По сравнению с эмалью и дентином цемент
Самоадгезивные композитные цементы в практике ортопедической стоматологии
В настоящее время в ортопедической стоматологии для фиксации несъемных конструкций протезов применяются различные виды цементов. Обеспечение ретенции, хорошего краевого прилегания, герметичности непрямых реставраций во многом зависит от этапа цементирования. Данный этап имеет важное значение при достижении высокой клинической эффективности лечения. Cовершенствование цементов неразрывно связано с развитием ортопедической стоматологии и несъемных конструкций зубных протезов.
В течение длительного времени популярными материалами в стоматологии для цементирования несъемных конструкций протезов продолжают оставаться цинк-фосфатные истеклоиономерные цементы. Кроме них, широкое распространение получили стеклоиономерные цементы модифицированные полимерами, которые сохраняют преимущества традиционных стеклоиономерных цементов, а именно выделение фтора и химическую адгезию с тканями зуба, обладая при этом при этом более высокой прочностью, низкой растворимостью в жидкости и меньшим микроподтеканием [22,31].
В настоящее время, по мнению ряда авторов, отмечается определенная тенденция к более широкому и активному применению композиционных цементов [17,19]. Основная причина данной тенденции заключается в том, что цементы этой группы превосходят другие цементы по целому ряду характеристик [26,29,49,55].
Композитные цементы делятся на 2 большие группы:
- Композитные цементы с этапом адгезивной подготовки;
- Композитные цементы без этапа адгезивной подготовки (самоадгезивные).
Применение традиционных или классических композитных цементов связано с протравливанием ортофосфорной кислотой и с адгезивной подготовкой поверхности зубов перед их использованием. Этот этап обеспечивает высокие ретенционные свойства за счет образования гибридного слоя, а также надежную герметичность и изоляцию зубов после цементирования непрямых реставраций. Сложности связанные с необходимостью предварительной адгезивной подготовки [12,48], а именно дополнительные временные затраты, чувствительность к аппликационным ошибкам, случаи возникновения послеоперационной чувствительности ограничивали их более широкое использование в стоматологии.
Дальнейшие разработки привели к появлению нового поколения композитных цементов, известных как самоадгезивные композитные цементы (СКЦ). Эти цементы не требует предварительного протравливания ортофосфорной кислотой твердых тканей зуба, а также нанесения адгезивной системы. Связь возникает за счет низких значений рН таких цементов сразу после замешивания. По данным M. Behr и cоавт. (2004), значение рН меняется от 1 до 6 в течение полимеризации. Цемент на начальном этапе деминерализует, а затем проникает в поверхностный слой твердых тканей зуба, соединяясь при этом с тканями зуба. Особенность заключается в том, что смазанный слой на поверхности культи зуба не удаляется, а частично модифицируется. Механизм полностью не изучен, но предполагается, что связь происходит за счет реакции комплексообразования ионов кальция на поверхности дентина зуба и фосфорной кислоты метакрилатов в цементе [41]. L. Han и соавт. (2007) также считают, что низкие значения рН таких цементов сразу после замешивания играют положительную роль и способствуют протравливанию эмали и дентина. Однако по данным авторов некоторые цементы сохраняют низкие значения рН на протяжении длительного времени после замешивания, что в дальнейшем может негативно влиять на сохранение надежной адгезии таких цементов к тканям зуба.
СКЦ могут быть разделены в соответствии с их реакцией полимеризации на: химического, двойного и светового типов отверждения [47]. С практической точки зрения цементы двойного типа отверждения являются более универсальными по сравнению с двумя другими типами. Применение цементов двойного типа отверждения позволяет врачу проводить выбор в зависимости от клинической ситуации типа полимеризации цемента. При этом интересно отметить, что у цементов двойного типа отверждения тип полимеризации оказывает влияние на их физико-механические свойства после отверждения. T.C. Aguiar и соавт. (2011) указывают на влияние этапа светополимеризации на прочностные характеристики цементов двойного типа отверждения. J.O. Burgess и соавт. (2010) отмечают, что у СКЦ двойного типа отверждения происходит снижение силы связи, стабильности цвета, износоустойчивости в случае их полимеризации только по химическому типу. Поэтому даже при фиксации непрозрачных конструкциий зубных протезов рекомендуется светополимеризация цемента, вытекающего за пределы протеза и доступного для света лампы.
Универсальность
Одним из основных положительных свойств СКЦ является универсальность применения, поскольку данные цементы могут использоваться во многих клинических ситуациях.
Показания к применению:
- Постоянная фиксация керамических, композитных вкладок.
- Постоянная фиксация цельнолитых коронок и мостовидных протезов, включая сплавы драгоценных и недрагоценных металлов.
- Постоянная фиксация металлокерамических коронок и мостовидных протезов, включая сплавы драгоценных и недрагоценных металлов.
- Постоянная фиксация индивидуальных и стандартных штифтовых конструкций.
- Постоянная фиксация адгезивных мостовидных протезов.
Низкая растворимость
Устойчивость цемента к воздействию влаги и низкая растворимость имеет важное значение в профилактике отдаленных осложнений после фиксации несъемных конструкций. На цемент в области границы соединения непрямой реставрации и твердых тканей воздействует слюна, что может привести к вымыванию цемента в этой зоне. Обычно этот процесс протекает более активно при плохом краевом прилегании реставрации [54]. Ряд авторов сообщают о низкой растворимости композитных цементов, отмечая при этом их преимущество по данному критерию перед другими видами цементов[1,12,21]. Устойчивость к воздействию слюны и низкая растворимость цемента имеет особенное значение при фиксации адгезивных мостовидных протезов (рис. 1-5).
Рис. 1. Исходная клиническая ситуация: включенный дефект зубного ряда во фронтальном отделе нижней челюсти | Рис. 2. Новый самоадгезивный цемент Permacem 2.0 (DMG, Германия) представлен основной и каталитической пастой, которая находится в специальных картриджах и комплектуется канюлями для автоматического замешивания | Рис. 3. Нанесение самоадгезивного цемента на опорные элементы АМП |
Рис. 4. После фиксации АМП проведено вантовое шинирование зубов с применением арамидной нити | Рис. 5. Внешний вид зубного ряда после завершения лечения |
Низкая величина толщины цементной пленки
Для обеспечения высокой точности позиционирования коронок и вкладок при постоянной фиксации и соответственно хорошего краевого прилегания реставрации и достижение долгосрочного клинического результата при ортопедическом лечении немаловажное значение имеет минимальная толщина цементной пленки.
После фиксации несъемных конструкций зубных протезов, из-за цемента может снижаться точность их краевого прилегания [2,43]. Неслучайно Д. Массирони и соавт. (2008) отмечают, что цементирование не может нивелировать или откорректировать погрешности, возникшие в процессе изготовления протезов, однако могут способствовать их возникновению. P. Magne и соавт. (1999) выявили влияние полимеризационной усадки толстого слоя композитного цемента на образование трещин в керамических винирах после их фиксации. Установлено, что толщина керамического винира должна быть более, чем в 3 раза шире толщины цементной пленки. По данным K. Satoh (1989), окклюзионное завышение коронок из-за слоя цемента при неправильном выполнении этапа фиксации может достигать 334 мкм. При этом также увеличивается краевая щель, в свою очередь может способствовать проникновению токсинов и бактерий под коронку, вызывать повреждения пульпы и вторичный кариес, способствует скоплению налета, приводят к заболеваниям парадонта [54]. По мере увеличения толщины цементной пленки, снижается прочность соединения непрямых реставраций с тканями зуба [28].
Различные цементы требуют разное пространство для оптимального позиционирования непрямых реставраций. По данным J.Wu , P.Wilson (1994) для цинк-фосфатных цементов необходимо больше пространства (не менее 40 мкм), по сравнению с композитными (около 30 мкм). A. Kious и соавт. (2009) считают, что для цементов с толщиной пленки до 25 мкм не требуется формировать специальное пространство.
Первые композитные цементы по минимальной толщине цементной пленки уступали остальным цементам, в том числе и цинк-фосфатному [51,52]. В настоящее время, ситуация изменилась, ряд исследований показывает [6,21,50], что современные композитные цементы, в том числе и самоадгезивные цементы, превосходят большинство других видов цементов по такому показателю, как минимальная толщина цементной пленки.
Таблица 1. Толщина цементной пленки различных композитных цементов (F. Varjao et al. (2002)) | ||
Название цемента | Производитель | Толщина цементной пленки (мкм) |
Enforce | (Dentsply) | 27.7 |
Nexus | (Kerr) | 34.9 |
Rely X | (3M-ESPE) | 25.5 |
Panavia 21 | (Kuraray) | 21.9 |
Таблица 2. Толщина цементной пленки некоторых самоадгезивных цементов (L.Han et al. (2007)) | ||
Название цемента | Производитель | Толщина цементной пленки (мкм) |
Smart Cem | (Dentsply) | 18.4 |
Maxcem | (Kerr) | 25.7 |
Relyx Unicem | (3M-ESPE) | 23.2 |
G-Cem | (GC) | 14.3 |
При применении СКЦ двойного типа отверждения наблюдается более медленное повышение вязкости и длительный период рабочего времени [43], а канюли для автоматического замешивания позволяют существенно сократить время замешивания, что дает еще несколько дополнительных секунд. Этот аспект имеет важное значение при фиксации многоопорных несъемных конструкций зубных протезов (рис. 6-10).
Рис. 6. Фронтальная группа зубов нижней челюсти подготовлена к фиксации на постоянный цемент несъемной конструкции | Рис. 7. Цемент Permacem 2.0 (DMG, Германия) с помощью смесительных канюль сначала вносят небольшими порциями на дно коронок, а затем гладилкой распределяют тонким слоем по стенкам | Рис. 8. Сразу после внесения цемента коронки накладывают на зубы, при этом перед фиксацией в каждый межзубный промежуток протеза вложена зубная нить (флосс) |
Рис. 9. Применение нити позволяет атравматично провести очистку области десневых сосочков от лишнего цемента | Рис. 10. Металлокерамический протез зафиксирован на зубах нижней челюсти |
Послеоперационная чувствительность
Особенностью работы с витальными зубами (рис. 11-16) являются случаи возникновения послеоперационной чувствительности после фиксации постоянных коронок или покрывных керамических вкладок. При этом одним из возможных причинных факторов может быть цемент для фиксации несъемных протезов [46]. Ошибки при выполнении адгезивной подготовки твердых тканей витальных зубов перед применением композиционных цементов могут привести к возникновению послеоперационной чувствительности и даже к гибели пульпы [3,40]. Установлено, что применение самоадгезивных цементов характеризуется низкой частотой возникновения послеоперационной чувствительности [14,44].
Рис. 11. Исходная клиническая ситуация: вторичный кариес и дефекты твердых тканей обнаружены на витальных зубах после снятия старых штампованных коронок | Рис. 12. После лечения кариеса культевая часть зубов восстановлена кор-материалом двойного типа отверждения LuxaCore Dual (DMG, Германия), витальность зубов при этом сохранена | Рис. 13. Вид зубов перед получением оттиска, вокруг зубов уложена ретракционная нить |
Рис. 14. Фрагмент двухэтапного двухслойного оттиска с детальным отображением границ препарирования и зубодесневой бороздки | Рис. 15. Металлокерамическая и цельнолитая коронки на модели | Рис. 16. Коронки после фиксации на постоянный цемент. Для профилактики возникновения послеоперационной чувствительности выбран СКЦ |
D. Saad и соавт. (2010) выявили меньшую частоту возникновения послеоперационной чувствительности у самоадгезивных цементов по сравнению классическими композитными цементами, требующими протравливания и предварительной адгезивной подготовки. Представляет интерес исследование, проведенное C.A. de Souza Costa и соавт. (2008), которые сравнивали влияние на пульпу зуба двух цементов СКЦ и композитного с этапом протравливания и адгезивной подготовкой. На 32 премолярах, подлежащих удалению по ортодонтическим показаниям, были сформированы полости и зафиксированы керамические вкладки с применением вышеуказанных цементов, после чего эти зубы удаляли (через 7 и 60 дней) и проводили гистологическое исследование пульпы зубов. Обнаружено, что применение традиционного композитного цемента с этапом протравливания и и адгезивной подготовкой сопровождается более выраженным воздействием на ткани пульпы зуба по сравнению с СКЦ.
N.Denner и соавт. (2007) проводили сравнительное исследование частоты возникновения послеоперационной чувствительности у витальных зубов после фиксации полных коронок при использовании 2 видов цементов: стеклоиономерного (CИЦ) и СКЦ. У 30 пациентов было установлено 120 коронок, при этом сравнительной анализ по такому показателю, как послеоперационная чувствительность через 24 месяца не выявил разницы в применении обоих цементов. M. Blatz et al. (2013) изучали частоту возникновения послеоперационной чувствительности у витальных зубов после фиксации на них полных коронок с применением СКЦ и СИЦ, модифицированного полимерами. Частота возникновения послеоперационной чувствительности оказалась ниже при фиксации коронок на СКЦ по сравнению с СИЦ, модифицированного полимерами.
Прочная связь с тканями зуба и отсутствие микроподтекания
Прочное соединение цемента с тканями зуба необходимо для обеспечения ретенции несъемной конструкции протеза на протяжении всего срока службы коронок [18,33], а низкая проницаемость цемента способствует профилактики возникновения микроподтекания. При этом в результате воздействия термоциклических и жевательных нагрузок некоторые цементы изменяют свои первоначальные свойства и структуру [13]. Важным свойством цемента является устойчивость к этим воздействиям. По данным ряда авторов композиционные цементы являются одними из наиболее надежных по этому показателю [20,25,34].
Неслучайно для повышения ретенционных свойств коронок в тех случаях, когда низкая высота культевой части зуба или препарирование проведено со значительной конусностью, рекомендуется применение именно композиционных цементов [16,32,55].
В последнее время уделяется большое внимание проблеме микроподтекания под несъемными конструкциями протезов, введен даже новый термин «наноподтекание» [38]. Важное значение в возникновении микроподтекания играет постоянный цемент для фиксации. Применение СКЦ обеспечивает более надежную и герметичную изоляцию культи зуба по сравнению с обычными СИЦ и СИЦ, модифицированными полимерами, что снижает вероятность возникновения микроподтекания под коронками [11,23,36] (рис. 17-22).
Рис. 17. Одиночные коронки на модели | Рис. 18. Одна из коронок была с опорой на имплантат | Рис. 19. Для изготовления каркасов коронок использовали различные материалы |
Рис. 20. Жевательная поверхность коронок воссоздает анатомические особенности данной группы зубов | Рис. 21. Для фиксации коронок был выбран цемент Permacem 2.0 (DMG, Германия), который обладает высокими показателями адгезии к тканям зуба, металлу и оксиду циркония | Рис. 22. Вид готовой работы в полости рта |
Цементирование циркониевых коронок
Применение коронок на основе каркаса из оксида циркония изготовленных по CAD/CAM технологии, широко применяется в ортопедической стоматологии, в том числе при протезировании на имплантатах (рис). Использование СКЦ для фиксации данного вида протезов показало высокую клиническую эффективность [35,37].
R.P. Palacios с соавт. (2006), сравнивая различные типы цементов для фиксации коронок на основе оксида циркония, пришли к заключению об эффективности применения самоадгезивного композитного цемента для этих целей. F. Nejatidanesh (2011) сравнивал различные виды цементов для фиксации циркониевых коронок на имплантатах и также обнаружили высокую прочность соединения при использовании композиционных цементов.
Заключение
Самоадгезивные композитные цементы (СКЦ) появились позднее всех видов цементов. Ряд научных исследований подтверждают высокую клиническую эффективность данной группы материалов. Первые СКЦ имели ряд недостатков и по многим параметрам уступали аналогичным материалам. Современные СКЦ имеют улучшенные характеристики, что свидетельствует о целесообразности их использования с целью высокой клинической эффективности при протезировании несъемными конструкциями зубных протезов.
По сравнению с эмалью и дентином цемент
После проверки и коррекции по описанному выше плану коронку фиксируют на постоянный цемент. Можно предварительно зафиксировать на временный цемент, чтобы дать пациенту самому оценить внешний вид и функциональные особенности. В этом случае цемент подбирают не слишком сильный, чтобы коронка при необходимости легко снималась без риска повреждения. Период адаптации не следует затягивать надолго, иначе может произойти расцементировка.
Выбор цемента. Для постоянной фиксации используют следующие цементы:
• Цинк-фосфатный цемент.
• Синтетические и адгезивные цементы.
• Стеклоиономерный цемент.
Цинк-фосфатный цемент. Этот цемент начали использовать гораздо раньше остальных. Хотя из-за своей кислотности он оказывает раздражающее действие на пульпу, с его помощью были фиксированы миллионы коронок, а процент клинически значимых побочных эффектов очень мал. Пациенты иногда жалуются на быстро проходящий дискомфорт, если цементировку проводят без местной анестезии.
Однако в большинстве случаев для фиксации местная анестезия все равно нужна по многим причинам, так что это нельзя считать действительно проблемой. Тем не менее потенциальное раздражающее действие цемента все же нельзя сбрасывать со счетов. В некоторых случаях он вызывал воспаление и некроз пульпы зубов. Иногда некроз пульпы происходит и при использовании других цементов, и причину его довольно трудно идентифицировать - собственно цемент, последствия препарирования зуба или основного заболевания, вызвавшего необходимость протезирования коронкой.
Популярность цинк-фосфатного цемента связана с двумя его очевидными достоинствами: длительным рабочим временем и возможностью получить тонкий равномерный слой толщиной до 10 мкм. Впрочем, это все равно в 10 раз больше размеров микроорганизмов, обитающих на поверхности цемента и формирующих налет.
Синтетические и адгезивные цементы. В настоящее время имеется большой выбор синтетических цементов. Хотя их используют все чаще и чаще, но все же для фиксации обычных коронок они не очень подходят по нескольким причинам. Во-первых, настоящие адгезивные цементы содержат 4-МЕТА или производные фосфорной кислоты, которые не дают им застыть в присутствии кислорода.
Из-за этого при фиксации коронки ее края покрывают материалом на основе водного желе, что создает трудности с удалением излишков цемента. Вторая причина заключается в том, что, хотя изначально эти цементы обладают более высокими адгезивными свойствами, их еще не используют в течение достаточно длительного времени, чтобы оценить стабильность этих свойств.
Синтетические цементы применяют в основном для фиксации керамических виниров и «щадящих» мостов. Однако эти материалы очень быстро улучшаются, что позволяет говорить о расширении показаний к их использованию в будущем.
Стеклоиономерные цементы. Некоторые врачи предпочитают использовать стеклоиономерные цементы. Они обладают адгезией к дентину и эмали, выделяют фтор и обладают относительно малым раздражающим действием на пульпу. Однако они обладают большей растворимостью по сравнению с другими цементами. Стеклоиономерные цементы выпускают в капсулах для замешивания, что обеспечивает всегда однородную консистенцию.
1.3. Цемент
Цемент зуба рассматривают как вариант грубоволокнистой костной ткани. В его состав входят около 70 % неорганических, 20% органических веществ и 10% приходится на воду. Из неорганических соединений преобладают гидроксиапатиты, а также соли фосфата и карбоната кальция, органические вещества представлены главным образом коллагеном, а также гликозамингликанами, липидами. В костной ткани содержится большое количество цитрата, его уровень превышает таковой в печени более, чем в двести раз.
Различают клеточный цемент, расположенный в верхушечной части корня и в области его бифуркации, и бесклеточный, покрывающий остальную часть корня. Клеточный цемент содержит цементоциты, в которых выявляются достаточно большое количество РНК, гликогена и ферментов. Это свидетельствует об интенсивных обменных процессах по сравнению с другими минерализованными тканями зуба. Бесклеточный цемент не имеет цементоцитов и состоит из коллагеновых волокон и аморфного склеивающего вещества. Цемент тесно связан с дентином.
В течение жизни постоянно происходит отложение цемента. При некоторых заболеваниях, например, пародонтите и периодонтите, а также при повышении нагрузки на зуб происходит интенсивное отложение цемента, при этом формируется гиперцементоз (анкилоз зуба).
Поскольку наиболее часто нами упоминается коллаген, белок, имеющий довольно оригинальную структуру мы считаем уместным более подробно остановиться на его строении. Из всех белков, обнаруженных у высших позвоночных, коллаген наиболее распространенный: количество его в организме составляет около одной трети всего уровня белков. Сухожилия построены из параллельных пучков молекул коллагена. В отличие от -кератинов коллаген растягивается с трудом. В настоящее время известны 19 типов коллагена, различающиеся по первичной структуре пептидных цепей, функциям и локализации в организме. Наиболее распространен 1 тип (кожа, кости, сухожилия, связки, роговица, дентин, пульпа, периодонт); 2-ой тип этого белка находится в хряще, стекловидном теле, передней части роговицы; 3-ий тип - в почках, печени, лимфатических узлах, аорте и других сосудах; 4-ый - локализуется в базальных мембранах. Отличие костного коллагена от других его видов в соединительной ткани заключается в том, что в первом имеются остатки фосфорной кислоты и дикарбоновых кислот. Характерной чертой коллагена является также то, что одну треть всех его аминокислотных остатков составляет глицин, а одну четвертую часть и более - пролин, гидроксипролин и гидроксилизин. Исключительно высокое содержание в коллагене таких аминокислот, которые нарушают -спиральную структуру, дает основание предполагать, что коллаген не образует классическую альфа-спираль. В коллагене каждые три полипептидных цепи скручены и образуют тройную спираль (Рис. 4), при этом под влиянием регулярно располагающихся остатков пролина и оксипролина цепь принимает форму как бы ломаной спирали; это обусловливается жесткостью R-групп пролина, а также тем обстоятельством, что пептидные связи, в образовании которых участвуют пролин и оксипролин, не могут образовать водородных связей. NH-группы пептидных связей, в образовании которых участвуют остатки глицина, образуют межцепочечные водородные связи, которые также способствуют сохранению прочности структуры коллагена и делают ее устойчивой к растягиванию. Каждая полипептидная цепь коллагена имеет молекулярную массу 120000 и содержит около 1000 аминокислотных остатков. Полная трехспиральная единица называется тропоколлагеном. Тропоколлагеновые единицы уложены в волокнах коллагена в сухожилиях ступенчатым образом, чем и объясняется характерное для фибрилл коллагена расстояние между повторяющимися единицами (в зависимости от степени гидратации 600-700 А).
Рис. 4. Схема строения молекулы коллагена.
Прочность коллагеновых волокон (нить сечением около 1 мм выдержавает нагрузку более 10 кг) во многом достигается за счет дополнительных ковалентных «сшивок» между молекулами тропоколллагена. Установлено, что в образовании «сшивок» участвуют главным образом, остатки лизина и гидроксилизина.
Биосинтез данного протеина, осуществляемый в остео-, хондро- и фибробластах, протекает весьма сложно. Сначала его цепи синтезируются на полисомах в виде предшественников, образуя проколлаген. Затем пептидные цепочки посттрансляционно гидроксилируются и гликозилируются. Гидроксилирование проколлагена осуществляется с участием фермента протоколлаген-гидроксилазы, который в качестве кофермента использует витамин С (аскорбиновую кислоту). Негидроксилированный белок плохо секретируется из клеток, а если секретируется, то сразу же атакуется коллагеназой. Следовательно при гиповитаминозах С и Р содержание коллагена в тканях уменьшается, что в конечном итоге приводит к остепорозу.
Выделяют два пути распада коллагена - специфический и неспецифический. В первом случае коллаген разрушается коллагеназой на два фрагмента, которые в дальнейшем гидролизуются лизосомальными протеазами. Во втором - протеин денатурируется продуктами свободнорадикального окисления липидов, а затем подвергается действию протеаз. Продукты специфического распада коллагена стимулируют образование новых остео-, хондро-, фибробластов, то есть обусловливают регенерацию на клеточном уровне.
В костной ткани, разновидностью которой является цемент, содержится до 1% белков, регулирующих остеогенез. К ним относятся морфогены, митогены, факторы хемотаксиса и хемоаттракции.
Морфогены – это гликопротеиды, выделяющиеся из разрушающейся костной ткани и действующие на полипотентные клетки, вызывая в нужном направлении их дифференцировку. Важнейший из них – морфогенетический белок кости, состоящий из четырех субъединиц с общей молекулярной массой 75,5 кДа. Остеогенез под влиянием этого белка протекает по энхондальному типу, т.е. сначала образуется хрящ, а из него затем кость. Следует отметить, что этот протеин получен в чистом виде (США, 1983) и применяется при плохой регенерации кости. Выделен, но мало изучен фактор Тильманна (Мr=500-1000 Да), который быстро вызывает интрамембранозный остеогенез (без образования хряща), но в малом объеме. Так развивается кость нижней челюсти. Из дентина также получен морфогенетический фактор (белок), стимулирующий рост дентина. В эмали морфогенов не обнаружено.
Митогены – чаще всего гликофосфопротеиды – действуют на преддифференцированные клетки, сохранившие способность к делению, увеличивают их митотическую активность. В основе биохимического механизма действия лежит инициация репликации ДНК. Из кости выделено несколько таких факторов (костно-экстрагируемый фактор роста, фактор роста скелета). В дентине и эмали митогенов пока не обнаружено.
Факторы хемотаксиса и хемоаттракции – это гликопротеиды, определяющие движение и прикрепление новообразованных структур под действием морфо- и митогенов. Наиболее известны из них: фибронектин, остеонектин и остекальцин. За счет первого осуществляется взаимодействие между клетками и субстратами, этот белок способствует прикреплению ткани десны к челюсти. Остеонектин (кислый белок, богатый цистеином), являясь продуктом остеобластов, определяет миграцию преостеобластов и фиксацию апатитов на коллагене, то есть при его помощи происходит связывание минерального компонента с коллагеном. Остеокальцин – белок, маркирующий участки кости, которые должны подвергаться резорбции (распаду). Этот протеин содержит -карбоксиглутаминовую кислоту и является витамин-К-зависимым, он вырабатывается в старом участке кости, к которому прикрепляется остеокласт и происходит разрушение этого участка. Остеокальцин принадлежит к группе, так называемых, гла-белков, являющихся инициаторами минерализации и создающими ядра кристаллизации. В эмали аналогичные функции выполняют амелогенины.
Морфогены, митогены, факторы хемотаксиса и хемоаттракции выполняют важную биологическую функцию, объединяя процесс деструкции и новообразования ткани. Разрушаясь, клетки выделяют их в среду, где воздействуя на разные стадии дифференцировки, эти факторы вызывают образование новых тканей.
Обнаружены соединения, действие которых противоположно влиянию морфо- и митогенов, называющиеся кейлонами. Они прочно связываются с морфо-, митогенами и препятствуют регенерации кости. В связи с этим возникает важная проблема разработки приемов регуляции синтеза морфо-, митогенов, факторов хемотаксиса. Известно, что синтез морфогенов кости активируется активными формами витамина D – кальцитриолами и тирокальцитонином, а подавляется глюкокортикостероидами (ГКС) и половыми гормонами. Следовательно, применение ГКС уменьшает регенерационные возможности кости и способствует развитию остеопороза. Осложнения течения консолидации переломов возможно в тех случаях, когда уже больному проводили курс лечения ГКС или анаболическими стероидами. Кроме того, длительное использование последних может спровоцировать перелом, так как масса мышц будет сопровождаться уменьшением прочности скелета. Также необходимо отметить, что скорость и полнота замещения дефекта при костной пластике определяется количеством морфогенов в подсаженной ткани. Поэтому, чем старше возраст донора, тем меньше вероятность успешного замещения дефекта. Кость, взятая у молодых доноров, будет замещаться плохо, если им проводили лечение ГКС и анаболическими гормонами.
Цемент зуба: строение
Цемент зуба (cementum) – это высокоминерализованная ткань, напоминающая по своей структуре грубоволокнистую кость, которая тонким слоем покрывает корень зуба (вплоть до его шейки). Но в отличие от костной ткани – цемент корня не подвержен постоянной перестройке, он не имеет сосудов, а его трофика осуществляется посредством обычной диффузии питательных веществ, растворенных в основном аморфном веществе в составе периодонта.
Основная функция цемента заключается в формировании связочного аппарата зуба (периодонтального прикрепления), которое удерживает зуб в альвеоле, а также способствует перераспределению жевательного давления с зуба – на альвеолярную кость. Напомним, что периодонтальные волокна начинают расти одновременно – как со стороны корневого цемента, так и со стороны компактной пластинки альвеолы. Далее при помощи незрелого коллагена (проколлагена) в центре периодонтальной щели – концы этих волокон связываются вместе, формируются пучки волокон.
Цемент корня зуба: схема и фото
Слой цемента присутствует только на зубах человека, а также зубах других млекопитающих. В области шейки зуба толщина цемента меньше – от 20 до 50 мкм, в то время как в области верхушки корня – от 100 до 150 мкм. Думаю вам знакомо, что «вторичный дентин» на протяжении всей жизни продуцируется одонтобластами, и вот точно также в течение жизни происходит и постоянное образование цемента на поверхности корня. И поэтому, если вы доживете до пенсионного возраста, то цемент ваших зубов скорее всего успеет – как минимум утроить свою толщину (рис.3).
Цемент корня зуба: строение
Цемент по химическому составу и прочности близок к грубоволокнистой костной ткани. Неорганические компоненты в составе цемента составляют примерно 65% – в основном это фосфат кальция (в виде кристаллов гидроксиапатита или аморфных кальций-фосфатов) и карбонат кальция. Органические компоненты составляют около 23%, и они практически полностью представлены коллагеном; плюс около 12% воды.
Цемент подразделяют на 2 формы – на первичный (бесклеточный) и вторичный (клеточный). Слой первичного цемента выстилает дентин всей поверхности корня зуба, и в свою очередь уже поверх него будет располагаться слой вторичного цемента. Однако, этот так называемый вторичный «клеточный цемент» будет покрывать уже не всю поверхность корня, а только его апикальную треть + у многокорневых зубов еще и область бифуркации/ трифуркации корней (рис.4).
Слои цемента (электронная микроскопия) –
Клеточный и бесклеточный цемент (гистология) –
1) Первичный (бесклеточный) цемент –
Первичный цемент покрывает весь корень зуба. Он не содержит клеток, и состоит только из обызвествленного межклеточного вещества, в состав которого входят коллагеновые волокна и основное аморфное «склеивающее» вещество. Коллагеновые волокна этого слоя цемента отличаются равномерной минерализацией, и часть из них имеет продольное направление – по отношению к поверхности корня, а часть – перпендикулярное (радиальное) направление. Последние называют «шарпеевскими волокнами», и они имеют очень важное значение для фиксации зуба в альвеоле.
2) Вторичный (клеточный) цемент –
Вторичный цемент образуется после прорезывания зуба, и он покрывает уже не всю поверхность корня, а только апикальную его треть + область фуркаций многокорневых зубов. Он может располагаться либо поверх первичного цемента, либо напрямую прилежать к дентину корня. Вторичный цемент состоит преимущественно из клеток (цементоцитов и цементобластов), а также из межклеточного вещества, которое в свою очередь состоит – из основного аморфного вещества и хаотично направленных коллагеновых волокон.
- Цементоциты (рис.5-6) – лежат на поверхности цемента в особых лакунах (полостях) и по своему строению они очень похожи на цементоциты костной ткани. Цементоциты имеют длинные отростки, и там где клеточный цемент напрямую прилежит к поверхности дентина – отростки цементоцитов могут напрямую контактировать с дентинными трубочками. При образовании новых слоев цемента – цементоциты внутренних слоев постепенно гибнут, образуя в цементе пустые лакуны.
- Цементобласты – эти клетки являются «строителями цемента», т.е. обеспечивают отложение все новых его слоев. Отложение цемента цементобластами происходит в течение всей жизни человека, и поэтому толщина цемента в области верхушек корней – увеличивается к концу жизни в несколько раз.
Цементоциты в вторичном цементе (гистология) –
Рис.6 (обозначения), где 1 – цементоцит, 2 – дентинные трубочки, 3 – контакты отростков цементоцитов с дентинными трубочками.
3) Коллагеновые волокна –
Самой важной частью коллагеновых волокон цемента являются так называемые «шарпеевские волокна». Они являются терминальными участками волокон периодонтального прикрепления зуба со стороны цемента. На рис.7 вы можете увидеть гистологический препарат, на котором видно, что радиальные коллагеновые волокна периодонтальной щели и цемента корня зуба – являются «единым целым».
Соединение периодонта и цемента корня зуба –
Раньше считалось, что радиальные волокна периодонта (которые с одной стороны фиксируются к компактной пластинке альвеолы, а с другой – к цементу корня) – являются единым целым. Но современные исследования свидетельствуют, что это не совсем верно. Терминальные участки зубо-альвеолярных волокон периодонта начинают формироваться обособленно друг от друга: одна часть – со стороны цемента корня зуба, а другая часть – со стороны костной пластинки альвеолы.
Резюме :
Бесклеточный (первичный) | Клеточный (вторичный) | |
локализация | – прилежит к дентину, – покрывает корень. | – покрывает бесклеточный цемент в области апикальной трети корня и области фуркации многокорневых зубов. |
строение | – коллагеновые волокна (продольное и радиальное расположение), – аморфное вещество, – линии роста расположены близко друг к другу. | – цементоциты в лакунах (их отростки анастомозируют друг с другом), – коллагеновые волокна (хаотичное направление), – аморфное вещество, – линии роста расположены сравнительно далеко друг от друга. |
Цемент зуба: гистология
Ниже на видео 1 вы можете увидеть гистологию тканей зуба в потрясающем разрешении. На видео 2 лучшая лекция по гистологии цемента, которую вы можете услышать. Видео на английском языке, но при желании можно включить субтитры, и далее в настройках выбрать перевод с английского на русский.
Топография цемента в области шейки зуба –
Существует 3 варианта соединения цемента и эмали зуба. Оно может быть либо «стык в стык», либо цемент может немного заходить на эмаль, либо может присутствовать полоска обнаженного дентина (рис.8). Исследования показали, что эмаль и цемент граничат «стык в стык» – только в 30% случаев. При этом 60% зубов имеют наслоение цемента на край зубной эмали (рис.9), а полоска обнаженного дентина встречается в 10% случаев.
Варианты эмалево-цементной границы (схема и гистология) –
Рис.8, где 1 – эмаль, 2 – дентин, 3 – цемент, и варианты соединения эмали и цемента (I – цемент частично заходит на зубную эмаль; II – цемент стыкуется с эмалью, III – цемент не доходит до эмали зуба).
Функции цемента корня зуба –
1) Защитная функция –
содержание в цементе неорганических компонентов достигает 70%, что делает его прочным к механическим нагрузкам. Следовательно, одной из его функций будет защита дентина корня от повреждающего воздействия.
2) Участие в образовании периодонта –
формирование волокон периодонта происходит одновременно как со стороны цемента корня зуба, так и со стороны костной пластинки альвеолы. По мнению ряда авторов – в дальнейшем эти коллагеновые волокна сплетаются друг с другом посредством незрелого коллагена (проколлагена), превращая их в единое целое. Глубина погружения волокон периодонта в цемент корня зуба составляет от 3 до 5 μ.т.
3) Фиксирующая (удерживающая) –
цемент корня зуба вместе с компактной пластинкой альвеолы и волокнами периодонта – обеспечивает фиксацию зуба в альвеоле.
4) Компенсаторная функция –
при уменьшении длины зуба в результате физиологического стирания эмали – происходит усиленная выработка цемента в области верхушки корня зуба. В результате зуб как бы выталкивается из альвеолы в полость рта, и таким образом увеличивается размер клинической коронки зуба. Особенно это становится заметным у пациентов пожилого возраста.
5) Участие в репаративных процессах –
например, при устранении причины резорбции корня может произойти его частичное восстановление. Либо при наличии трещины корня зуба может произойти образование цемента между фрагментами, что может привести к устранению дефекта.
Причины дополнительного образования цемента –
При пародонтите и хроническом периодонтите, при стирании эмали на окклюзионных поверхностях, при повышении нагрузки на зуб, а также при отсутствии зуба-антагониста – происходит интенсивное отложение цемента в области апикальной трети корня (при этом формируется гиперцементоз, рис.3). Также к этому могут приводить и травмы корня зуба, а также ортодонтическое лечение.
Кроме того выделяют еще такое образование как «цементикль». Это не что иное, как состоящее из цемента образование округлой формы, расположенное в периодонте. Они возникают вследствие минерализации микрососудов в области островков эпителиальных клеток Маляссе.
Развитие цемента (цементогенез) –
Образование цемента происходит в два этапа. На 1 этапе происходит синтез органического матрикса (цементоида или первичного цемента). На 2 этапе происходит минерализация цементоида – с образованием вторичного цемента. Давайте рассмотрим, как все это происходит.
Сначала клетки зубного сосочка (в результате индуцирующего влияния эпителиального влагалища) – дифференцируются в одонтобласты корня, которые и образовывают дентин корня. Далее цементобласты зубного мешочка начинают продуцировать органический матрикс цемента (цементоид), а также коллагеновые волокна и основное аморфное вещество. В результате цементоид откладывается на поверхности дентина корня – в виде высокоминерализованного бесструктурного слоя «Хоупвелла-Смитта» (этот слой способствует прочному прикреплению цемента к дентину корня).
Далее первым образуется первичный цемент, не содержащий клеток. Он медленно откладывается по мере прорезывания зуба, покрывая 2/3 поверхности корня (ближе к коронковой части зуба). Далее происходит минерализация цементоида, которая связана с отложением фосфатов и карбоната кальция. Этот процесс идет волнами, и далее в апикальной трети корня и зоне фуркации – образуется клеточный, т.е. вторичный цемент. Надеемся, что наша статья оказалась Вам полезной!
Источники:
1. Высшее профессиональное образование автора в стоматологии,
2. The European Academy of Paediatric Dentistry (EU),
3. «Анатомия зубов человека» (Гайворонский, Петрова).
4. «Терапевтическая стоматология» (Политун, Смоляр),
5. «Гистология органов ротовой полости» (Глинкина В.В.).
Читайте также: