поэтому силовые деформации различают при однократном кратковременном, длительном и многократно повторяющихся нагружениях.
При однократном действии кратковременной нагрузки деформации бетона оценивают путем испытания бетонных призм на сжатие. Если призму загружать ступенями и замерять деформации на каждой ступени дважды (после приложения нагрузки и через некоторое время после выдержки под нагрузкой), то диаграмма σ-ε будет ступенчатой (рис. ниже). Деформации εpl, замеренные сразу после приложения нагрузки, —упругие и прямо пропорциональны напряжениям, а деформации εpl, развивающиеся за время выдержки под нагрузкой, — пластические. Упругие деформации соответствуют мгновенной скорости загружения образца.
Пластические деформации с уменьшением скорости загружения или увеличением времени выдержки образца под нагрузкой возрастают, а зависимость σ-ε становится более пологой. Таким образом, полная деформация бетона εb = εel + εpl. При большом количестве ступеней загружения график σ-ε становится криволинейным (пунктир на рис. ниже). В общем случае диаграмма «напряжения— деформации» для бетона изображена на рис. ниже. Если в какой-то момент загружения, соответствующий напряжению σb, нагрузку с бетонного образца быстро снять, то кривая σ-ε будет обращена выпуклостью в противоположную сторону. В процессе разгружения восстанавливается часть неупругих деформаций (рис. ниже). После полной разгрузки в образце сохраняются остаточные деформации, которые с течением времени частично восстанавливаются (деформации упругого последействия εep).Диаграмма σ-ε при испытании бетонных призм на сжатие
Общая диаграмма «напряжения-деформации» бетона
Связь между напряжениями и деформациями для бетона, как упругопластичного материала, характеризуется модулем деформации и является переменной величиной, определяемой как тангенс угла наклона касательной к кривой σ-ε, т. е. Eb = tga = dσ/dε. Использование такого определения модуля деформаций сложно и затруднительно.
Поэтому для практических расчетов при небольших напряжениях σb < Rb, связь σ-ε принимается линейной (соответствует закону Гука) и называется начальным (или мгновенным) модулем упругости Eb - tga = σb/εel. При σb > 0,3/Rb влияние пластических деформаций становится существенным и в расчетах используют средний модуль, или модуль упругопластичности, представляющий собой тангенс угла наклона секущей Eb,Pl = tga = σb/εel.
где v = εl/εb — коэффициент, характеризующий упругопластичное состояние бетона при сжатии; он изменяется от 1 (при упругой работе) до 0,1 и зависит от величины напряжений и длительности нагрузки.
При осевом растяжении диаграмма σ-ε имеет тот же характер, что и при сжатий. Начальные модули упругости бетона при растяжении и сжатии отличаются незначительно и могут быть приняты одинаковыми. Тогда модуль упругопластичности бетона при растяжении
где vt —коэффициент, характеризующий упругопластическое состояние бетона при растяжении. При σbt - Rbt по опытным данным vt = 0,5.
При длительном действии нагрузки неупругие деформации бетона с течением времени увеличиваются. Эти деформации интенсивно нарастают в первые 3—4 месяца, затем их рост постепенно замедляется и прекращается через несколько лет.
Нарастание неупругих деформаций во времени при длительном действии нагрузки или напряжений (температурных, влажностных и т. п.) называют ползучестью бетона. Деформации ползучести могут в 3-4 раза превышать упругие деформации. Деформации ползучести бетона и скорость их нарастания во времени зависят от очень многих факторов. Так, с ростом напряжений ползучесть бетона увеличивается; загруженный в раннем возрасте бетон характеризуется большей ползучестью, чем старый бетон. Ползучесть бетона в сухой среде значительно больше, чем во влажной. На ползучесть бетона также влияют технологические факторы: увеличение количества цемента и В/Ц, применение цементов низких марок повышают ползучесть; хорошо фракционированный заполнитель, тщательное уплотнение бетонной смеси уменьшают деформации ползучести.
Различают ползучесть линейную и нелинейную. Линейная ползучесть возможна при σb < 0,5Rb, когда увеличение деформаций примерно пропорционально увеличению напряжений (рис. ниже, кривая 1). При напряжениях σb > 0,5Rb в бетоне появляются микротрещины, начинаются ускоренное нарастание неупругих деформаций и нелинейная ползучесть (рис. ниже, кривая 2). Так как граница между этими двумя видами ползучести (граница развития микротрещин) выше напряжений при эксплуатационных нагрузках, наибольшее практическое значение имеет линейная ползучесть.Деформации ползучести бетона
Для количественной оценки деформаций ползучести пользуются величинами: характеристика ползучести φt и мера ползучести С(t);
где εpl(t) —деформация ползучести к моменту времени t; εel —упругая деформация в момент загружения (рис. ниже, t = 0); σb— длительно действующие напряжения.
При многократно повторяющейся нагрузке происходит постепенное накопление неупругих деформаций. После определенного числа циклов загружения и разгрузки неупругие деформации выбираются, и бетон начинает работать упруго. Такой характер деформирования наблюдается при напряжениях, не превышающих предела выносливости. При большем значении напряжений после некоторого числа циклов неупругие деформации начинают неограниченно расти и происходит разрушение образца, т. е. наступает усталость бетона.
Предельные деформации бетона. Предельными называют деформации бетона перед его разрушением. Различают предельную сжимаемость εbu и растяжимость εbtu, которые зависят от прочности бетона, его состава и длительности приложения нагрузки.
С увеличением прочности бетона они уменьшаются, а с ростом длительности нагрузки увеличиваются. По данным опытов, предельная сжимаемость бетона εbu = (0,8—З)10 -3 . В расчетах принимают εbu = 2 · 10 -3 , а при длительном действии нагрузки εbul = 2,5 · 10 -3 .
Предельная растяжимость бетона в 10-20 раз меньше предельной сжимаемости и в среднем принимают εbtu = 1,5 · 10 -3 . Величину εbtu можно определять в зависимости от прочности бетона при растяжении с учетом модуля упругопластичности бетона (см. формулу выше):
Предельная растяжимость бетона существенно влияет на сопротивление образованию трещин в растянутых зонах железобетонных конструкций.
Температурные и влажностные деформации бетона. Температурные деформации бетона неизбежны в массивных гидротехнических сооружениях при их бетонировании. Твердение бетона сопровождается выделением теплоты (экзотермический разогрев) и при последующем неравномерном остывании конструкции появляются значительные температурные деформации. Они возникают также в сооружениях, подверженных атмосферным воздействиям или изменениям технологических температур. Температурные деформации при ограничении перемещений конструкций (статически неопределимые) или при неравномерном их распределении по объему (в массивных сооружениях) вызывают растягивающие напряжения, которые могут привести к появлению трещин. Для расчета температурных деформаций и напряжений пользуются коэффициентом линейного расширения бетона, величина которого, по опытным данным, при температуре от -50 до +50 °С в среднем составляет 1-10 -5 1/град.
Влажностные деформации бетона вызваны его свойством: уменьшаться в объеме при твердении в воздушной среде (усадка) и увеличиваться в объеме при увлажнении (набухание). Усадку бетона можно представить как сумму деформаций двух видов: собственно усадки и влажностной усадки.
Собственно усадка происходит в результате уменьшения истинного объема системы цемент — вода в процессе гидратации цемента и необратима. Влажностная усадка связана с испарением свободной влаги в бетоне; она частично обратима: при твердении на воздухе происходит усадка бетона, а при достаточном притоке влаги — набухание. Деформации влажностной усадки бетона в 10-20 раз больше деформаций собственно усадки.
Усадка бетона происходит наиболее интенсивно в начальный период твердения и в течение первого года. В дальнейшем она постепенно затухает. Величина и скорость усадки зависят от влажности окружающей среды (чем меньше влажность, тем больше усадочные деформации и выше скорость их роста), вида цемента, состава бетона, способов его укладки и т. д. Неравномерное высыхание бетона по объему в массивных гидротехнических сооружениях приводит к неравномерной усадке. Открытые поверхностные слои бетона теряют влагу быстрее и усадка их больше, чем внутренних, более влажных зон. В результате такой неравномерности во внутренних слоях бетонного тела возникают сжимающие, а в наружных — растягивающие напряжения, приводящие к образованию поверхностных трещин.
Величина усадки (набухания) зависит от многих факторов и колеблется в широких пределах. По опытным данным средние деформации могут быть приняты равными: усадки — 2 · 10 -4 , набухания — 1 · 10 -4 . Уменьшение усадочных деформаций и напряжений в бетоне достигается как технологическими (уменьшение расхода цемента и отношения В/Ц, повышение плотности бетона, увлажнение открытых поверхностей и т. д.), так и конструктивными мерами, например, устройством усадочных швов, постановкой противоусадочной арматуры. Наиболее радикальным средством устранения усадки является применение безусадочных цементов.
В строительстве наибольшее применение получили обычные тяжелые бетоны плотностью 22-25 кН/м. Прочность бетона нарастает с течением времени. Наиболее быстрый ее рост происходит в начальный период твердения (28 суток для портландцемента, 90 суток для пуццоланового и шлакового портландцемента).
В зависимости от вида действующих нагрузок (сжатие, растяжение, изгиб, срез) бетон имеет различную прочность.
Кубиковая прочность R — это временное сопротивление сжатию бетонных кубов размером 150x150x150 мм.
Так как реальные конструкции но форме отличаются от куба, то при расчетах используется призменная прочность Rb, представляющая собой временное сопротивление осевому сжатию бетонных призм с квадратным основанием а и высотой h.
При соотношении h/a > 4 призменная и кубиковая прочности связаны зависимостью
Прочность бетона при растяжении, связь призменной и кубико- вой прочности определяются эмпирической формулой
Прочность бетона на растяжение при изгибе Rbtc вычисляется по обычной формуле изгиба, не учитывающей пластические деформации,
Среднее значение коэффициента изгиба
В действительности, для различных бетонов значение Кс колеблется в широких пределах. Прочность бетона при растяжении определяется по формуле
Деформации бетона при кратковременном нагружении. Модуль упругости бетона.
Бетон как материал, не подчиняющийся закону Гука, имеет диаграмму сжатия криволинейного очертания. Известны различные варианты математического описания кривой а = /(е), в основу которых положены экспериментальные закономерности. Исследования, значительная часть которых была проведена в ЦНИИС , позволили связать характерную форму этой кривой с физическими процессами деформирования и разрушения бетона. При кратковременном возрастании статической нагрузки отклонение диаграммы сжатия от прямолинейной обусловлено преимущественно нарушением сплошности материала, вследствие перехода границы микроразрушения Rr по мере роста нагрузки и дальнейшим развитием микротрещин в бетоне. В более общем случае степень искривления диаграммы зависит также от скорости нагру-жения, поскольку наблюдаемые деформации включают определенную долю деформаций ползучести, проявляющихся частично на всех уровнях нагрузки. Поэтому даже при небольших нагрузках (в зоне так называемой линейной ползучести) обнаруживается некоторая криволинейность диаграммы . Вследствие этого модуль деформаций бетона, определяемый как тангенс угла наклона секущей к кривой а — е, не является постоянной величиной и уменьшается по мере роста напряжений. Для практических оценок пределов изменения секущего модуля под кратковременной нагрузкой необходимо располагать данными, по крайней мере, о двух параметрах кривой о — 8, начальном угле наклона этой кривой (начальный модуль деформаций) и величине деформаций, соответствующей максимуму кривой (предельная деформация под кратковременной нагрузкой). В указанном диапазоне модуль деформаций изменяется более или менее плавно. Значения обоих параметров, а также характер изменения модуля деформаций с ростом напряжений от нуля до максимальной величины существенно зависят от особенностей структуры бетона. Рассмотрим характеристики деформативной способности бетона при кратковременном нагружении (начальный модуль деформаций и величину предельной деформативности), которые наиболее часто применяются для расчетов элементов конструкций. Хотя наибольшее число экспериментальных данных в этой области получено при испытании бетонов в условиях одноосного сжатия, установленные закономерности можно с достаточным основанием использовать применительно к действию растягивающих напряжений в бетоне . В лабораторных условиях начальный модуль деформаций бетона Е = - находят при определенной величине относительного уровня напряжений в бетоне, составляющей 20—30% предела прочности опытных образцов. В этой области напряжений (и вплоть до границы) кривая, характеризующаяся зависимостью а — е, имеет незначительную кривизну, поэтому начальный модуль деформаций практически не зависит от величины напряжений. Повторным нагружением бетона в зоне невысоких напряжений до некоторой степени можно исключить влияние остаточных деформаций бетона на величину модуля. Определенную таким путем характеристику деформативности бетона с ненарушенной структурой рассматривают условно как модуль упругости (начальный модуль упругости) этого материала.
Предельная деформативность бетона при кратковременном нагружении
Деформативность бетона под кратковременной нагрузкой при наличии его сцепления с арматурой характеризует распределение полного усилия в железобетонном элементе по мере роста нагрузки. Степень вовлечения арматуры в совместную работу с бетоном различна на разных уровнях нагружения и ограничивается некоторым предельным значением деформаций бетона, которые могут быть достигнуты к моменту потери бетоном несущей способности или нарушения сцепления с арматурой. Нормативные документы (СНиП; СН 365-67) рекомендуют учитывать предельную деформативность бетона при расчете элементов железобетонных конструкций на трещино-стойкость, а в некоторых случаях также на прочность. При этом предельная деформативность принимается в среднем равной: при сжатии е^с = 200-10
5, а при растяжении 8*р= 15-10-5. Указанные величины следует рассматривать, однако, как сугубо ориентировочные. Опыты показывают, что фактические значения предельных деформаций бетона колеблются в довольно широких пределах в зависимости от состава бетонной смеси, качества составляющих, скорости загружения, а также от вида напряженного состояния (осевое или внецентренное сжатие, изгиб, растяжение и т. д.). Проанализируем закономерности изменения предельной деформативности тяжелых бетонов в условиях осевого сжатия при обычных лабораторных испытаниях кратковременной нагрузкой. Выражение(У. 19), полученное Г.Н. Писанко и Е.Н. Щербаковым, свидетельствует о том, что предельные деформации бетона при осевом сжатии линейно возрастают с увеличением Rnv. Это отмечалось также в ряде других работ. Таким образом, не подтверждается точка зрения, будто высокопрочные бетоны обладают меньшей предельной деформативностью по сравнению с бетонами обычной прочности. Наряду с этим необходимо учитывать, что в общем случае даже при одинаковом режиме нагружения зависимость носит, вероятно, неоднозначный характер, обусловленный влиянием технологических параметров, не связанных непосредственно с прочностью бетона. Систематические исследования, которые позволили бы проверить это положение, пока не проводились. Однако можно полагать, что аналогично упругим деформациям (см. предыдущие разделы) предельные деформации бетона должны зависеть, в частности, от содержания цементного теста в смеси, характеристик заполнителя, его сцепления с цементным камнем и т. д. Предельная деформативность бетона при неоднородных напряженных состояниях сжатия (внецентренное сжатие, сжатие при изгибе) может существенно отличаться от величин, соответствующих осевому сжатию за счет влияния соседних менее напряженных участков сжатой зоны. Аналогичным образом влияет также арматура сжатой зоны, вследствие чего предельные деформации армированных элементов выше, чем нормированного бетона, и зависят от степени армирования. Деформации бетона при растяжении её значительно меньше по величине, чем при сжатии. Относительная предельная деформация растяжения составляет, согласно опытным данным (Юн-15) • 10
5. Эксперименты показывают, что на предельную растяжимость бетона в значительной мере оказывает влияние присутствие крупного заполнителя. По данным Каплана, величина заметно уменьшается по мере увеличения процентного содержания заполнителя (рис. 44). Из тех же данных следует, что деформации бетона, соответствующие моменту появления первых микротрещин в растянутой зоне балок и при раскалывании цилиндров, близки по величине к предельным деформациям осевого растяжения.
Читайте также: