Определение модуля упругости бетона
От чего зависит и как определяется модуль упругости бетона: важные моменты
Для характеристики эксплуатационных и физико-механических свойств материалов используются различные показатели. Широкое распространение получил модуль упругости бетона, характеризующий способность упруго деформироваться в результате воздействия внешней силы и давления. Чтобы разобраться в свойствах готового бетонного раствора, стоит узнать, что это такое, от чего зависит и каким образом определяется.
Читайте в статье
Понятие модуля упругости бетона и единицы измерения
В процессе эксплуатации твёрдые тела подвергаются нагружению и начинают деформироваться. Сначала протекающие деформационные изменения являются обратимыми, а их величина от прикладываемого усилия является линейной. Как только нагрузка снимается, изделие полностью восстанавливает первоначальную форму. Для описания протекающих процессов используется закон Гука, согласно которому в качестве коэффициента пропорциональности между абсолютным сжатием либо удлинением и прикладываемым усилием используется модуль упругости.
Определение данного показателя звучит следующим образом: модуль упругости – коэффициент пропорциональности между нормальным напряжением и соответствующей ему относительной продольной деформацией. Измеряется в кгс/см² (Н/м², Па). Называют модулем Юнга.
Как только нагрузка превысит определённый уровень, начинается фаза необратимых изменений. Деформативность становится неупругой. Сдвиг увеличивается без дальнейшего приложения нагрузки. В зоне ползучести внутренние связи начинают разрушаться, и бетонная конструкция теряет прочность.
Факторы, влияющие на модуль упругости бетона
Значение модуля упругости может существенно отличаться. На него влияет множество факторов. Чтобы получить желаемый результат, стоит с ними познакомиться заранее.
Качество и объёмное содержание заполнителей
Бетон представляет собой смесь, состоящую из некоторого количества цемента и заполнителей. Качество и концентрация последних оказывают непосредственное влияние на значение модуля упругости. Если структура является неоднородной, вероятность возникновения сложного напряжённого состояния существенно возрастает. Основная нагрузка приходится на жёсткие частицы. Зоны с пустотами и порами испытывают поперечное растяжение.
Внимание! Введение в состав крупного заполнителя способствует увеличению упругих свойств железобетона.
Класс бетона
Класс бетона оказывает непосредственное влияние на модель упругости. Чем выше класс, тем большей прочностью на сжатие и плотностью будет обладать состав и будет лучше сопротивляться воздействующей нагрузке. Самое высокое значение – у бетона В60 – численно равно 39,5 МПа×10 -3 . Наименьшее значение у В10 и соответствует 19 МПа×10 -3 .
Температура воздуха и влажность среды
При повышении температуры деформация в бетоне увеличивается, а упругие свойства снижаются. Это способствует повышению внутренней энергии смеси, а также линейному расширению материала, траекторий движения молекул и увеличению пластичности.
Внимание! Температурные колебания учитывают только, если их диапазон превышает 20 °С.
Влажность влияет на упругость материала. В расчётах используется коэффициент ползучести. Чем выше процентное содержание водяного пара, тем ниже будут пластические деформации.
Время воздействия нагрузки и условия твердения смеси
Продолжительность действия нагрузки на бетонную конструкцию также влияет на модуль упругости. Если нагружение осуществляется, мгновенно деформация конструкции увеличивается пропорционально приложенным внешним силам. Длительное напряжение приводит к уменьшению величины модуля. Зависимость носит нелинейный характер. Пластическая и упругая деформация складываются.
Условия, в которых бетон набирает свою прочность, могут отличаться. В естественных условиях значение всегда выше. Если материал обрабатывается в автоклавной установке либо осуществляется пропаривание в условия атмосферных давлений, значение несколько снизится. Причиной этого является образование большого числа пустот и пор благодаря неравномерному температурному расширению объёма, понижению качества гидратации зёрен цемента.
Возраст бетона и армирование конструкции
Для набора прочности свежезалитому бетону достаточно четырёх недель. По истечении указанного периода смесь будет обладать упругими свойствами и достаточной пластичностью. Максимальная твёрдость будет достигнута только через 200-250 дней. Именно в это время модуль упругости достигнет максимального значения, соответствующего марочной прочности.
Для того чтобы монтируемая конструкция прослужила подольше, её обязательно армируют. В качестве армирующих элементов берётся сетка либо каркас, для изготовления которого использовалась арматура, относящаяся к классам АI, AIII, А500С, Ат800, древесина и композиты. Все эти элементы в процессе эксплуатации воспринимают растягивающие и сжимающие нагрузки, воздействующие на бутон.
Благодаря армированию удается повысить упругость и прочностные характеристики конструкции. Уменьшается вероятность образования трещин деформационного и усадочного типа.
Модуль упругости бетона (Еб): способы определения значения
Порядок определения Еб может несколько отличаться. Каждый способ имеет свои отличительные особенности. Стоит ознакомиться с нюансами каждого метода, чтобы не допустить ошибок в момент определения значения.
Механическое испытание
При проведении механических испытаний образец подвергается разрушению. Исследование производится с учётом требований ГОСТ 24452, устанавливающих требования к используемым образцам и порядку проведения исследований.
Материалы и инструменты
Для проведения исследований используются образцы, имеющие форму круга либо квадрата. Соотношение высоты и поперечного сечения принимают равным четырём. Образцы высверливаются, выбуриваются либо выпиливаются из готового изделия. До начала испытаний их держат под влажной тканью.
Для получения искомого значения образцы помещают на пресс, оснащённый специальными базами, позволяющими измерить деформацию. Приборы располагаются под разными углами к грани образца. Для фиксации индикаторов используются стальные рамки. В некоторых случаях индикаторы приклеиваются к опорным вставкам.
Внимание! Если конструкция работает в условиях повышенной влажности, требуется специальная подготовка по ГОСТ 24452-80.
Схема испытания образцов
Испытания выполняются в следующей последовательности:
- Образцы подготавливаются и с индикаторами помещаются под пресс, добиваясь совмещения осей образца и центра плиты. Назначают разрушающую нагрузку в т/м 2 . Величина зависит от марочной прочности бетона.
- Производят ступенчатое увеличение нагрузки с шагом 10 % от разрушающей и интервалом 4-5 минут.
- Доводят значение до 40-45 % от максимального. При отсутствии дополнительных требований приборы снимают, а дальнейшее нагружение выполняют с постоянной скоростью.
- Результаты для каждого образца обрабатывают, когда нагрузка составляет 30 % от разрушающей. Данные отображаются в журнале испытаний.
По проведенным исследованиям определяют начальный модуль упругости Еб. Нормативные значения для каждого класса содержатся в таблицах со строительными нормами и маркировке изделия. Для В15, В20, В25, В30, полученного в условиях естественного твердения, коэффициент равен 23, 27, 30, 32,5 МПа×10 -3 соответственно, в условиях термической обработки – 25, 24,5, 27, 29.
Неразрушающий ультразвуковой способ
Механический способ предполагает выемку образца из уже готовой конструкции. Это не всегда удобно и сопряжено с рядом трудностей. Ультразвуковой способ позволяет обойтись без локального разрушения. В условиях повышенной влажности погрешность составляет 15 -75 % из-за более высокой скорости распространения ультразвуковых волн в водной среде. Существует метод, позволяющий найти значение при различной влажности материала. Испытания проводятся на образцах, имеющих различную водонасыщенность.
Для нахождения нормативных и расчётных значений используют корректирующие коэффициенты, учитывая соответствующие значения. Методика приведена в СП 63.13330.2012.
Делитесь в комментариях, какому методу определения модуля упругости бетона вы доверяете больше всего и каким приходилось пользоваться.
Определение модуля упругости бетона
Методы определения призменной прочности, модуля упругости и коэффициента Пуассона
Concretes. Methods of prismatic, compressive strength, modulus of elasticity and Poisson's ratio determination
Дата введения 1982-01-01
Постановлением Государственного комитета СССР по делам строительства от 18 ноября 1980 г. N 177 дата введения установлена 01.01.82
ПЕРЕИЗДАНИЕ. Ноябрь 2005 г.
Настоящий стандарт распространяется на все виды бетонов, применяемых в промышленном, энергетическом, транспортном, водохозяйственном, жилищно-гражданском и в других видах строительства, в том числе подвергающиеся в процессе эксплуатации нагреву, насыщению водой, нефтепродуктами и другими жидкостями.
Стандарт устанавливает методы определения призменной прочности, модуля упругости и коэффициента Пуассона бетона.
Испытание для определения указанных показателей свойств бетона производится путем постепенного (ступенями) нагружения образцов-призм или образцов-цилиндров стандартных размеров осевой сжимающей нагрузкой до разрушения при определении призменной прочности и до уровня 30% разрушающей нагрузки с измерением в процессе нагружения образцов их деформации при определении модуля упругости и коэффициента Пуассона.
Призменная прочность, модуль упругости и коэффициент Пуассона вычисляются по определенным в процессе испытания нагрузкам (и 0,3) и продольным и поперечным относительным упругомгновенным деформациям ( и ).
Настоящий стандарт следует применять при определении показателей свойств бетонов различного вида и назначения в соответствии с требованиями стандартов, технических условий или рабочих чертежей на бетонные и железобетонные конструкции и изделия, а также при изучении свойств новых видов бетонов.
Стандарт соответствует рекомендации СЭВ РС 279-65 и РИЛЕМ Р8 в части требований к образцам.
1. МЕТОДЫ ИЗГОТОВЛЕНИЯ И ОТБОРА ОБРАЗЦОВ
1.1. Призменную прочность, модуль упругости и коэффициент Пуассона следует определять на образцах-призмах квадратного сечения или цилиндрах круглого сечения с отношением высоты к ширине (диаметру), равным 4. Ширина (диаметр) образцов должна приниматься равной 70, 100, 150, 200 или 300 мм в зависимости от назначения и вида конструкций и изделий. За базовый принимают образец размерами 150х150х600 мм.
Размеры образцов в зависимости от наибольшей крупности заполнителя должны удовлетворять требованиям ГОСТ 10180-78.
1.2. Отклонение размеров и формы образцов от номинальных, неплоскостность их опорных поверхностей, прилегающих к плитам пресса, а также отклонение от перпендикулярности опорных и боковых поверхностей образцов не должны превышать значений, установленных ГОСТ 10180-78.
1.3. Отбор проб и изготовление образцов из бетонной смеси либо отбор образцов, изготовленных путем выбуривания или выпиливания их из изделий, конструкций и сооружений, производят по ГОСТ 10180-78.
1.4. Образцы изготовляют сериями. Серия должна состоять из трех образцов.
1.5. Правила выдерживания образцов и сроки испытаний следует принимать по ГОСТ 10180-78, если нет других требований, предусмотренных стандартами или техническими условиями на бетонные и железобетонные конструкции и изделия или рабочими чертежами конструкций. Образцы, высверленные или выбуренные из конструкций или изделий, должны до испытания находиться под влажной тканью за исключением образцов, требующих иных условий твердения, предусмотренных ГОСТ 10180-78.
2. ОБОРУДОВАНИЕ И ПРИБОРЫ
2.1. Для измерения деформаций следует применять тензометры по ГОСТ 18957-73* и другие приборы, обеспечивающие измерение относительных деформаций с точностью не ниже 1·10.
* На территории Российской Федерации отменен (здесь и далее).
Допускается использовать проводниковые тензорезисторы по ГОСТ 21616-76*, наклеиваемые на поверхность бетона.
* На территории Российской Федерации документ не действует. Действует ГОСТ 21616-91. - Примечание изготовителя базы данных.
2.2. Термометры и индикаторы для измерения деформации устанавливают на образце с помощью прижимных приспособлений (рамок, струбцин, опорных вставок) в соответствии с фиксируемой базой измерения деформаций по п.3.5. Прижимные приспособления должны обеспечивать неизменное положение тензометров и индикаторов относительно образца в процессе измерения деформации.
2.3. Прессы и испытательные машины должны удовлетворять требованиям ГОСТ 28840-82*. Допускается применение другого испытательного оборудования, отвечающего требованиям ГОСТ 10180-78.
* На территории Российской Федерации документ не действует. Действует ГОСТ 28840-90. - Примечание изготовителя базы данных.
2.4. Формы для изготовления образцов следует применять в соответствии с требованиями ГОСТ 22685-89, а оборудование для изготовления образцов, приборы и инструменты для определения отклонений размеров и формы образцов от номинальных и отклонение от плоскостности их опорных поверхностей по ГОСТ 10180-78.
2.5. Для определения плотности (объемной массы) бетона образцов следует применять оборудование по ГОСТ 12730.0-78 и ГОСТ 12730.1-78.
2.6. Для определения призменной прочности, модуля упругости бетона, подвергающегося в процессе эксплуатации нагреву, насыщению водой, нефтепродуктами и другими жидкостями, дополнительно применяют оборудование по приложениям 1 и 2.
2.7. Испытательные машины (прессы) и приборы должны быть аттестованы и проверены в установленном порядке организациями Госстандарта или ведомственными метрологическими службами в соответствии с ГОСТ 8.001-80* и МУ 8.7-77.
* На территории Российской Федерации действуют ПР 50.2.009-94**.
3. ПОДГОТОВКА К ИСПЫТАНИЯМ
3.1. Перед испытанием образцы следует осмотреть, устранить имеющиеся дефекты, отдельные выступы на гранях снять наждачным камнем, измерить линейные размеры, проверить отклонение формы и размеров в соответствии с ГОСТ 10180-78.
3.2. Плотность (объемную массу) и влажность бетона в момент испытания (в тех случаях, когда это необходимо) определяют по ГОСТ 12730.1-78 и ГОСТ 12730.2-78.
3.3. Перед испытанием образцы должны не менее 2 ч находиться в помещении лаборатории, кроме образцов, испытываемых при нагреве.
3.4. Интервал рабочих температур помещения, где проводятся испытания, - от 10 °С до 30 °С по ГОСТ 18957-73.
3.5. На боковых поверхностях образцов следует разметить центральные линии для установки приборов для испытания деформаций и центрирования образцов по оси испытательной машины (пресса).
По центральным линиям размечают базы измерения продольных и поперечных деформаций образцов.
База измерения деформаций должна в 2,5 раза и более превышать наибольший размер зерен заполнителя и быть не менее 50 мм при использовании тензорезисторов и 100 мм - при использовании других приборов для измерения деформаций.
База измерения продольных деформаций должна быть не более высоты образца и располагаться на одинаковом расстоянии от его торцов.
3.6. Приборы для измерения деформаций образцов должны быть установлены по четырем его граням или по трем или четырем образующим цилиндра, развернутым под углом 120 или 90°. Приборы для измерения поперечных деформаций должны быть установлены посередине высоты образца нормально базам измерения продольных деформаций.
Для крепления индикаторов используют приспособления в виде стальных рамок, закрепляемых на образце с помощью четырех упорных винтов - по два с противоположных сторон образца - или опорных вставок, приклеиваемых на образце (см. чертеж).
Рамки следует изготовлять из стальных полос, опорные вставки - из стальных квадратов или прутков с отверстиями для крепления индикаторов. Масса соединительной вставки для измерения поперечных деформаций образца не должна превышать 10 г в соответствии с требованиями ГОСТ 18957-73. В качестве соединительной вставки для измерения продольных деформаций следует применять соединительные вставки-рамки, обеспечивающие возможность измерения деформаций до конца разрушения образца.
Для крепления опорных вставок следует применять быстрополимеризующийся клей с малым набуханием.
Перед наклеиванием поверхность образца следует обезжирить органическим растворителем, а затем нагреть опорную вставку до температуры 50 °С - 60 °С. Опорную вставку в горячем состоянии прижимают к поверхности образца, предварительно нанеся на нее клей.
Рекомендуемая схема установки приспособлений для крепления индикаторов при измерении продольных и поперечных деформаций образца приведены на чертеже.
3.7. Подготовку образцов, насыщенных водой, нефтепродуктами и другими жидкостями, проводят по методике, предусмотренной в приложении 1. Для устранения влагопотерь производят гидроизоляцию образцов в соответствии с ГОСТ 24544-81.
3.8. Призменную прочность и модуль упругости бетонов, подвергающихся в процессе эксплуатации нагреву, определяют с применением оборудования и выполнением дополнительных требований, предусмотренных в приложениях 2 и 3.
Схема установки приспособлений для крепления индикаторов при измерении продольных и поперечных деформаций образца
4. ПРОВЕДЕНИЕ ИСПЫТАНИЙ
4.1. При определении модуля упругости и коэффициента Пуассона шкалу силоизмерителя испытательного пресса (машин) выбирают из условия, что ожидаемое значение разрушающей нагрузки должно быть от 70% до 80% от максимальной, допускаемой выбранной шкалой. При определении призменной прочности шкалу силоизмерителя выбирают в соответствии с требованиями ГОСТ 10180-78.
4.2. Перед испытанием образец с приборами устанавливают центрально по разметке плиты пресса и проверяют совмещение начального отсчета с делением шкалы прибора.
4.3. Начальное усилие обжатия образца, которое в последующем принимают за условный нуль, должно быть не более 2% от ожидаемой разрушающей нагрузки.
Значение ожидаемой разрушающей нагрузки при испытании образцов устанавливают по данным о прочности бетона, принятой в технической документации, или по прочности на сжатие изготовленных из одного замеса образцов-кубов, определенной в соответствии с ГОСТ 10180-78. Ее значение при одинаковых сечениях кубов и призм следует принимать от 80 до 90% средней разрушающей нагрузки образцов-кубов.
4.4. При центрировании образцов необходимо, чтобы в начале испытания от условного нуля до нагрузки, равной (40±5%) отклонения деформаций по каждой грани (образующей) не превышали 15% их среднего арифметического значения.
При несоблюдении этого требования при нагрузке, равной или большей (15±5%) , следует разгрузить образец, сместить его относительно центральной оси разметки плиты пресса в сторону больших деформаций и вновь произвести его центрирование.
Образец бракуют после пяти неудачных попыток его центрирования.
4.5. При центрировании образцов деформации фиктивных волокон, совпадающих с центрами отверстий, в которых крепят индикаторы (см. чертеж), относят к граням образца и определяют по формулам:
где и - деформации фиктивных волокон на противоположных гранях образца;
и - деформации, отнесенные к граням образца;
- размер стороны образца;
- расстояние от грани образца до центра отверстий, в которых крепят индикаторы.
4.6. При определении призменной прочности, модуля упругости и коэффициента Пуассона бетона нагружение образца до уровня нагрузки, равной (40±5)%, следует производить ступенями, равными 10% ожидаемой разрушающей нагрузки, сохраняя в пределах каждой ступени скорость нагружения (0,6±0,2) МПа/с.
На каждой ступени следует производить выдержку нагрузки от 4 до 5 мин (при нагреве - до 15 мин) и записывать отсчеты по приборам в начале и в конце выдержки ступени нагрузки в журнал по форме приложения 4.
При уровне нагрузки, равной (40±5)%, снимают приборы с образца, если нет других требований, предусмотренных программой испытания. После снятия приборов дальнейшее нагружение образца следует производить непрерывно с постоянной скоростью в соответствии с требованием ГОСТ 10180-78.
Определение модуля упругости бетона
Дата введения 2015-07-01
Предисловие
Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"
Сведения о стандарте
1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ), подразделением ОАО "НИЦ "Строительство"
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2014 г. N 72-П)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97
Сокращенное наименование национального органа по стандартизации
Минэкономики Республики Армения
Госстандарт Республики Казахстан
4 Приказом Федерального агентства по техническому регулированию и метрологии от 11 декабря 2014 г. N 1971-ст межгосударственный стандарт ГОСТ 25820-2014 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2015 г.
5 Настоящий стандарт соответствует следующим европейским стандартам:
EN 13055-1:2004* "Заполнители легкие. Часть 1. Легкие заполнители для бетона, строительного раствора и жидкого цементного раствора" ("Lightweight aggregates - Part 1: Lightweight aggregates for concrete, mortar and grout", NEQ);
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
EN 206-1:2000 "Бетон. Часть 1. Технические требования, эксплуатационные характеристики, производство и соответствие требованиям" ("Concrete - Part 1: Specification, perfomance, production and conformity", NEQ) в части требований к заполнителям и легким бетонам
7 ПЕРЕИЗДАНИЕ. Декабрь 2019 г.
Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.
В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"
1 Область применения
Настоящий стандарт распространяется на легкие бетоны (далее - бетоны), применяемые во всех областях строительства и изготовляемые на цементном вяжущем, пористом неорганическом крупном заполнителе, пористом (природном и/или искусственном) или плотном мелком неорганическом заполнителе и добавках, регулирующих свойства бетонной смеси и бетона, на заводах товарного бетона или заводах сборных бетонных и железобетонных конструкций, а также в условиях строительной площадки.
Настоящий стандарт устанавливает технические требования к бетонам, правила приемки и методы контроля.
Настоящий стандарт не распространяется на ячеистые бетоны, бетоны на органических заполнителях (полистиролбетон, арболит) и специальные бетоны (жаростойкие, химически стойкие, радиационно стойкие, декоративные, напрягающие и др.).
Требования настоящего стандарта следует соблюдать при разработке новых и пересмотре действующих стандартов и технических условий, проектной и технологической документации на сборные бетонные и железобетонные изделия (далее - изделия) и монолитные конструкции (далее - конструкции), утвержденных в установленном порядке.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:
ГОСТ 4.212 Система показателей качества продукции. Строительство. Бетоны. Номенклатура показателей
ГОСТ 5494 Пудра алюминиевая. Технические условия
ГОСТ 5578 Щебень и песок из шлаков черной и цветной металлургии для бетонов. Технические условия
ГОСТ 6133 Камни бетонные стеновые. Технические условия
ГОСТ 7076 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме
ГОСТ 7473 Смеси бетонные. Технические условия
ГОСТ 8735 Песок для строительных работ. Методы испытаний
ГОСТ 8736 Песок для строительных работ. Технические условия
ГОСТ 9758 Заполнители пористые неорганические для строительных работ. Методы испытаний
ГОСТ 10060 Бетоны. Методы определения морозостойкости
ГОСТ 10178 Портландцемент и шлакопортландцемент. Технические условия
ГОСТ 10180 Бетоны. Методы определения прочности по контрольным образцам
ГОСТ 10181 Смеси бетонные. Методы испытаний
ГОСТ 10832 Песок и щебень перлитовые вспученные. Технические условия
ГОСТ 12730.0 Бетоны. Общие требования к методам определения плотности, влажности, водопоглощения, пористости и водонепроницаемости
ГОСТ 12730.1 Бетоны. Метод определения плотности
ГОСТ 12730.2 Бетоны. Метод определения влажности
ГОСТ 12730.3 Бетоны. Метод определения водопоглощения
ГОСТ 12730.4 Бетоны. Метод определения показателей пористости
ГОСТ 12730.5 Бетоны. Методы определения водонепроницаемости
ГОСТ 13015 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения
ГОСТ 17623 Бетоны. Радиоизотопный метод определения средней плотности
ГОСТ 17624 Бетоны. Ультразвуковой метод определения прочности
ГОСТ 18105 Бетоны. Правила контроля и оценки прочности
ГОСТ 21718 Материалы строительные. Диэлькометрический метод измерения влажности
ГОСТ 22263 Щебень и песок из пористых горных пород. Технические условия
ГОСТ 22266 Цементы сульфатостойкие. Технические условия
ГОСТ 22690 Бетоны. Определение прочности механическими методами неразрушающего контроля
ГОСТ 22783 Бетоны. Метод ускоренного определения прочности на сжатие
ГОСТ 23732 Вода для бетонов и строительных растворов. Технические условия
ГОСТ 24211 Добавки для бетонов и строительных растворов. Общие технические условия
ГОСТ 24452 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона
ГОСТ 24544 Бетоны. Методы определения деформаций усадки и ползучести
ГОСТ 25137 Материалы нерудные строительные, щебень и песок плотные из отходов промышленности, заполнители для бетона пористые. Классификация
ГОСТ 25192 Бетоны. Классификация и общие технические требования
ГОСТ 25592 Смеси золошлаковые тепловых электростанций для бетонов. Технические условия
ГОСТ 26644 Щебень и песок из шлаков тепловых электростанций для бетона. Технические условия
ГОСТ 27005 Бетоны легкие и ячеистые. Правила контроля средней плотности
ГОСТ 27006 Бетоны. Правила подбора состава
ГОСТ 28570 Бетоны. Методы определения прочности по образцам, отобранным из конструкций
ГОСТ 30108 Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов
ГОСТ 30244 Материалы строительные. Методы испытаний на горючесть
В Российской Федерации действует ГОСТ Р 57270-2016.
ГОСТ 30459 Добавки для бетонов и строительных растворов. Определение и оценка эффективности
ГОСТ 31108 Цементы общестроительные. Технические условия
ГОСТ 31384 Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования
ГОСТ 32496 Заполнители пористые для легких бетонов. Технические условия
3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 бетон легкий: Бетон на цементном вяжущем, пористом крупном неорганическом заполнителе, пористом (природном и/или искусственном) или плотном мелком неорганическом заполнителе по ГОСТ 25137 и добавках, регулирующих свойства бетонной смеси и бетона.
Что такое модуль упругости бетона?
В расчете железобетонных конструкций по второй группе предельных состояний применяют физическую величину, называемую модулем упругости бетона, или модулем Юнга. Он характеризует свойства твердого вещества в зоне упругих деформаций.
СодержаниеПонятие модуля упругости
Тело восстанавливает размеры и форму после прекращения внешнего воздействия. Здесь применяется закон Гука, где абсолютное сжатие или удлинение прямо пропорционально приложенной силе с коэффициентом пропорциональности, равным модулю упругости.
С ростом нагрузки тело вступает в фазу необратимых изменений, где деформации носят неупругий пластичный характер. В этой зоне удлинение или сжатие образцов при испытаниях происходят без значительного увеличения внешней силы.
В рыхлых непрочных смесях присутствует стадия псевдопластических деформаций, когда с уменьшением нагрузки изменения размеров нарастают. Появляются отслоения, трещины и другие деструкции тела бетона.
Последующее увеличение усилий растяжения или сжатия приводят к полному разрушению образца.
Линейная зависимость между напряжением и деформациями в фазе упругости выражается формулой:
Модуль упругости определяют опытным путем. При испытаниях строят диаграмму зависимости деформаций от усилий, прикладываемых к образцу. Тангенс угла кривизны на участке упругих изменений размеров и есть искомая величина. Значения для разных классов и марок бетона занесены в таблицы.
Зная E и действующие усилия, рассчитывают упругие абсолютные деформации бетона в конструкции по формуле:
Чем больше модуль упругости, тем меньшие деформации при нагрузках испытывает материал. Значения E варьируются от 19 до 40 МПа*10 -3 .
От чего зависит модуль упругости бетона?
Упругие свойства бетона зависят от факторов:
- качества и объемного содержания заполнителей;
- класса материала;
- температуры воздуха и интенсивности радиоактивного излучения;
- влажности среды;
- времени воздействия нагрузки;
- условий твердения смеси;
- возраста бетона;
- армирования.
Заполнители
Крупный заполнитель, обладая высоким модулем Юнга, увеличивает упругие свойства бетона. Мелкие пылеватые частицы, поры и пустоты снижают их.
Класс бетона
Температура и радиация
Повышение температуры окружающей среды, интенсивности солнечной радиации приводят к уменьшению упругих свойств и росту деформаций. Связано это с увеличением внутренней энергии бетона, изменению траекторий движения молекул в твердом теле, линейному расширению материала, и, как следствию, усилению пластичности.
Разницу не учитывают при колебаниях в пределах 20°С. Большие температурные изменения существенно влияют на деформацию бетонных конструкций. В таблице СП 63.13330.2012 указаны величины модулей упругости в зависимости от температуры.
Влажность
Колебания влажности воздуха приводят к изменению упругих свойств материала. В расчетах применяют коэффициент ползучести φ. Чем больше содержание водяных паров в окружающей среде, тем ниже показатель и соответственно меньше пластические деформации конструкции.
Примечание: Относительную влажность воздуха принимают по СП 131.13330.2012 как среднемесячную влажность самого теплого месяца года в регионе строительства.
Время приложения нагрузки
Модуль упругости зависит от времени действия нагрузки. При мгновенном нагружении конструкции деформации пропорциональны величине внешних сил. При длительных напряжениях величина E уменьшается, изменения развиваются по нелинейной зависимости и суммируются из упругих и пластичных деформаций.
Условия набора прочности
При проведении испытаний замечено, что у бетона естественного твердения модуль упругости выше, чем при обработке материала пропариванием при атмосферном давлении или в автоклавных установках.
Это объясняется тем, что изменение условий набора прочности приводит к образованию большего количества пор и пустот из-за неравномерного температурного расширения объема, ухудшения качества гидратации цементных зерен. Такой бетон обладает более низкими упругими свойствами по сравнению с затвердевшим в нормальных условиях.
Возраст бетона
Свежеуложенный бетон набирает прочность в течение 28 суток. Но даже по истечении этого времени материал при нагрузке обладает одновременно упругими и пластическими свойствами. Наибольшей твердости он достигает примерно через 200-250 суток. Показатель E в этом возрасте максимальный, соответствующий марочной прочности.
Армирование конструкций
Для восприятия растягивающих и сжимающих усилий в железобетон помещают каркасы или сетки из арматуры классов АI, AIII, А500С, Ат800, а также из композитов или древесины.
Применение армирования увеличивает упругость, прочность конструкции на сжатие и на растяжение при изгибе, препятствует образованию усадочных и деформационных трещин.
Способы определения
Модуль упругости бетона определяют:
- механическим испытанием образцов;
- неразрушающим ультразвуковым методом, основанным на сравнении скорости распространения волн в существующей конструкции и испытанном образце с заданными характеристиками.
Механический способ
Исследование первым методом проводят согласно ГОСТ 24452-80. Изготавливают образцы с сечением в виде квадрата или круга с соотношением высоты к диаметру (ширине), равным 4.
Образцы сериями по три штуки выбуривают, высверливают или выпиливают из готовых изделий, либо набивают формы согласно ГОСТ 10180-78. До начала испытаний призмы или цилиндры выдерживают под влажной тканью.
Для определения модуля упругости бетона используют прессы со специальными базами для измерения деформаций. Они состоят из приборов, расположенных под разными углами к граням образца. Индикаторы крепят к стальным рамкам или приклеенным опорным вставкам.
Если испытания проводят для конструкций, работающих при повышенной влажности или высокой температуре, выполняют специальную подготовку по ГОСТ 24452-80.
Испытания проводят по схеме:
- Образцы с индикаторами помещают под пресс, совмещая ось заготовки с центром плиты оборудования. Величину разрушающей нагрузки назначают, исходя из марочной прочности бетона.
- Нагрузку увеличивают постепенно, ступенями по 10% от разрушающей. Выдерживают интервалы 4-5 минут.
- Доводят усилие до 40-45% от максимального. Если программа не предусматривает другие требования, приборы снимают. Дальнейшее нагружение проводят с постоянной скоростью.
- Производят обработку результатов для каждого образца при нагрузке, равной 30% от разрушающей. Все данные заносят в журнал испытаний.
На основе исследований можно судить о начальном модуле упругости бетона. Эта величина характеризует свойства материала при нагрузке, в пределах которой в образцах возникают обратимые изменения. Показатель обозначается как Eb, его значение для каждого класса бетона внесено в таблицы строительных норм и маркировку изделий.
Так, модуль упругости бетона В15 естественного твердения составляет 23, а подвергнутого тепловой обработке 25 МПа*10 -3 .
Величина модуля упругости бетона для классов В20, В25, В30, В35 и В40 равна 27, 30, 32,5, 34,5 и 36 МПа*10 -3 . В пропаренных конструкциях она соответствует 24,5, 27, 29, 31 и 32,5 МПа*10 -3 .
Ультразвуковой способ
Применяется для исследования конструкций без их локального разрушения. При повышенной влажности такой метод определяет модуль упругости с погрешностью 15-75%, так как скорость распространения ультразвуковых колебаний в водной среде возрастает.
Чтобы избежать ошибок при измерениях, разработан метод определения модуля Юнга с учетом влажности бетона. Он основан на опытных испытаниях серий образцов с различной водонасыщенностью.
Нормативные и расчетные значения сопротивления бетона получают, используя корректирующие коэффициенты с учетом условий работы конструкции. Методика расчета описана в СП 63.13330.2012.
Читайте также: