Первичный цемент состоит из
Цемент
Строение и функция цемента. Цемент (substantia ossea) покрывает в области корня внешнюю поверхность дентина. Цемент по своему строению приближается к костной ткани; подобно кости, он пропитан известковыми солями. По гистологическому строению различают два вида цемента: 1 ) не содержащий клеток, или первичный, и 2) содержащий клетки, или вторичный.
Бесклеточный (первичный) цемент покрывает тонким слоем всю поверхность корня от верхушечного отверстия до шейки зуба. У шейки бесклеточный слой цемента несколько перекрывает край эмали. Первичный цемент не содержит ни клеток, ни их отростков; он состоит из основного вещества. В состав основного вещества входят коллагенные волокна и расположенная между ними бесструктурная склеивающая субстанция. Коллагенные волокна располагаются в направлении параллельном и радиальном поверхности зуба. Радиальные волокна непосредственно продолжаются в волокна основного вещества корневой оболочки (периодонта) и далее под названием шарпеевы внедряются во внутреннюю компактную пластинку альвеолы. На внутренней стороне цемента радиальные волокна непосредственно сливаются с основными волокнами дентина (рис. 22).
Вторичный цемент по гистологическому строению напоминает грубоволокнистую кость. Он построен из основного вещества, содержащего коллагенные волокна и склеивающую субстанцию, и из цементных клеток, снабженных отростками, большая часть которых направлена к внешней поверхности цемента.
Часть коллагенных волокон вторичного цемента располагается радиально и продолжается в волокна основного вещества периодонта. В этом сказывается единый архитектурно-функциональный план тесно связанных друг с другом тканевых образований синцития — первичного цемента и дентина, вторичного цемента и периодонта.
В верхушечной трети корня встречается как первичный, так и вторичный цемент. Иногда в этой области отсутствует первичный (бесклеточный) цемент, и дентин непосредственно покрыт вторичным, содержащим клетки, цементом. В многокорневых зубах (молярах) на стороне корня, обращенной к межкорневой костной перегородке, особенно часто наблюдается преобладание вторичного цемента.
В отличие от кости, где постоянно происходит процесс перестройки, выражающийся в физиологическом рассасывании и отложении костного вещества, цемент не подвергается подобным преобразованиям. Слои вторичного цемента, в которых погибают диференцированные клетки, не рассасываются; они покрываются снаружи новыми слоями цемента, которые напластываются на лежащие глубже. В этом и состоит регенерация цемента, которая происходит не только в физиологических условиях, но и при патологических процессах. Примером может служить наблюдающееся избыточное отложение новых слоев цемента, именуемое гиперцементозом.
Регенерация цемента является одним из условий излечения периодонтита. Иногда гипертрофированный вторичный цемент срастается со стенкой альвеолы. При удалении корня с такого рода отложениями цемента происходит отлом стенки луночки.
Утолщенный цемент может быть иногда построен и по типу пластинчатой кости с гаверсовыми каналами и концентрически расположенными клетками.
Дентин зуба: строение
Дентин (dentinum) – это твердая ткань, составляющая основную массу зуба, коронковая часть которого покрыта снаружи зубной эмалью, а корневая часть – цементом. Внутри коронковой части дентина располагается полость зуба (пульповая камера), а внутри корневой части – корневые каналы. Эти полостные образования заполнены пульпой зуба, из внешних слоев которой в дентин проникают отростки одонтобластов и окончания безмиелиновых нервных волокон.
По своей структуре и свойствам дентин напоминает компактную грубоволокнистую костную ткань, но отличается от нее отсутствием сосудов и клеточных элементов, а также более высокой твердостью. Твёрдость дентина достигает 58,9 кгс/мм², что объясняется высоким содержанием неорганических компонентов – преимущественно фосфата кальция (в виде гидроксиапатита), а также фторида и карбоната кальция. Содержание неорганических компонентов в общей сложности достигает 70%, плюс еще 20% приходится на органические компоненты (представлены в основном коллагеном), плюс еще 10% приходится на воду.
Дентин зуба (схема, электронная микроскопия) –
В дентине выделяют несколько слоев – 1) предентин, 2) околопульпарный дентин, 3) плащевой дентин. Предентином называют очень тонкий внутренний слой маломинерализованного дентина, который непосредственно примыкает к поверхностному слою пульпы (одонтобластам). Далее идет слой околопульпарного дентина, и еще более поверхностно располагается плащевой дентин. Плащевой и околопульпарный дентин отличаются друг от друга в основном только строением органического матрикса, но об этом мы подробнее остановимся ниже.
Строение дентина зуба –
Дентин состоит из обызвествленного межклеточного вещества, которое пронизано так называемыми «дентинными канальцами» (дентинными трубочками), за счет которых обеспечивается трофика и минерализация дентина. Дентинные канальца идут радиально, в коронковой части зуба – по направлению от стенки пульповой камеры к эмалево-дентинной границе, а в корневой части зуба – от стенки корневого канала к поверхности корня зуба. Однако, если в корневой части зуба, а также в области окклюзионной поверхности коронки зуба – дентинные канальца имеют практически прямую форму, то в боковых отделах коронки они уже будут S-образно изогнуты.
Дентинные канальца (электронная микроскопия) –
Диаметр канальцев составляет от 0,5 до 4 мкм, причем они будут шире во внутренних отделах дентина и постепенно суживаются кнаружи (вроде уплощенного конуса). Внутри канальцев находятся отростки одонтобластов, безмиелиновые нервные волокна, а также циркулирует тканевая жидкость. Сами одонтобласты находятся за пределами дентина – их тела располагаются в поверхностном слое пульпы, а их отростки, проходя по всей длине дентинных канальцев, заканчиваются в области эмалево-дентинной границы (рис.8).
От дентинных канальцев в перпендикулярном направлении отходят боковые каналы. Особенно много их отходит в предентине и внутренних слоях околопульпарного дентина (в 100–200 мкм от границы с пульпой). Их достаточно мало в средних отделах дентина и вновь становится много на периферии – в области плащевого дентина. В боковых каналах находятся боковые ответвления отростков одонтобластов, которые анастамозируют между собой. Напомним, что именно одонтобласты участвуют в образовании органического матрикса дентина и дальнейшей его минерализации.
Одонтобласты, предентин и дентинные канальцы (гистология) –
Обратите внимание, что на гистологическом препарате (рис.6) – предентин выглядит как светлая полоса, переходящая в зону со сферическими образованиями более темного цвета (глобулами). Слой предентина обладает минимальной минерализацией, и состоит в основном из органического матрикса – переплетенных коллагеновых фибрилл (рис.7). Сферические образования на границе предентина и околопульпарного дентина – это не что иное как «калькосфериты», являющиеся очагами минерализации. Маломинерализованный дентин, располагающийся вокруг таких глобул, носит название «интерглобулярного».
В дальнейшем глобулы сливаются, образуя однородный высокоминерализованный дентин. Также стоит обратить внимание, что при приближении дентинных канальцев к эмалево-дентинной границе или слою цемента – их концы образуют крупные терминальные ответвления (похожие на ветви дерева). Ряд терминальных отрезков дентинных канальцев проникает даже сквозь эмалево-дентинную границу, формируя так называемые «эмалевые веретена». По мнению большинства авторов эти образования участвуют в минерализации глубоких слоев эмали.
Архитектоника дентинных канальцев –
Плотность расположения канальцев отличается в разных слоях дентина. Плотнее всего одни расположены в околопульпарном дентине, где на 1 мм 2 дентина их приходится от 50 000 до 75 000. На 1 мм 2 плащевого слоя дентина их будет приходиться только – от 15 000 до 30 000. Но обратим ваше внимание, что в данном случае уменьшается не количество канальцев как таковых, а именно плотность их расположения в поверхностных слоях дентина (в связи с радиальным их направлением и при одновременном увеличении площади внешних слоев).
1. Строение дентинных трубочек –
Дентинные канальца проходят в так называемых дентинных трубочках. Стенка каждой дентинной трубочки образована так называемым «перитубулярным дентином», который отличается очень высокой степенью минерализации и отсутствием коллагеновых волокон. Между дентинными трубочками располагается так называемый «интертубулярный дентин», который отличается меньшей степенью минерализации и большим количеством коллагеновых волокон (фибрилл). Дентинные трубочки полые внутри, и поэтому их часто и называют дентинными канальцами.
Изнутри каждая трубочка изнутри покрыта тонким слоем органического вещества – этот слой содержит высокую концентрацию гликозаминогликанов и его обычно называют мембраной Неймана. По центру дентинных канальцев располагаются отростки одонтобластов (волокна Томса). Пространство между отростком одонтобласта и стенкой дентинной трубочки заполнено дентинной жидкостью, которая схожа по составу с плазмой крови. Помимо отростков одонтобластов и тканевой жидкости в них также расположены и безмиелиновые нервные волокна (однако их можно встретить только в околопульпарном дентине).
Схема строения дентина –
Перитубулярный и интертубулярный дентин –
Как мы уже сказали выше – перитубулярный дентин обладает значительно более высокой минерализацией. К примеру, содержание гидроксиапатита в нем будет на 40% больше, чем в интертубулярном, а вот органические компоненты в нем практически отсутствуют. Это приводит к тому, что при возникновении среднего кариеса перитубулярный дентин будет разрушаться значительно быстрее интертубулярного. И как следствие – происходящие процессы деминерализации будут приводить к расширению дентинных канальцев и увеличению проницаемости дентина в том числе и для патогенных бактерий.
В свою очередь интертубулярный дентин содержит много органических компонентов, например, обызвествленных коллагеновых фибрилл диаметром около 75 нм (при этом кристаллы гидроксиапатита располагаются вдоль оси фибрилл). Коллагеновые фибриллы образуют так называемый «каркас», который служит основой для отложения минеральных солей. Ниже вы сможете увидеть как выглядит коллагеновый каркас дентина на снимках электронной микроскопии, которые сделаны после его принудительной деминерализации.
2. Органический матрикс дентина –
Органический матрикс дентина располагается между дентинными трубочками (в интертубулярном дентине). Он состоит из коллагеновых фибрилл и расположенного между ними аморфного вещества. Интересным является то, что направление коллагеновых фибрилл и их структура – будут отличаться в плащевом и околопульпарном слоях дентина. Это связано с тем, что в ходе первичного дентиногенеза сначала вырабатывается органический матрикс именно плащевого дентина, и только уже потом – матрикс околопульпарного дентина.
В плащевом дентине будут преобладать волокна, идущие в радиальном направлении, параллельно ходу канальцев («волокна Корфа»). Но особенностью волокон Корфа является не только их направленность, но и то, что они будут состоять из достаточно толстых фибрилл, объединенных в конусовидно-суживающиеся пучки. Причем стоить уточнить, что радиально-параллельное направление волокон Корфа больше характерно для той части плащевого дентина, которая ближе всего к окклюзионной поверхности коронки зуба. А на боковых поверхностях коронки и в области корня – волокна Корфа приобретают все более косое направление.
Как мы уже сказали выше – матрикс околопульпарного дентина образуется позже, чем плащевого. Одонтобласты в этот период синтезируют намного более тонкие фибриллы, которые переплетаются друг с другом (см.рис.ниже). Эти волокна будут располагаться тангенциально, т.е. они отходят от дентинных канальцев почти под прямым углом (их называют «волокна Эбнера»). Но коллагеновые волокна не являются единственным компонентом органического матрикса дентина, и нельзя забывать про окружающее их аморфное вещество.
Коллагеновые фибриллы в околопульпарном дентине –
Аморфное вещество –
Коллагеновые волокна со всех сторон окружает основное аморфное вещество, которое состоит преимущественно из гликозаминогликанов (хондроитинсульфатов). Помимо них в состав органического матрикса входят большое количество неколлагеновых протеинов (их доля составляет около 20% от органического матрикса дентина). Аморфное вещество также содержит и протеогликаны, которые образуются в результате соединения хондроитинсульфатов и неколлагеновых протеинов.
Неколлагеновые протеины играют важную роль в процессах минерализации дентина. Ниже мы перечислили основные их разновидности –
- кальций-связывающие протеины,
- костные морфогенетические протеины (BMP),
- гликопротеины (фибронектин, остеонектин),
- кальциевая АТФаза и алкалиновая фосфатаза,
- коллагеназы и коллагенусваивающие энзимы, необходимые для перестройки органического матрикса.
В органической основе дентина идентифицированы также липиды (гликолипиды и фосфолипиды), вероятно, участвующие в минерализации матрикса.
Нервные волокна –
Безмиелиновые нервные волокна проникают в дентин из периферических отделов пульпы, причем их можно выявить только в предентине (они проникают в него на глубину нескольких микрометров, и лишь редкие волокна – на глубину от 100 до 200 мкм). Кроме того нервные волокна обнаруживаются не во всех, а только в некоторых дентинных канальцах. В более периферических слоях дентина нервные окончания вообще отсутствуют, а в формировании болевых импульсов главную роль в данном случае играет дентинная жидкость (изменение гидродинамических условий).
3. Особенности неорганического матрикса –
Для дентина характерна особая форма отложения кристаллов минеральных солей. Если, например, в основном веществе костной ткани отложение минеральных солей происходит равномерно (в виде мельчайших кристалликов), то в дентине процесс минерализации протекает в несколько этапов. На первом этапе происходит формирование кристаллических структур шаровидной формы (в виде «глобул» – калькосферитов), между которыми по-прежнему сохраняются участки с необызвествленным или мало обызвествленным основным веществом – интерглобулярным дентином.
Глобулярный и интерглобулярный дентин (гистология) –
Глобулярный и интерглобулярный дентин лучше всего видны на границе околопульпарного дентина и предентина (в коронковой части зуба), т.к. именно в этой зоне активно протекает минерализация вторично-образованного дентина. Кроме того, именно в этой зоне можно обнаружить самые крупные калькосфериты. Постепенно глобулы увеличиваются в размерах и сливаются, образуя однородный высоко минерализованный дентин.
Что такое линии Оуэна и линии Эбнера –
Первичный (физиологический) дентин образуется в период формирования и прорезывания зуба. Его продуцируют одонтобласты со скоростью примерно 4-8 мкм/сутки, причем в деятельности одонтобластов есть периоды активности и покоя. Такая периодическая смена активности одонтобластов приводит к наличию в дентине так называемых ростовых и контурных линий.
Контурные линии Оуэна – отражают суточный ритм отложения дентина одонтобластами. Они расположены под прямым углом к дентинным трубочкам и соответствуют «периодам покоя» в деятельности одонтобластов. В эти периоды будет происходить намного менее интенсивная минерализация дентина – с образованием очень мелких интерглобулярных пространств. Число линий Оуэна может увеличиваться при патологических состояниях организма, которые влияют на процессы минерализации твердых тканей зубов.
Ростовые линии Эбнера – соответствуют более медленному 5-ти суточному циклу формирования органического матрикса дентина одонтобластами, т.е. периодам меньшей минерализации основного вещества дентина.
Мертвые пути в дентине –
Также в дентине могут обнаруживаться так называемые мертвые пути (на шлифах зубов), которые возникают при гибели части одонтобластов. Некоторые авторы говорят о том, что только обнажение 1 мм площади детина – приводит к гибели до 30 000 одонтобластов. При этом, содержащие в дентинных канальцах отростки подвергаются распаду, соответственно, полости дентинных канальцев будут заполнены продуктами распада и газообразными веществами.
Благодаря наличию газов такие дентинные канальцы (мертвые пути) и выглядят черными на шлифах зубов. Кстати, термин «мертвые пути» ввел в обращение Е.Fish. Также стоит отметить, что чувствительность дентина в таких участках снижена, а со стороны пульпы зуба в этих участках будет отмечаться усиленная выработка третичного дентина.
Вторичный и третичный дентин –
Вторичный дентин отлагается (со стороны пульповой камеры) в течение всей жизни индивида, что приводит к постепенному сокращению объема пульповой камеры. Вторичный дентин как и первичный – продуцируется одонтобластами. Вторичный дентин отличается от первичного (образующегося во время формирования и прорезывания зубов) – менее правильной структурой, что выражается в изменении направления и количества дентинных канальцев и коллагеновых волокон, а также более низкой степенью минерализации. Уменьшается и сам размер дентинных канальцев.
Отложения вторичного дентина более активно происходят в области крыши пульповой камеры, а также в ее боковых стенках. Кроме того, вторичный дентин активно откладывается в области дна пульповой камеры (в многокорневых зубах). В связи со всем этим постепенно изменяется и форма пульповой камеры – рога пульпы уплощаются, сокращается ее объем. Интересным фактом является то, что у мужчин интенсивность отложения вторичного дентина выше. Кроме того отмечают, что с возрастом интенсивность отложения вторичного дентина уменьшается.
Еще один вид дентина – это так называемый «третичный дентин» (dentinum tertiarium), который также называют репаративным или иррегулярным. В отличие от вторичного дентина, который достаточно равномерно вырабатывается с внутренней поверхности пульповой камеры – образование третичного дентина происходит локально. К локальному образованию дентина приводит влияние на зуб сильных раздражающих факторов, например, это происходит при разрушении или повышенной стираемости эмали, обнажении дентина.
При медленно развивающемся кариесе выработка третичного дентина позволяет в течение какого-то времени – препятствовать проникновению в пульпу патогенных бактерий и их токсинов. Таким образом третичный дентин выполняет защитную функцию. Еще стоит отметить, что третичный дентин также отличается неправильным направлением дентинных канальцев, либо они могут вообще отсутствовать.
Дентин зуба: гистология
Ниже вы можете можете увидеть гистологию тканей зуба в потрясающем разрешении, а также отличную лекцию по морфологии дентина на английском языке (при желании можно включить субтитры и в настройках выбрать перевод с английского на русский).
Возрастные изменения дентина –
Выше мы уже говорили, что с возрастом происходит отложение вторичного и третичного дентина, что также приводит к уменьшению размера пульпы. Но в зубах пожилых людей часто можно заметить участки дентина, в которых минеральные соли откладываются уже не только в основном веществе, но и внутри самих дентинных канальцев (происходит это на фоне процессов дегенерации отростков одонтобластов). В результате происходит полная облитерация просвета канальцев, т.е. их физиологический склероз.
Облитерация просвета канальцев приводит к снижению чувствительности зуба. Кроме того, показатели преломления света у канальцев и у основного вещества – в этом случае выравниваются, и поэтому такие участки дентина выглядят прозрачными. Соответственно, такой дентин очень часто называют «прозрачным» или «склеротическим». Образование прозрачного дентина чаще всего происходит сначала в апикальной части корня, а потом медленно распространяется в направлении коронковой части зуба. Надеемся, что наша статья оказалась Вам полезной!
Источники:
1. Высшее профессиональное образование автора в стоматологии,
2. The European Academy of Paediatric Dentistry (EU),
3. «Анатомия зубов человека» (Гайворонский, Петрова).
4. «Терапевтическая стоматология» (Политун, Смоляр),
5. «Гистология органов ротовой полости» (Глинкина В.В.).
Цемент корня зуба: строение и функции
В рамках данной статьи автор рассматривает общее понятие цемента корня зуба. Также приводится подробное строение цемента корня и его основные функции. Рассматриваются гистологические препараты.
Ключевые слова: цемент зуба, стоматология, гистологические препараты, строение зуба.
Within the framework of this article, the author considers the general concept of tooth root cement. The detailed structure of the root cement and its main functions are also given. Histological preparations are considered.
Keywords: tooth cement, dentistry, histological preparations, tooth structure.
Зубной цемент представляет собой высокоминерализованную ткань, по структуре напоминающую грубоволокнистую кость, которая покрывает тонкий слой от корня зуба (до его шейки). Но в отличие от костной ткани цемент корня не подвергается постоянной перестройке, в нем нет кровеносных сосудов, а его трофика осуществляется за счет обычной диффузии питательных веществ, растворенных в основном аморфном веществе структуры пародонта. [1]
Основная функция цемента — формирование связочного аппарата зуба (пародонтального прикрепления), который удерживает зуб в лунке, а также помогает перераспределять жевательное давление от зуба к альвеолярной кости. Напомним, волокна пародонта начинают развиваться одновременно — как со стороны корневого цемента, так и со стороны компактной пластинки альвеол. Кроме того, с помощью незрелого коллагена (проколлагена) в центре периодонтальной щели концы этих волокон связываются вместе и образуются пучки волокон. [2, c. 43]
Рис. 1. Строение цемента зуба
Цементный слой присутствует только в зубах человека, а также в зубах других млекопитающих. В области шейки зуба толщина цемента меньше — от 20 до 50 мкм, а в области верхушки корня — от 100 до 150 мкм. Думаю, вы знакомы с тем фактом, что «вторичный дентин» вырабатывается одонтобластами на протяжении всей жизни, и точно так же на протяжении всей жизни происходит постоянное накопление цемента на поверхности корня. Итак, если вы доживете до пенсионного возраста, то цемент в ваших зубах, вероятно, успеет — как минимум втрое больше их толщины (рис. 1).
По химическому составу и прочности цемент близок к грубоволокнистой костной ткани. Неорганические компоненты в составе цемента составляют около 65 % — в основном фосфат кальция (в виде кристаллов гидроксиапатита или аморфных фосфатов кальция) и карбонат кальция. Органические компоненты составляют около 23 % и почти полностью состоят из коллагена; плюс около 12 % воды. [4, c. 31]
Цемент делится на 2 формы — первичный (бесклеточный) и вторичный (клеточный). Слой первичного цемента покрывает дентин всей поверхности корня зуба, а слой вторичного цемента, в свою очередь, будет располагаться сверху. Однако этот так называемый вторичный «клеточный цемент» больше не будет покрывать всю поверхность корня, а только его апикальную треть + в многокорневых зубах также зону бифуркации / трифуркации корней (рис. 2).
Рис. 2. Слои цемента (электронная микроскопия)
1) Первичный цемент (бесклеточный) — Первичный цемент покрывает весь корень зуба. Он не содержит клеток и состоит только из кальцинированного межклеточного вещества, в состав которого входят коллагеновые волокна и основное аморфное «клеевое» вещество. Коллагеновые волокна этого цементного слоя отличаются равномерной минерализацией, причем некоторые из них имеют продольное направление по отношению к поверхности корня, а некоторые — перпендикулярное (радиальное) направление. Их называют «волокнами Шарпея», и они очень важны для фиксации зуба в лунке. [5, c. 11]
2) Вторичный цемент (клеточный) — Вторичный цемент образуется после прорезывания зуба, и он покрывает не всю поверхность корня, а только его апикальную треть + область расщепления многокорневых зубов. Его можно разместить либо на первичном цементе, либо непосредственно рядом с корневым дентином. Вторичный цемент состоит в основном из клеток, а также из межклеточного вещества, которое, в свою очередь, состоит из основного аморфного вещества и хаотично направленных коллагеновых волокон.
Цементоциты (рис.3) — лежат на поверхности цемента в специальных лакунах (полостях) и по своей структуре очень похожи на цементоциты костной ткани. Цементоциты имеют длинные отростки, и там, где клеточный цемент непосредственно прилипает к поверхности дентина, отростки цементоцитов могут непосредственно контактировать с дентиновыми трубками. Когда образуются новые слои цемента, цементные ячейки внутренних слоев постепенно отмирают, образуя пустые промежутки в цементе.
Цементобласты — эти клетки являются «строителями цемента», т. е. они обеспечивают отложение новых его слоев. Отложение цемента взрывами цемента происходит на протяжении всей жизни человека, и поэтому толщина цемента в области верхушек корней увеличивается в несколько раз к концу жизни [3, c. 65]
Рис. 3. Цементоциты в вторичном цементе (гистология): 1 — цементоцит, 2 — дентинные трубочки, 3 — контакты отростков цементоцитов с дентинными трубочками
3) Коллагеновые волокна — наиболее важной частью коллагеновых волокон цемента являются так называемые «волокна Шарпеева». Они представляют собой концевые участки волокон периодонтального крепления зуба со стороны цемента. На рис. 4 вы можете увидеть гистологический препарат, который показывает, что радиальные коллагеновые волокна периодонтальной трещины и цемент корня зуба являются «одним целым».
Рис. 4. Соединение периодонта и цемента корня зуба
Ранее считалось, что радиальные волокна периодонта (которые прикреплены к компактной пластинке альвеол с одной стороны, и к корневому цементу с другой) представляют собой единое целое. Но современные исследования показывают, что это не совсем так. Концевые участки периодонтальных зубо-альвеолярных волокон начинают формироваться отдельно друг от друга: одна часть — со стороны цемента корня зуба, а другая часть — со стороны костной пластинки альвеол. [2, c. 10]
И когда обе части волокон достигают середины периодонтальной расщелины — они соединяются с помощью незрелых коллагеновых волокон (проколлагеновых волокон) в единую сеть. Сплетение незрелых коллагеновых волокон в центре периодонтальной расщелины называется «сплетением Зихера»
Топография цемента в области шейки зуба — Существует 3 варианта соединения цемента и зубной эмали. Это может быть либо «стык к стыку», либо цемент может слегка проникнуть в эмаль, либо может быть полоска обнаженного дентина (рис.5). Исследования показали, что эмаль и цемент граничат «стык в стык» — только в 30 % случаев. В то же время 60 % зубов имеют слой цемента по краю зубной эмали (рис.6), а полоска обнаженного дентина встречается в 10 % случаев.
Рис. 5. Варианты эмалево-цементной границы (схема): 1 — эмаль, 2 — дентин, 3 — цемент, и варианты соединения эмали и цемента (I — цемент частично заходит на зубную эмаль; II — цемент стыкуется с эмалью, III — цемент не доходит до эмали зуба)
Рис. 6. Варианты эмалево-цементной границы (гистология)
Функции цемента корня зуба:
1) Защитная функция — содержание неорганических компонентов в цементе достигает 70 %, что делает его долговечным к механическим нагрузкам. Поэтому одной из его функций будет защита корневого дентина от повреждающего воздействия. [4, c. 89]
2) Участие в формировании периодонта — образование периодонтальных волокон происходит одновременно как со стороны цемента корня зуба, так и со стороны костной пластинки альвеол. По мнению ряда авторов, в дальнейшем эти коллагеновые волокна переплетаются друг с другом через незрелый коллаген (проколлаген), превращая их в единое целое. Глубина погружения периодонтальных волокон в цемент корня зуба составляет от 3 до 5 мктл.
3) Фиксация (удержание) — цемент корня зуба вместе с компактной пластиной альвеол и периодонтальными волокнами — обеспечивает фиксацию зуба в альвеолах.
4) Компенсаторная функция — когда длина зуба уменьшается в результате физиологического стирания эмали, наблюдается повышенная выработка цемента в области кончика корня зуба. В результате зуб выталкивается из альвеол в полость рта, и таким образом увеличивается размер клинической коронки зуба. Это особенно заметно у пожилых пациентов.
5) Участие в репаративных процессах — например, при устранении причины резорбции корня может произойти его частичное восстановление. Или, если в корне зуба есть трещина, может произойти образование цемента между отломками, что может привести к устранению дефекта.
Причины дополнительного образования цемента — при периодонтите и хроническом периодонтите, при стирании эмали на окклюзионных поверхностях, при увеличении нагрузки на зуб, а также при отсутствии зуба-антагониста-наблюдается интенсивное отложение цемента в апикальной трети корня. Также к этому могут привести травмы корня зуба, а также ортодонтическое лечение. [3, c. 58]
Кроме того, существует также такое образование, как «цементит». Это не что иное, как округлое образование, состоящее из цемента, расположенного в периодонте. Они возникают из-за минерализации микрососудов в области островков эпителиальных клеток Малассе.
Развитие цемента (цементогенез) — Образование цемента происходит в два этапа. На 1-м этапе происходит синтез органической матрицы (цементоида или первичного цемента). На 2-й стадии происходит минерализация цементоида с образованием вторичного цемента. Давайте посмотрим, как все это происходит.
Во-первых, клетки зубного сосочка (в результате индуцирующего эффекта эпителиального влагалища) дифференцируются в корневые одонтобласты, которые образуют корневой дентин. Далее цементобласты зубного мешка начинают вырабатывать органическую цементную матрицу (цементоид), а также коллагеновые волокна и основное аморфное вещество. В результате цементоид осаждается на поверхности корневого дентина — в виде высокоминерализованного бесструктурного слоя Хоупвелла-Смита (этот слой способствует прочному прикреплению цемента к корневому дентину) [5, c. 99].
Далее образуется первый первичный цемент, который не содержит клеток. Он медленно откладывается по мере прорезывания зуба, покрывая 2/3 поверхности корня (ближе к коронковой части зуба). Далее происходит минерализация цементоида, которая связана с отложением фосфатов и карбоната кальция. Этот процесс протекает волнообразно, а затем в апикальной трети корня и зоне фуркации образуется ячеистый, т. е. вторичный цемент.
Первичный цемент состоит из
Цемент тонким слоем покрывает корень зуба и соединяется с эмалью вблизи шейки зуба. Имеются разные варианты расположения эмалево-цементного соединения. Цемент может располагаться точно у окончания эмали, наслаиваться на нее или не доходить до эмали. В последнем случае остается узкая полоска незащищенного дентина. Такие области очень чувствительны к термическим, химическим и механическим раздражителям. Расположение цементо-эмалевой границы может отличаться в разных зубах одного индивидуума и даже на различных поверхностях одного зуба.
Гистологически различают два типа цемента: клеточный (вторичный) цемент и бесклеточный (первичный). Клеточный цемент по составу и строению напоминает грубоволокнистую кость, содержит цементоциты. Обычно он расположен в верхушечной части корня и в области бифуркации корней. Бесклеточный цемент покрывает оставшуюся часть корня. Он не содержит цементоцитов и состоит из коллагеновых волокон и аморфного склеивающего вещества.
В течение жизни постоянно происходит отложение цемента. При некоторых заболеваниях, например периодонтите, а также при повышении нагрузки на зуб отмечается интенсивное отложение цемента, при этом формируется гиперцементоз.
При резорбции корня цемент способен к регенерации, новый цемент может замещать погибшие ткани корня и вызывать восстановление функции. Эта же ситуация может возникать и в случае фрактуры корня.
Пульпа зуба
Пульпа представляет собой мягкую ткань зуба, которая заполняет полость коронки и корневые каналы. Очертания коронковой пульпы до некоторой степени повторяют рельеф коронки зуба. Так, на жевательной поверхности коронки соответственно расположению жевательных бугров пульпа образует выступы, которые носят название рогов пульпы. Через верхушечные отверстия каналов корня пульпа сообщается с периапикальной областью.
Пульпа развивается из мезенхимального зубного сосочка параллельно с формированием коронки и корня зуба. Дифференцировка тканей пульпы завершается к моменту полного прорезывания зуба.
Сформированная пульпа состоит из рыхлой соединительной ткани своеобразного строения, богатой клетками и межклеточным веществом, а также сосудами и нервами. Своеобразие ее заключается в том, что наряду с клеточными элементами в пульпе имеется большое количество студенистого межклеточного вещества, придающего ей довольно плотную консистенцию. В этом гомогенном студенистом веществе заложены клетки и волокнистые структуры пульпы. Последние представлены коллагеновыми и ретикулярными волокнами. Эластические волокна в ткани пульпы не обнаружены. Коллагеновые волокна пульпы имеют обычное строение. В коронковой пульпе они располагаются рыхло в виде отдельных волокон, не образуя пучков, что характерно для обычной соединительной ткани.
Пульпа, заполняющая корневые каналы зуба, существенно отличается по своей структуре от коронковой пульпы. В ней большее количество и более плотное расположение коллагеновых волокон, которые собираются в пучки. По структуре корневая пульпа несколько напоминает ткань периодонта, с которым она сообщается через верхушечное отверстие корня.
Клеточные элементы пульпы весьма разнообразны в разных ее отделах. В самом наружном отделе, который прилегает к дентину, располагается в один или несколько слоев слой вытянутых клеток с темной, базо-фильной цитоплазмой — одонтобласты. Отростки этих клеток в виде так называемых волокон Томса проникают в дентинные каяальцы.
Промежуточный, или субодонтобластический, слой состоит из большого количества звездчатых клеток. Длинные и тонкие отростки этих клеток многократно ветвятся и переплетаются между собой.
В центральных отделах пульпы содержатся отростчатые клетки типа фибробластов. Они имеют звездчатую или веретенообразную форму, но лежат здесь более рыхло, чем клетки субодонтобластического слоя.
Кроме фибробластов, в центральных отделах пульпы имеется небольшое количество макрофагов, играющих важную защитную роль при воспалительных процессах.
Кровоснабжение пульпы. Пульпа зуба имеет чрезвычайно обильное кровоснабжение. Артерия проникает в пульпу через апикальное отверстие корня в сопровождении 1—2 вен. Помимо основных артериальных стволов, попадающих в пульпу через верхушку корня, сюда проникают сосуды через боковые ответвления корневого канала. Между ветвями артерий, проникающих в пульпу из разных корневых каналов, имеются анастомозы.
Иннервация пульпы. Нервные волокна проникают в пульпу через апикальное отверстие вместе с кровеносными сосудами, образуя сосудисто-нервный пучок. Обычно нервное волокно сначала делится на несколько относительно крупных ветвей, каждая из которых затем распадается на ряд тонких терминальных веточек, проникающих в слой одонтобластов. Одни из них заканчиваются на телах одонтобластов, другие проникают в предентин.
Первичный цемент состоит из
В составе зуба различают коронковую, шеечную и корневую части. Коронка выступает над десной, а шейка и корень погружены в ткани зубной альвеолы. Внутри зуба находится полость, заполненная пульпой. Коронку зуба образуют эмаль, дентин и пульпа. Эмаль — производное дифферона энамелобластов. Структурными элементами эмали являются эмалевые призмы диаметром 3-5 мкм. Они имеют S-образно изогнутый ход. В состав призмы входят органические вещества в виде субмикроскопической фибриллярной сети (филаментов промежуточного типа), углеводы, кристаллы минеральных солей (фосфат кальция в форме гидроксиапатита, фторид кальция). Доля последних равна 96-97% массы эмали. Эмалевые призмы объединяются с помощью менее обызвествленного межпризменного вещества и покрывают коронку зуба в виде эмали.
По твердости эмаль близка к кварцу. Снаружи эмаль покрыта тонкой кутикулой, которая постепенно стирается при приеме пищи. Несмотря на то, что эмаль это неклеточная структура, которая не содержит кровеносные сосуды, для нее характерен обмен веществ. Транспорт веществ в эмаль осуществляется эмалевой жидкостью через межпризменные необызвествленные пространства. При недостатке питательных веществ и витаминов эмаль разрушается.
Дентин — ведущая ткань зуба, состоит из коллагеновых фибрилл и склеивающего их вещества с большим количеством солей кальция. В дентине минеральные соли составляют 72%, а органические вещества — 28%. Вещество дентина пронизано дентинными канальцами, или трубочками.
В них проходят длинные отростки одонтобластов, расположенных в периферическом слое пульпы зуба. В дентинных канальцах проходят также безмякотные нервные волокна. За счет этих канальцев осуществляются трофические процессы. В обмене веществ дентина большое значение имеют так называемые интерглобулярные пространства — необызвествленные участки в виде шарообразных полостей. Благодаря таким участкам граница между дентином и эмалью становится неровной, фестончатой, что обеспечивает прочное соединение двух тканей. Между одонтобластами, располагающимися в периферических участках пульпы, и дентином находится полоса необызвествленного матрикса, называемая предентином. За счет последующего отложения солей в предентине происходит аппозиционный рост дентина и рост зуба.
Цемент — своеобразная костная ткань, покрывающая шейку и корень зуба. В нем содержится 30% органических и 70% неорганических веществ. Различают две разновидности цемента: бесклеточный и клеточный. Бесклеточный цемент состоит из аморфного вещества и коллагеновых волокон, которые переходят в териодонт и далее в костную ткань альвеол челюстей, прочно закрепляя зуб в его ячейке. Клеточный цемент содержит цементоциты и по строению соответствует грубоволокнистой костной ткани. В составе цемента нет кровеносных сосудов, поэтому трофические процессы в нем обеспечиваются за счет кровоснабжения териодонта путем диффузии.
Пульпа зуба (зубная мякоть) располагается в полости зуба и в корневых каналах. Корневые каналы свободно открываются в зубную альвеолу. Пульпа зуба образована рыхлой волокнистой соединительной тканью. Периферическое положение в пульпе занимают одонтобласты. В промежуточном и центральном слоях пульпы зуба находятся адвентициальные клетки, фибробласты, макрофаги, аргирофильные и коллагеновые волокна. В пульпе зуба разветвляются многочисленные кровеносные сосуды, а также нервные волокна с чувствительными нервными окончаниями.
С возрастом уменьшается содержание органических веществ в эмали, дентине и цементе зуба, а в связи с нарастающими склеротическими изменениями сосудов пульпы ухудшаются кровоснабжение и трофика всех его частей.
Репаративная регенерация зуба возможна лишь в ограниченных пределах.
Эмаль после повреждения не восстанавливается. Дентин образуется медленно и в очень небольшом количестве за счет дифференцировки одонтобластов. Цемент зуба регенерирует слабо.
Читайте также: