Переработка сталеплавильных шлаков с получением цементного клинкера и чугуна
ПЕРЕРАБОТКА И УТИЛИЗАЦИЯ ШЛАКОВ
Шлакопереработка и утилизация металлургических шлаков получили в мире широкое распространение. На современных металлургических заводах не только утилизируются все образующиеся шлаки, но и постепенно разрабатываются и старые шлаковые отвалы. В шлаковых отвалах на заводах нашей страны еще хранятся сотни миллионов тонн шлака, отвалы занимают значительные площади. Переработка и использование шлаков (и уловленной плавильной пыли) в настоящее время представляют собой самостоятельную подотрасль металлургического производства.
Практикой доказана ценность доменного шлака как сырья. В настоящее время на всех металлургических предприятиях организована переработка шлаков в полезную продукцию: гранулированный шлак (граншлак), щебень, пемзу, минеральную вату, литье, брусчатку и другие изделия, высокоглиноземистый щебень.
Наибольшее распространение получила переработка доменного шлака в гранулированный ', на производство которого расходуют около 50 % всей массы доменного шлака.
Из всех существующих способов грануляции в металлургии используют в основном три.
1. Мокрое гранулирование — на текущую струю расплавленного шлака подают струю воды, и обе струи падают в бассейн с водой. В результате расплавленное вещество (в нашем случае шлак) разбрызгивается и эти брызги затвердевают в воде в виде мелких зерен или гранул.
2. Полусухое гранулирование — расплавленное вещество, смешанное со струей воды, подают на вращающийся барабан с лопастями, с которых оно отбрасывается в виде капель. При падении в воздухе эти капли затвердевают.
3. Сухое гранулирование — расплавленное вещество гранулируют под воздействием сжатого воздуха, азота или водяного пара.
Доменные граншлаки используют: для частичной замены природного песка в составе бетонов; как активную минеральную добавку при производстве шлакопортландцемента; как сырьевой компонент при производстве цементного клинкера; для производства шлакоблоков (товары народного потребления) и др.
1 От лат. granulum — зернышко.
Шлаковый щебень — второй по объему продукт переработки доменных шлаков. Щебень из доменного шлака является эффективным заполнителем для бетона; он улучшает некоторые технологические характеристики бетонной смеси. Используемый для строительства и ремонта автомобильных дорог шлаковый щебень по своим свойствам не уступает щебням твердых пород, иногда он их превосходит.
Шлаковую пемзу используют для изготовления легких бетонов. Бетон на этом заполнителе характеризуется более высокой плотностью и меньшей теплопроводностью по сравнению с равнопрочным легким бетоном.
Одними из эффективных теплоизоляционных материалов являются минеральная вата и изделия на ее основе. Главным сырьевым компонентом ми-нераловатной промышленности являются кислые доменные шлаки, богатые кремнеземом и глиноземом.
В доменных цехах во время выпуска с жидким шлаком увлекается некоторое количество чугуна в виде капель. Во время транспортировки шла-ковозного ковша капли чугуна оседают на дно. В отдельных случаях в ковшовых остатках доменных шлаков содержание металла достигает 5-7 %.
Из жидких доменных шлаков получают также различные литые шлаковые материалы и изделия: дорожную брусчатку, базальтовые трубы и др.
25.13.2. Утилизация шлаков сталеплавильного производства.Этапы переработки и утилизации всей массы образующихся в сталеплавильном производстве шлаков являются обязательным элементом безотходной технологии. Во-первых, многочисленные шлаковые отвалы и связанные с этим отчуждения земельных угодий, образование пыли, отрицательное воздействие на воздушный и водный бассейны вредны и экологически недопустимы; во-вторых, утилизация отходов экономически выгодна. Достаточно отметить, что только чистого металла со шлаками извлекается более 1 млн. т в год.
Основными путями утилизации шлаков сталеплавильного производства являются: 1) извлечение металла; 2) получение железофлюса для вагранок и аглодоменного производства; 3) получение щебня для дорожного и промышленного строительства; 4) использование основных шлаков в качестве известковых удобрений (шлаковой муки) для сельского хозяйства; 5) использование фосфорсодержащих шлаков для получения удобрений для сельского хозяйства; 6) вторичное использование конечных сталеплавильных шлаков.
Сталеплавильные шлаки условно (имея в виду их дальнейшее использование) можно разбить на несколько подгрупп:
а) шлаки, образующиеся в начальный период плавки (этот период часто называют окислительным). Эти шлаки содержат большое количество оксидов железа (иногда до 40 % от общего количества шлака). Железо в шлаке может быть в виде оксидов FeO и Fe2O3 и в виде запутавшихся в шлаке корольков железа. Основность этих шлаков невелика; обычно они скачиваются из агрегата после завершения начального периода плавки и могут храниться и перерабатываться отдельно;
б) шлаки, сформировавшиеся в конце плавки (конечные шлаки). Обычно эти шлаки содержат несколько меньшее количество железа и имеют более высокое значение основности (CaO/SiO2 = 2,5 — 3,5). При выплавке низкоуглеродистой стали содержание оксидов железа и в этих шлаках может быть достаточно высоким (15-20%), однако корольков железа в них значительно меньше. В дуговых печах при проведении восстановительного периода под белым или карбидным шлаком содержание оксидов железа снижается до <1 %, содержание СаО возрастает до 55—60 %. Конечные шлаки можно оставлять в агрегате для использования в следующей плавке или после выпуска вновь загружать в печь;
в) шлаки, попадающие в сталераз-ливочный ковш с выпускаемой сталью. Эти шлаки в жидком состоянии содержат незначительное количество железа. На практике часто определенное количество металла, оставшегося на днище и стенках ковша после окончания разливки стали, попадает вместе со шлаком в шлаковые чаши (это так называемые скрапины). Получаемый в результате конгломерат конечного шлака и скрапин металла подвергают тщательной разделке с целью максимального извлечения железа.
В среднем можно принять, что в сталеплавильных шлаках содержится (в пересчете на чистое) 20—25 % железа, в том числе 10—15 % металлического железа. Находящееся в шлаке металлическое железо затрудняет дальнейшую переработку шлака; для его помола требуется мощное дробильное оборудование. При измельчении шлака до кусков размером 25-27 мм из него удается извлечь металл (почти 15 % от массы шлака, что экономически оправдывает все затраты на помол и извлечение).
В отдельных случаях использование шлака сталеплавильного производства еще более эффективно.
1. В тех случаях, когда шлаки содержат достаточно высокие концентрации оксидов железа и марганца, они используются в качестве флюсов для ваграночного и аглодоменного производства.
2. В тех случаях, когда шлаки содержат достаточно много фосфора, они с успехом заменяют суперфосфат и широко используются в сельском хозяйстве. Шлаки, содержащие много фосфора, настолько ценны, что сама технология передела высокофосфористых чугунов построена таким образом, чтобы одновременно получить и чистую по фосфору сталь, и возможно более богатый фосфором шлак.
3. Выскоосновные шлаки используются в сельском хозяйстве для известкования почвы.
4. При переделе руд, содержащих ванадий, одним из элементов технологии является кратковременная продувка чугуна в конвертере. Ванадий — элемент, обладающий высоким сродством к кислороду; он окисляется вместе с кремнием, титаном, марганцем в самом начале продувки. Такие чугуны перерабатываются, например, в конвертерных цехах Чусовского металлургического завода и Нижнетагильского металлургического комбината. Чтобы повысить количество ванадия в образующемся шлаке, известь в начале операции не загружают. Таким образом удается в начальный период продувки получить шлак, содержащий 16-18 % V2O5. Этот шлак скачивают и направляют на ферросплавные заводы для производства феррованадия или используют в чистом виде для прямого легирования стали (поскольку известь в конвертеры не загружается, ванадиевый шлак содержит очень мало фосфора и серы).
5. При переделе чугуна с повышенным содержанием марганца образуются высокомарганцевые шлаки; они могут быть использованы как добавки, повышающие содержание марганца в стали.
6. Высокоосновные конечные шлаки используются повторно. Так, например, конечные шлаки конвертерного производства содержат, %: СаО 50-60, Si02 13-15, FeO 10-26, MgO 4—10. Эти шлаки содержат также определенное количество извести, не успевшей за время плавки ошлаковаться. При вторичном использовании такого шлака расход извести снижается, улучшается шлакообразование, повышается степень дефосфорации металла; высокоосновные маложелезистые конечные шлаки электроплавки используются для внепечной обработки стали (во время ее выпуска) с целью десульфурации.
7. В больших масштабах сталеплавильные шлаки используются в дорожном строительстве. Неприятным моментом при этом бывают случаи реагирования с влагой воздуха оставшейся неошлакованной извести в шлаке. Свойства и плотность материала при этом меняются, и на дорожном покрытии образуются трещины. Кроме того, распад основных шлаков обусловлен переходом во время охлаждения при 675 °С силиката (CaO)2-SiO2 из (3- в у-модификацию с увеличением объема. Распад протекает во времени '. Существуют стандарты для предварительной оценки устойчивости структуры шлакового щебня против распада. Известны также способы предотвратить это явление, например продувкой жидкого шлака кислородсодержащим газом. При подаче кислорода двухвалентное железо Fe +2 шлака окисляется до трехвалентного Ре +3 и, взаимодействуя с СаО, образует феррит кальция, который не разлагается на воздухе. Используется также прием обработки шлака паром в закрытых емкостях в течение 2—3 ч. Обработанный таким образом шлак может быть использован в строительстве. В большинстве случаев использованию шлака в качестве строительного материала предшествует его выдержка в отвалах. Затем шлак измельчают и направляют на магнитную сепарацию для извлечения металла. Щебень из сталеплавильных шлаков является полноценным заменителем гранитного щебня в бетонах и железобетонах.
1 Чистый ортосиликат кальция (СаО)2 • SiCb теоретически состоит из 65 % СаО и 35 % SiO2. Однако состав реальных шлаков отличается от состава двухкальциевого силиката и действительная температура распада реальных шлаков значительно ниже 675 'С.
На ряде металлургических предприятий (Новолипецком металлургическом комбинате, череповецком «Северсталь», Таганрогском металлургическом заводе и др.) создано и действует оборудование для практически 100%-ной переработки шлаков. При этом получают значительное количество щебня, шлаковой муки, фосфат-шлака, извлекают значительное количество металла. Однако пока еще в целом по стране проблема утилизации шлаков решена не полностью: многие конструктивные разработки находятся в стадии решения. Разрабатываются технологии получения из шлаков абразивных материалов; отрабатываются методы сухой и мокрой грануляции жидких сталеплавильных шлаков. Особенно перспективна организация сухой грануляции, при которой одновременно можно решить две задачи: усиливая охрану водного бассейна, получать нагретый воздух. Следует отметить расширение использования конвертерных шлаков при выплавке чугуна и в производстве агломерата. Применение шлака сопровождается заменой им в шихте части агломерата, сырого известняка и марганцевой руды; при этом удешевляется агломерационная шихта, увеличивается производительность агломашин и повышается прочность агломерата.
8. Существенную экономию ресурсов получают при использовании жидких шлаков:
а) в электросталеплавильном производстве — это практика работы на «болоте» (в результате возрастает производительность, ускоряется шлакообразование, достигается экономия флюса, снижается расход электроэнергии);
б) в конвертерном производстве — при оставлении конечного шлака в печи улучшается тепловой баланс, ускоряется шлакообразование, экономится флюс, снижаются потери железа со шлаком;
в) в конвертерном производстве — благодаря «раздувке» шлака на поверхности футеровки после выпуска плавки возрастает стойкость футеровки, снижается расход огнеупоров.
9. Особо эффективна разработка шлаковых отвалов заводов, производящих сталь легированных и высоколегированных марок. Во многих случаях для этого не требуется использование особо сложного оборудования.
Приведем в качестве примера организацию разработки шлаковых отвалов на заводе «Днепроспецсталь». Завод производил около 800 марок сталей разных композиций по химическому составу. При этом содержание марганца в стали отдельных марок достигало 30 %, хрома — 28, никеля — 80, ванадия — 3, молибдена — 18, вольфрама— 19, кобальта— 10, меди — 3 %.
Все металлоотходы по степени ле-гированности и химическому составу можно разделить на внутризаводские группы. На «Днепроспецстали» их более чем 450, включая 70 групп легированного лома. Для использования скрапа на прямую выплавку серийных сталей и даже на выплавку так называемой шихтовой болванки требуется обязательная тщательная рассортировка скрапа по химическому составу.
Практически извлечение скрапа ведется с помощью карьерных экскаваторов, бульдозеров и автосамосвалов.
Извлеченный скрап перевозят в копровый цех; его разделяют на магнитный и немагнитный. Кроме того, по габаритам (массе) скрап разделяют на негабаритный (более 10—15т), габаритный (0,5-10,0 т) и мелкий (0,25-0,5т). Отдельно складируется скрап, в котором видны сплавленные скрапи-ны разных плавок, а также скрапины с большой долей (более 20 %) неотделяемого шлака. От каждой габаритной и негабаритной скрапины отрезается проба на химико-спектральный контроль в стационарной лаборатории. По результатам контроля скрапине присваивается группа отходов по заводской технологической инструкции, ее взвешивают. С полученными данными о химическом составе, присвоенной группе отходов и массе скрапина направляется на платформах в сталеплавильный цех для использования при выплавке стали соответствующей марки.
Негабаритный скрап в копровом цехе разрезают с помощью газокислородных горелок или другого оборудования.
Отгрузку немагнитного скрапа ведут в лотках для удобства загрузки в бадьи или непосредственно в оборотные печные бадьи, перевозимые на лафетах в цех.
Встречается также «слоеный» скрап и скрап с высоким содержанием шлака. Его переплавляют в дуговых печах на шихтовую болванку, которая служит в дальнейшем в качестве первоклассной шихты, имеющей гарантированный химический состав, точную массу и высокую плотность. Мелкий магнитный скрап, для которого затруднительно выполнить 100%-ный контроль химического состава, также используют для выплавки шихтовой болванки.
В результате в 1999 г. из шлаковых отвалов было извлечено и направлено в копровый цех 19 570 т скрапа, из которых в дуговых печах за это же время переплавлено 18 370 т. При этом около 12 тыс. т составил скрап легированных сталей; большая его часть использована на прямую выплавку. - Накопленный опыт позволяет существенно рационализировать способы как добычи, так и утилизации скрапа, различающегося по габаритным размерам и химическому составу.
способ получения чугуна и цементного клинкера
Сущность: способ получения чугуна и цементного клинкера включает расплавление в печи железосодержащих материалов., подаваемых в плавильном агрегате совместно с добавками, содержащими карбонат кальция с образованием расплава, содержащего чугун и шлак. В качестве железосодержащих материалов используют скрап или частично подогретую и предварительно восстановленную железную руду. Расплавление осуществляют в плавильном газогенераторе с одновременным получением восстановительного газа за счет вдувания в газогенератор угля и кислородсодержащего газа. Добавки, в качестве которых используют известняк с содержанием глины 10-25%, совместно с частичным количеством железной руды при необходимости подвергают подогреву и кальцинированию в подогревательной шахте и загружают в плавильный газогенератор в количестве, обеспечивающем получение шлака соответствующего по составу цементному клинкеру. Часть подогретого и кальцинированного известняка могут подавать на смешивание с жидким шлаком из плавильного газогенератора в клинкерную установку. Для сжигания газа подают воздух, который вдувают вместе с хлорсодержащими отходами, например с загрязненными диоксинами и фуранами полихлорированными бифенилами. Шлак охлаждают в охладителе с вихревым слоем и выдерживают при температуре свыше 1000 o С в течение по меньшей мере 15, предпочтительно 25-30 мин для образования фаз цементного клинкера алит и белит. В плавильный газогенератор вместе с углем дополнительно загружают сланец, мусор, мусорный скрап или сталелитейный шлак или пыли. Технический результат заключается в создании оборудования, позволяющего получить чугун и цементный клинкер в одном агрегате и безопасном удалении токсичных веществ.1 ил.
Формула изобретения
1. Способ получения чугуна и цементного клинкера, включающий расплавление в печи железосодержащих материалов, подаваемых в плавильный агрегат совместно с добавками, содержащими карбонат кальция, с образованием расплава, содержащего чугун и шлак, и раздельный их выпуск, отличающийся тем, что в качестве железосодержащих материалов используют скрап или частично подогретую и предварительно восстановленную железную руду, при этом расплавление осуществляют в плавильном газогенераторе с одновременным получением восстановительного газа за счет вдувания в газогенератор угля и кислородсодержащего газа, а добавки, в качестве которых используют известняк с содержанием глины 10 - 25 мас.% совместно с частичным количеством железной руды при необходимости подвергают подогреву и кальцинированию в подогревательной шахте и загружают в плавильный газогенератор в количестве, обеспечивающем получение шлака, соответствующего по составу цементному клинкеру.
2. Способ по п.1, отличающийся тем, что часть подогретого и кальцинированного известняка подают на смешивание с жидким шлаком из плавильного газогенератора в клинкерную установку.
3. Способ по п.1 или 2, отличающийся тем, что в плавильный газогенератор иди подогревательную шахту для сжигания газа подают воздух, который вдувают вместе с хлорсодержащими отходами, например с загрязненными диоксинами и фуранами, полихлорированными бифенилами.
4. Способ по любому из пп.1 - 3, отличающийся тем, что восстановительный газ из плавильного газогенератора подвергают очистке в горячем циклоне с конденсацией щелочи и при необходимости соединений тяжелых металлов.
5. Способ по любому из пп.1 - 4, отличающийся тем, что осуществляют охлаждение застывшего из шлака клинкера воздухом, который подают после охлаждения для сжигания газа из плавильного газогенератора, а газ после сжигания используют для кальцинирования исходного материала.
6. Способ по любому из пп.1 - 5, отличающийся тем, что при наличии избыточного оксида железа в шлаке осуществляют его довосстановление с выделением в чугунную ванну.
7. Способ по п.6, отличающийся тем, что к жидкому расплаву шлака в плавильном газогенераторе добавляют жидкий конвертерный шлак в количестве, обеспечивающем восстановление остаточного оксида железа.
8. Способ по любому из пп.1 - 7, отличающийся тем, что шлак охлаждают до температуры выше 1000 o C воздухом в охладителе с вихревым слоем.
9. Способ по любому из пп.1 - 8, отличающийся тем, что шлак выдерживают при температуре свыше 1000 o С в течение по меньшей мере 15 мин, предпочтительно 25 - 30 мин, для образования фаз цементного клинкера алита и белита.
10. Способ по любому из пп.2 - 9, отличающийся тем, что в клинкерной установке осуществляют окисление связанной сульфидом серы в SO 3 и карбида кальция в СаО и CO 2 .
11. Способ по любому из пп.1 - 10, отличающийся тем, что в плавильный газогенератор вместе с углем дополнительно загружают сланец, мусор, мусорный скрап, или сталелитейный шлак, или сталелитейные пыли.
Описание изобретения к патенту
Изобретение относится к способу получения чугуна и цементного клинкера в плавильном газогенераторе, при котором шихту по меньшей мере частично подогревают и при необходимости нейтрализуют и предварительно восстанавливают или используют в виде скрапа, уголь вдувают в кипящий слой и газифицируют с восстановлением шихты и чугуна, а также шлак выпускают в жидком виде.
Известен способ получения чугуна и цементного клинкера, включающий расплавление в печи железосодержащих материалов, подаваемых в плавильный агрегат совместно с добавками, содержащими карбонат кальция, с образованием расплава, содержащего чугун и шлак, и раздельный их выпуск [1].
Изобретение ставит своей целью усовершенствование известного способа таким образом, чтобы непосредственно чугун и цементный клинкер можно было получить в одном плавильном газогенераторе и чтобы при получении чугуна можно было безопасно удалить ряд токсичных веществ.
Для решения этой задачи способ согласно изобретению отличается тем, что в качестве железосодержащих материалов используют скрап или частично подогретую и предварительно восстановленную железную руду, при этом расплавление осуществляют в плавильном газогенераторе с одновременным получением восстановительного газа за счет вдувания в газогенератор угля и кислородсодержащего газа, а добавки, в качестве которых используют известняк с содержанием глины 10 - 25%, совместно с частичным количеством железной руды при необходимости подвергают подогреву и кальцированию в подогревательной шахте и загружают в плавильный газогенератор в количестве, обеспечивающем получение шлака, соответствующего по составу цементному клинкеру. Использование шлака в качестве цементного клинкера предполагает, как правило, повышенное содержание CaO, поэтому способ согласно изобретению можно применять для одновременного получения чугуна и цементного клинкера из значительно менее качественного исходного материала. Применяемая, согласно изобретению, рядовая руда может иметь в противоположность обычным исходным материалам, в обычной доменной печи высокое содержание CaO, SiO 2 и Al 2 O 3 , поскольку эти примеси в руде представляют собой компоненты для производства клинкера. Поскольку теперь не требуется обычной до сих пор для процессов плавильной газификации оптимизации в отношении повышения качества газа-продукта, может быть достигнута высокая экономичность способа за счет улучшения соответствующих тепловых балансов для производства клинкера. При отдельном подогреве известного мергеля, при необходимости смешиваемого с железной рудой, после подогрева загруженный материал сначала кальцинируют и при необходимости спекают, причем для кальцинирования и при необходимости спекания можно использовать непосредственное отходящее тепло процесса. Применение железной руды и, в частности, частичного количества железной руды для подогретой таким образом и кальцинированной порции известняка приводит одновременно к образованию хорошо восстанавливаемых ферритов, улучшающих выход чугуна.
Наряду с низкокачественной железной рудой с относительно высоким содержанием MgO, CaO, SiO 2 и Al 2 O 3 плавильный газогенератор может быть загружен твердым или жидким сталелитейный шлаком. В качестве угля по меньшей мере частично как вариант могут использоваться различные носители углерода, например, битуминозный сланец, коммунальные и промышленные отходы или бытовой мусор, с использованием подогревательной шахты для нейтрализации и подогрева позволяет значительно более простым образом привести порцию известняка в соответствии с нужным составом цементного клинкера и управлять способом в отношении нужного качества цементного клинкера.
В головку плавильного газогенератора известным образом наряду с носителем углерода вдувают воздушно-кислородную смесь, причем из реакции сгорания наряду с теплотой плавления образуется восстановительный газ, который состоит главным образом из монооксида углерода, водорода и диоксида углерода. Поскольку процесс газификации не требуется оптимизировать в смысле повышения теплотворности газопродукта, здесь можно работать со сравнительно меньшими температурами, поскольку для повышения теплотворности не требуется повышенное содержание CO.
В зависимости от дозирования порции известняка можно непосредственно получить шлаковый расплав, который в соответствии с нужным составом, обусловленным технологией цемента, имеет качество доменного шлака, белого цемента, портландцемента, цемента Феррари, рудного цемента или специального клинкера.
Во избежание чрезвычайной термической нагрузки может при необходимости потребоваться загружать порцию известняка для достижения нужного качества цементного клинкера не только в плавильный газогенератор, поскольку очень большая порция известняка привела бы также к повышению температуры шлакового расплава и вязкости шлака. Вязкость шлака можно, правда, по меньшей мере частично уменьшить за счет соответствующих добавок, например CaF 2 . В целом, однако, слишком высокая температура шлакового расплава нежелательна. В этих случаях способ согласно изобретению может быть осуществлен таким образом, что частичное количество подогретого кальцината смешивают с выпущенным в жидком виде шлаком плавильного газогенератора в клинкерной установке, так что нужное содержание CaO в нужном цементном клинкере может быть установлено в отдельном от плавильного газогенератора реакторе, а именно клинкерной установке. Подобная клинкерная установка может простым образом состоять из вращающихся трубчатых печей, в частности ряда таких печей.
Для улучшения энергобаланса и надежного удаления токсичных веществ в рамках способа согласно изобретению можно вдувать в плавильный газогенератор или подогревательную шахту с воздухом для горения хлорсодержащие отходы, например, загрязненные диоксинами и фуранами полихлорированные бифенилы. Хлорсодержащие отходы термически разлагают для выделения хлорида в форме хлорида кальция или других соединений при соответственно высокой порции известняка, желательно согласно изобретению. Далее такое повышенное содержание хлора с учетом относительно высокой температуры плавления шлакового расплава можно непосредственно использовать для того, чтобы избежать или уменьшить повышенное содержание щелочи в составе цементного клинкера. Для этого предпочтительно газ-продукт плавильного газогенератора очищают в горячем циклоне с конденсацией щелочи и при необходимости соединений тяжелых металлов, причем очищенный газ-продукт предпочтительно сжигают с охлаждающим воздухом от охлаждения застывающего из шлака клинкера и используют для кальцинирования загружаемого материала из исходного карбонатного материала. Таким образом, значительно улучшается энергобаланс способа.
Если состав цементного клинкера должен иметь слишком высокое содержание оксида железа, то в способе согласно изобретению может быть предпочтительным на основе разделения на процесс в плавильном газогенераторе и процесс в клинкерной установке снизить содержание оксида железа в шлаке за счет восстановления. При этом избыточный оксид железа в шлаке можно восстановить с выделением чугунной ванны, причем подобное восстановление может оказаться, в частности, предпочтительным тогда, когда к жидкому шлаку плавильного газогенератора добавляют жидкий конвертерный шлак в количестве, достаточном для переработки остаточного железа. В случае, если клинкер рудного цемента должен быть получен без добавки жидкого сталелитейного шлака, можно обеспечить повышенное содержание оксида железа в конечном клинкере уже в плавильном газогенераторе за счет только частичного восстановления загруженной железной руды (ферриты).
Для оптимального использования высокого скрытого тепла шлака при получении цементного клинкера предпочтительно осуществить охлаждение расплавленного клинкера при температурах свыше 1000 o C в охладителе с кипящим слоем с использованием охлаждающего воздуха, причем при охлаждении создаются возможность образования нужных фаз цементного клинкера, в частности алита и белита, в соответствующем количестве и одновременно обеспечения соответствующего количества подогретого охлаждающего воздуха для целей подогрева. Предпочтительно способ осуществляют при этом так, что время выдержки при температурах свыше 1000 o C для образования фаз цементного клинкера алит и белит выбирают в течение по меньшей мере 15 мин, предпочтительно 25 - 30 мин.
С учетом низкокачественного угля, используемого в процессе газификации или использования битуминозного сланца, мусорной золы в качестве силикатоносителя и мусорного скрапа при относительно высоком содержании серы может также образоваться в шлаке соответствующее количество связанной сульфидом серы. В этих случаях способ предпочтительно осуществлять так, чтобы связанную сульфидом в клинкерной установке серу и карбид кальция окислить в SO 3 или CaO и CO 2 соответственно.
В целом за счет разделения работы по металлургическому окислению и восстановлению и последующего обеспечения качества шлака способ можно оптимизировать при одновременном получении чугуна из низкокачественных исходных материалов и цементного кликера. Сильно основной шлак, желательный для получения цементного клинкера, может быть, в принципе, также обогащен оксидом железа, причем известно, что подобные оксиды железа в шлаке действуют как флюс, так что образуется расплавленный клинкер с относительно высоким содержанием оксида железа. Подобные расплавленные клинкеры известны, например, как цементы Феррари или рудные цементы. В случае такого высокого содержания оксида железа в шлаке можно путем вторичного металлургического процесса произвести восстановление в еще жидком шлаке в клинкерной установке, например, во втором ковше, с помощью углерода до нужного содержания оксида железа.
Благодаря относительно высокому восстановительному потенциалу чугунного расплава в плавильном газогенераторе восстанавливаются занесенные с используемыми отходами соединения тяжелых металлов, прежде всего цинк, свинец, медь и никель. Цинк переходит в таких способах в газовую фазу, медь и никель растворяются в чугунной ванне, а свинец в качестве сплава черного свинца образует под ней расплавленную фазу. Нежелательная медь представляет собой при этом единственное существенное ограничение количественного баланса загружаемых отходов, поскольку медь в качестве загрязнителя железа должна содержаться в чугуне лишь в небольших, максимально допустимых количествах. Сера и хром переходят обычно в шлаковую фазу, причем занесенный металлический алюминий сгорает и также связывается со шлаковой фазой.
Крупные количества отходов с более высокой концентрацией тяжелых металлов могут быть вытеснены, как и избытки щелочи, посредством хлорирования, причем часть угля для сжигания и восстановления может быть заменена растворителем отходов с содержанием хлора, например тетрахлорэтилена, или к исходному материалу в подогревателе или плавильном газогенераторе может быть добавлен, например, хлорид кальция.
Очистка газа-продукта из головки плавильного газогенератора может быть произведена в горячем циклоне при относительно низких температурах 800-1000 o C. При таких температурах испарившиеся в плавильном газогенераторе щелочные соединения и хлориды тяжелых металлов могут конденсироваться, причем цинк может быть окислен в оксид цинка и отделен в виде пыли.
Меж горячим циклоном и плавильным газогенератором газы могут направляться в замкнутом цикле, так что становится возможной концентрация до целеобразных для дальнейшей переработки значений.
В подогревательной шахте можно сжигать удаленный из горячего циклона газ-продукт с подогретым в клинкерной установке воздухом, так что известковый мергель может быть нейтрализован и при необходимости подвергнут превращению с рудой, за счет чего образуются хорошо восстанавливаемые ферритовые фазы. В то же время подобным подогревом достигаются чрезвычайно эффективная очистка газа и прежде всего удаление пыли и остаточное обессеривание. Оксиды азота могут быть обычным образом разложены путем вдувания аммиака в температурном диапазоне около 900 o C, причем это вдувание происходит в нижней части подогревательной шахты.
После соответствующего осуществления фаз охлаждения с соответствующим временем выдержки при температурах свыше 1000 o C для образования фаз клинкера алит и белит расплавленный клинкер может быть гранулирован, причем гранулирование может происходить особенно простым образом посредством центробежного барабана. Охлаждающий воздух, подогретый при охлаждении расплавленного клинкера, может быть использован для улучшения энергобаланса для нейтрализации известкового мергеля и для сжигания в плавильном газогенераторе.
Изобретение поясняется ниже с помощью схематично изображенного на чертеже устройства, предназначенного для осуществления способа согласно изобретению.
В подогревательную шахту 1 загружают известковый мергель и железную руду. Загруженный известковый мергель и добавленная железная руда проходят в подогревательной шахте сначала зону сушки, к которой примыкает зона подогрева. Далее загруженный материал проходит зону кальцинирования и зону спекания, на которой образуются ферриты кальция. Необходимая энергия для кальцинирования и подогрева достигается за счет сжиганий очищенного в циклоне 2 газа-продукта из головки 3 плавильного газогенератора 4 с подогретым воздухом, подаваемым по трубопроводу 5. Из подогревательной шахты 1 материал попадает по барабанному ячейковому питателю 6 в плавильный газогенератор, причем в головку плавильного газогенератора по соответствующим трубопроводам с газом-носителем вдувают уголь, битуминозный сланец, мусорную золу, мусорный скрап и/или бытовой мусор. Мусорный скрап является в значительной степени предварительно восстановленным материалом, так что в этих случаях существенное предварительное восстановление ж железной руды отпадает, и к известковому мергелю добавляют лишь частичное количество железной руды. С учетом значительно более высокого содержания извести в отношении нужного состава шлакового расплава можно также подавать значительное количество необходимого для получения чугуна исходного материала вместе с известковым мергелем с образованием ферритов, имеющих возможность особенно легкого восстановления.
Восстановление используемого материала с одновременным вводом теплоты плавления происходит в угольном вихревом слое 7 в нижней части плавильного газогенератора. У основания плавильного газогенератора собирается чугунная ванна 8, на которой плавает шлаковая ванна 9. Чугунную ванну, как и шлаковую ванну, в равные промежутки времени выпускают, причем шлаковый расплав выгружают в клинкерную установку, состоящую из двух вращающихся трубчатых печей 10, 11. В печи 10 при необходимости добавляют кальцинированный известковый мергель, загружаемый по барабанному ячейковому питателю 12. Охлаждающий воздух подают через печь 11, так что обеспечивается нужное воздушное охлаждение с одновременным подогревом используемого позднее воздуха для сжигания, возвращаемого к подогревательной шахте по трубопроводу 5.
Газ-продукт из головки 3 плавильного газогенератора 4 подают по трубопроводу 13 к горячему циклону 2, причем в газе-продукте наряду с монооксидом углерода, водородом содержатся также щелочи и цинк в зависимости от добавки или состава примесей в плавильном газогенераторе и, в частности, в зависимости от количества хлора. Очищенный газ-продукт возвращают по трубопроводу 14 к зоне сжигания подогревательной шахты 1, причем отделенные твердые вещества направляют по замкнутому контуру и возвращают в угольный вихревой слой по трубопроводу 15. После достижения соответствующей концентрации перерабатываемых веществ в направленных по замкнутому контуру твердых веществах можно произвести выгрузку в устройство 16 для удаления. Другая возможность состоит в том, чтобы вернуть часть потока очищенного газа в зону сжигания (угольный вихревой слой).
Чугун направляют дальше в сталелитейный цех через летку 17.
Изобретение подробно поясняется ниже с помощью примера его осуществления.
С шихтой из пирита (гематита) и известкового мергеля был выплавлен следующий состав клинкера и чугунной ванны:
клинкер, %: SiO 18,1, Al 2 O 3 8,5, Fe 2 O 3 10,9, CaO 61,0, MgO 1,8, SO 3 3,3;
чугун, %: C 4,43, Si 0,05, Mn 0,12, P 0,087, S 0,013 (0,003), Cu 1,133 (0, 073).
В качестве восстанавливателя использовали антрацит и коэффициент отношения клинкер/чугун был установлен 1.
Прочность цемента со значениями 7 сут 31 Н/мм 2 28 сут 42 Н/мм 2 можно обозначить как очень высокую, причем, в частности, преимуществом является высокая прочность в раннем возрасте.
СПОСОБ ПЕРЕРАБОТКИ СТАЛЕПЛАВИЛЬНЫХ ШЛАКОВ С ПОЛУЧЕНИЕМ ЦЕМЕНТНОГО КЛИНКЕРА И ЧУГУНА
Изобретение относится к способу переработки сталеплавильных шлаков с получением цементного клинкера и чугуна. Техническим результатом переработки сталеплавильных шлаков с получением цементного клинкера и чугуна является расширение номенклатуры перерабатываемых сталеплавильных шлаков; увеличение теплового КПД и производительности процесса переработки шлаков, устранение мелких включений железа (корольков) в готовом клинкере за счет выдержки клинкера в плавильной камере перед выпуском без загрузки шихты в камеру; улучшение качества получаемого клинкера за счет грануляции воздушно-водяной смесью.
В способе переработки сталеплавильных шлаков с получением цементного клинкера и чугуна, включающем загрузку шихты в плавильную камеру, расплавление шихты, восстановление избыточного количества оксидов железа шлакового расплава, раздельный слив полученных клинкера и чугуна из камеры, согласно изобретению в качестве шихты используют смесь отработавшего шлака электросталеплавильных печей или кислородных конвертеров, отработавшего шлака установок ковш-печь и известняка, содержание компонентов шихты находится в пределах от массы всей шихты: отработавший шлак установок ковш-печь - 10-40%, отработавший шлак электросталеплавильных печей или кислородных конвертеров 30-45%, известняк - остальное, перед загрузкой в плавильную камеру шихту подогревают теплом отходящих из камеры газов с температурой 1850-1900°С в специальном подогревателе, для восстановления оксидов железа шлакового расплава используют смесь высокозольного и низкозольного углей в количестве 5,5-7% от массы шихты, после заполнения всего объема шлаковой ванны плавильной камеры готовым расплавленным клинкером заданного состава загрузку шихты в плавильную камеру временно прекращают, делают выдержку 10-20 минут, при этом на время выдержки топливокислородные горелки не выключают и увеличивают подачу кислорода в них на 3-15%, после окончания выдержки 70-80% полученного клинкера сливают из плавильной камеры, направляют его на грануляцию и возобновляют загрузку шихты в плавильную камеру для получения следующей порции плавленого клинкера. 7 з.п. ф-лы, 1 ил., 2 пр., 6 табл.
Патент №2492151 - Способ переработки сталеплавильных шлаков с получением цементного клинкера и чугуна
Изобретение относится к способу переработки сталеплавильных шлаков с получением цементного клинкера и чугуна. Техническим результатом переработки сталеплавильных шлаков с получением цементного клинкера и чугуна является расширение номенклатуры перерабатываемых сталеплавильных шлаков; увеличение теплового КПД и производительности процесса переработки шлаков, устранение мелких включений железа (корольков) в готовом клинкере за счет выдержки клинкера в плавильной камере перед выпуском без загрузки шихты в камеру; улучшение качества получаемого клинкера за счет грануляции воздушно-водяной смесью. В способе переработки сталеплавильных шлаков с получением цементного клинкера и чугуна, включающем загрузку шихты в плавильную камеру, расплавление шихты, восстановление избыточного количества оксидов железа шлакового расплава, раздельный слив полученных клинкера и чугуна из камеры, согласно изобретению в качестве шихты используют смесь отработавшего шлака электросталеплавильных печей или кислородных конвертеров, отработавшего шлака установок ковш-печь и известняка, содержание компонентов шихты находится в пределах от массы всей шихты: отработавший шлак установок ковш-печь - 10-40%, отработавший шлак электросталеплавильных печей или кислородных конвертеров 30-45%, известняк - остальное, перед загрузкой в плавильную камеру шихту подогревают теплом отходящих из камеры газов с температурой 1850-1900°С в специальном подогревателе, для восстановления оксидов железа шлакового расплава используют смесь высокозольного и низкозольного углей в количестве 5,5-7% от массы шихты, после заполнения всего объема шлаковой ванны плавильной камеры готовым расплавленным клинкером заданного состава загрузку шихты в плавильную камеру временно прекращают, делают выдержку 10-20 минут, при этом на время выдержки топливокислородные горелки не выключают и увеличивают подачу кислорода в них на 3-15%, после окончания выдержки 70-80% полученного клинкера сливают из плавильной камеры, направляют его на грануляцию и возобновляют загрузку шихты в плавильную камеру для получения следующей порции плавленого клинкера. 7 з.п. ф-лы, 1 ил., 2 пр., 6 табл.
Читайте также: