Минералогический состав цементного камня
Цемент: его состав и свойства
Сегодня существует огромное количество различных стройматериалов, которые имеют свои преимущества и недостатки. Но, пожалуй, самым популярным из них является цемент. Его используют практически на всех этапах строительства, начиная от монтажа фундамента и заканчивая внутренней отделкой стен. Объяснить его популярность достаточно просто: он обладает высокой прочностью, вяжущим эффектом, позволяет скрыть любые дефекты, с легкостью выдерживает повышенные нагрузки, не боится отрицательных температур. Можно смело сказать, что до сих пор аналогов цементу просто не существует. Именно поэтому он еще долгое время будет оставаться №1 среди всех видов стройматериалов.
Что такое цемент?
Цемент – это стройматериал, который выступает в качестве вяжущего элемента в различных растворах. В целом он представляет собой серый порошок. В отдельно взятых случаях он может иметь изумрудный оттенок. Итоговый цвет цементного порошка зависит от добавок, которые в нём содержатся.
Чтобы получить бетонную смесь, необходимо смешать цемент, воду, песок. При необходимости могут добавляться и другие компоненты. Их выбор зависит от целей и задач, которые необходимо решить. После добавления воды все компоненты образуют пластичную массу, которая со временем начинает затвердевать и трансформироваться в высокопрочный искусственный камень.
История появления цемента
Первое упоминание о цементе появилось примерно 2200 лет назад. В те времена цемент готовили из извести, пемзы, туфа и вулканического пепла. Полученный состав использовали в качестве скрепляющего вещества при строительстве каменных зданий. Также из цемента изготавливали цельнолитые конструкции. Но они были недостаточно прочными, из-за чего их надёжность оставляла желать лучшего.
С каждым столетием качество цемента повышалось, и в 1824 г. Джозеф Аспдин разработал аналог современного портландцемента. Он отличался прекрасным вяжущим эффектом, благодаря чему его можно было использовать для приготовления бетона. Затвердевший материал отличался повышенной прочностью и износостойкостью.
Однако, несмотря на то, что он прекрасно выдерживал сжатие, растяжения бетона приводили к его разрушению. Инженеры обратили внимание на тот факт, что металлические балки, наоборот, не боятся растяжений, но плохо работают на сжатие. В итоге практически одновременно несколько специалистов пришли к выводу, что необходимо объединить эти две особенности.
В начале 1850-ых годов французский инженер Жан-Луи Ламбо построил небольшие лодки. В качестве исходного материала он использовал бетон, который армировал железной сеткой. Спустя несколько лет Уильям Уилкинсон стал первым, кто решил армировать металлическими балками бетонные панели. Полученные ЖБ-конструкции использовали при строительстве 2-этажного дома.
В 1854-м г. инженер-строитель Франсуа Куанье также проводил эксперименты с железобетоном. Он первым решил связать стальную арматуру перекрытий с боковыми панелями. Однако в массовом производстве железобетон начал использовать человек, который вообще не имел отношения к строительству, – это Джозеф Монье. В 1846-ом г. его назначили садовником в саду неподалёку от Лувра. Для пересадки апельсиновых деревьев на зиму в теплицу ему нужны были прочные и надежные кадки. Монье решил сделать их из бетона, но у него ничего не получалось. Полученные кадки все время трескались, даже не застыв. В итоге он решил укрепить их металлическими стержнями.
Тогда цемент не отличался прочностью и разрушался при малейших перепадах температур. Но на удивление Монье, его изобретение за 3 года интенсивной эксплуатации так и не вышло из строя – ни одна кадка не растрескалась. После этого садовник начал изготавливать из бетона и другие элементы ландшафтного дизайна.
Через несколько лет на парижской выставке он получил патент за использование армированного бетона в искусственных водоёмах. После этого последовало еще несколько патентов, в том числе за открытие ЖБ- балок, шпал, мостовых конструкций и других изделий. Через несколько лет вчерашний садовник стал самым узнаваемым человеком во Франции. Под его руководством был построен мост в замке Шазелье и еще много других конструкций.
Спустя некоторое время Монье продал все патенты инженеру-строителю Густаву Вайсу. Он, в свою очередь, сместил арматуру в сторону, что позволило повысить прочность и износостойкость железобетонных панелей. Можно смело сказать, что изобретение армированного бетона стало одним из важнейших событий в истории строительства.
Минералогический состав цементного камня на портландцементе.
Из различных видов сырья получают множество разнообразных вяжущих веществ, которые требуют различной технологической обработки.
Важнейшими окислами основной группы водостойких (гидравлических) вяжущих веществ, имеющих массовое применение в строительстве, являются окись кальция СаО, кремнезем Si02, глинозем А1203 и окись железа Fe203. В небольшом количестве содержится в вяжущих веществах окись магния MgO и гипс, а также щелочи Na20 и К2О.
При обжиге исходного сырья эти элементы образуют силикаты, алюминаты и ферриты, представляющие собою сложные соединения. Для цементов, полученных на основе портландцементного клинкера, основными минералами являются силикаты, для глиноземистого цемента — алюминаты. Основными минералами портландцементного клинкера, как известно, являются трехкальциевый силикат ЗСаО; Si02—алит (C3S), двухкальциевый силикат 2СаО ; Si02—белит (C2S), трехкальциевый алюминат ЗСаО ; А l203 (С3А) и четырехкальциевый алюмоферрит 4СаО-Al203-Fe203(C4AF).
В портландцементном клинкере находятся также двух- и однокальциевый ферриты 2СаО- Fe203(C2F) и СаО Fe203(CF).
В цементном клинкере помимо C4AF присутствует также новый минерал, состав которого выражается формулой: 46СаО 16А1203 7Fe263.
В наибольшем количестве в состав портландцементного клинкера входят трех- и двухкальциевый силикаты, в сумме они составляют обычно 70—80%.' Остальные 20—30% составляют прочие материалы, собирательно называемые минералами-плавнями.
В настоящее время под общим названием портландцемент подразумевается группа вяжущих, свойства которых в зависимости от содержания в клинкере тех или иных минералов меняются в широких пределах.
Для самых разнообразных по химическому составу лортландцемантных клинкеров соотношение между минералами-силикатами и минералами-плавнями сохраняется практически постоянным и составляет в среднем 75:25. К минералам-силикатам относятся трех- и двухкальциевые силикаты (C3S; <-S); к минералам-плавням относятся трехкальциевый алюминат (OA), четырехкальциевый алюмоферрит (C4AF), двух- и однокальциевый ферриты (C2F; CF). Учитывая, что в портландцементном клинкере других алюминатов по сравнению с С3А содержится относительно мало, а также и то, что ферриты обычно связаны в аллюмоферритах, в основу классификации было положено соотношение минералов-плавней С3А и C4AF.
Помимо указанных минералов, в портландцементном клинкере содержится стекловидная фаза. При этом чем быстрее идет процесс остывания клинкера, тем больше образуется в нем стекловидной фазы. Количественное определение стекла в клинкере сложно и недостаточно точно.
Свойства портландцементов изменяются в широких пределах в зависимости от минералогического состава клинкера. Так, например, высокоалюминатные портландцементы характеризуются сравнительно большой скоростью нарастания прочности с повышенным тепловыделением. Белитовые портландцементы, наоборот, сравнительно медленно твердеют с малым выделением тепла.
Условия твердения затворенного водой портландцемента характеризуются тем, что реакции протекают в присутствии воды, насыщенной Са(ОН)2. Типичными реакциями являются реакции, протекающие с присоединением воды: реакции гидратации, если присоединение воды идет без распада основного вещества, и реакции гидролиза, когда присоединение воды сопровождается распадом исходного вещества. Обе эти реакции, протекающие при твердении цемента, принято обобщенно называть гидратацией.
Скорость гидратации зерен портландцементного порошка зависит от химико-минералогического состава клинкерных зерен, их размеров, температуры твердения, величины водоцементного отношения и ряда других факторов.
Наиболее быстро гидратирующимся минералом портландцементного клинкера является трехкальциевый алюминат, за ним идет четырехкальциевый алюмоферрит, далее трехкальциевый силикат и, наконец, двухкальциевый силикат.
Не останавливаясь на последовательности развития процессов гидратации, отметим лишь, что в результате в цементном камне портландцемента образуются следующие гидраты:
при гидратации трехкальциевого силиката—Са(ОН)2 и 2СаО•Si02•nН20, при гидратации двухкальциевого силиката—2СаО•Si02•nН20.
При гидратации алюминатов возможно образование следующих гидроалюмипатов:
4CaO•А1203•12Н20 —при гидратации ЗСаО•А1203 в растворах Са(ОН)2 концентрации выше 1,08 г/л.
Из гидроалюминатов кальция наиболее устойчивым является шестиводный гидрат, который становится основным гидроалюмина-|ом этой группы при высокой температуре.
В результате гидратации четырехкальциевого алюмоферрита образуется трехкальциевый гидроалюминат и однокальциевый гидроферрит. При гидратации C4AF в насыщенных растворах Са(ОН)2 возможно повышение основности этих гидроалюминатов и гидроферритов.
Известны два основных направления, объясняющие сущность процесса формирования цементного камня
Процесс образования портландцементного камня объясняется тем, что клинкерные соединения обладают в воде большей растворимостью,бчем продукты их гидратации. Поэтому негидратированные минералы постепенно превращаются в менее растворимые и, следовательно, устойчивые продукты гидратации. Второе основное положение той теории сводится к тому, что продукты реакции выделяются в виде опутанных игольчатых кристаллов, образующих так называемый кристаллический сросток. Это и придает затвердевшей массе высокую прочность.
Причиной твердения портландцемента считал образование студней-гелей, получающихся в результате гидратации зерен портландцемента. С течением времени рыхлые и неплотные гели становятся все более и более плотными, отчасти в результате высыхания, а главным образом вследствие так называемого «внутреннего отсасывания», заключающегося в том, что еще нетронутые, более глубокие слои клинкерных зерен продолжают гидратироваться за счет присоединения воды, «отсасываемой» из ранее образовавшихся масс геля.
Рассмотренные теории не объясняют процессов твердения всех нижущих веществ, твердеющих с присоединением воды.
Состав портландцемента, его взаимодействие с водой, производство
Портландцемент часто называется просто цементом – это важнейшее минеральное вяжущее вещество. Порошкообразный материал, содержащий искусственные минералы, большинство которых в природе не встречаются или встречаются крайне редко. Эти минералы обладают высокой химической активностью и способны взаимодействовать с водой. Портландцементом называется гидравлическое вяжущее вещество, получаемое тонким измельчением портландцементного клинкера с гипсом и другими специальными добавками. Клинкер получают обжигом до спекания тонкодисперсной однородной сырьевой смеси, состоящей из известняка, глины, кремнезёма. Гипс вводится с целью регулирования, скорости схватывания и некоторых других свойств. Клинкерный порошок без гипса при смешивании с водой быстро схватывается и затвердевает в цементный камень с пониженными прочностными свойствами. Согласно ГОСТ 1581-96 в портландцемент разрешается вводить при помоле до 15 % активных минеральных добавок. При этом, название, цемента не меняется. Свойства портландцемента определяются, прежде всего, качеством клинкера.
Считается, что портландцемент был изобретен в Англии каменщиком Джозефом Аспдином, который получил патент в 1824 году на изготовление вяжущего вещества из смеси извести с глиной обжигом её до полного удаления углекислоты. Это вяжущее он назвал портландцементом. Однако в России, портландцемент был получен несколько ранее, в 1817 году начальником военно-рабочей команды Е. Г. Челиевым. В 1825 году им была: издана книга о получении вяжущего вещества, аналогичного по составу применяемому ныне портландцементу.
Историческая справка
Портландцементный клинкер и его химический состав
Портландцементный клинкер обычно получают в виде спёкшихся мелких и более крупных гранул и кусков размером до 10-20 или до 50-60 мм в зависимости: от типа печи. По микроструктуре клинкер, получаемый спеканием, представляет собой сложную тонкозернистую смесь кристаллических фаз и небольшого количества стекловидной фазы. Химический состав клинкера колеблется в широких пределах. Главными окислами цементного клинкера является окись кальция CaO, двуокись кремния SiО2, окись алюминия Аl2O3 и окись железа Fe2O3, суммарное содержание которых достигает обычно 95-97%. Кроме них имеются примеси окиси магния MgО, серный ангидрит SO3, двуокись титана ТiО2, окись хрома Cr2O3, окись марганца Мn2O3, щёлочи Na2O и K2O, фосфорный ангидрит P2O5 и др. Ориентировочно химический состав портландцемента выглядит следующим образом: CaO 63-66%; SiО2 21-24%; Аl2O3 4-8%; Fe2O3 2-4%; MgО 0,5-5%; SO3 0,3-1%; Na2O и K2O 0,4-1%; ТiО2 и Сг2O 0,2-0,5%; P2O5 0,1-0,3%.
Минералогический состав портландцементного клинкера
Образующийся в результате обжига сырьевой смеси клинкер, имеет достаточно сложный минералогический состав. Основную роль в нем играют четыре минерала.
Трёхкальциевый силикат Ca3SiO5 или 3CaO•SiO2 (C3S). Образующийся в портландцементном клинкере трёхкальциевый силикат содержит некоторое количество примесей MgO, Al2O3, Fe2O3, Cr2O3, которые влияют на его структуру и свойства. Эта разновидность называется алитом и обозначается С3S. Содержание алита в клинкере наибольшее и составляет 40-55%. При рассмотрении процессов гидратации цементов примесями, входящими в трёхкальциевый силикат, как правило, пренебрегают, и все расчёты ведутся на чистую систему 3CaO•SiO2. В портландцементе алит обеспечивает набор точности камня в ранние сроки твердения (от нескольких дней до 3-х месяцев). Трёхкальциевый силикат получают в лабораторных условиях из химически чистых компонентов. Кристаллы алита имеют обычно шестигранную или прямоугольную форму, которая хорошо просматривается в шлифах клинкера в отраженном свете.
Двухкальциевый силикат Ca2SiO4 или 2CaO•SiO2 (C2S). В портландцементном клинкере присутствует в бета - модификации, называемой белитом. Количество его в клинкере составляет 20 - 30%. Белит имеет меньшую гидравлическую активность, по сравнению с алитом и обеспечивает рост прочности цементного камня на поздних стадиях твердения. Белит, как и алит представляет собой твёрдый раствор бета - двухкальциевого силиката (бета - 2СаO•SiO2) и небольшого количества (1-3) таких примесей как Аl2O3, Fе2O3, Сr2О3 и др. Гидравлическая активность белита также зависит от строения кристаллов. Цементы, в которых белит представлен округлыми плотными кристаллами с зазубренными краями со средним размером 20-50 мкм характеризуются повышенной прочностью. Расщепление кристаллов способствует повышению её гидравлической активности. Промежуточное вещество, расположенное между кристаллами алита белита включает алюмоферритную и алюминатную фазу.
Алюминаты кальция обычно встречаются в клинкере в виде трёхкальциевого алюмината С3Аl2O6 или 3CaO•Al2O3 (С3А). С3А кристаллизуется в кубической системе в виде очень мелких шестиугольников и прямоугольников. Содержится в цементном клинкере в количестве до 15%. Это наиболее химически активный минерал клинкера и именно его гидратация определяет сроки схватывания цементных растворов. Его присутствие в больших количествах ускоряет схватывание и твердение портландцементного раствора при низких температурах. При повышенном содержании трехкальциевого алюмината ослабляется устойчивость цементного камня в средах, содержащих сульфаты и сероводород. Алюмоферритная фаза представляет собой твердый раствор алюмоферритов кальция разного состава, который в свою очередь зависит от состава сырьевых смесей, условий обжига и т.п. При этом возможно образование серии твердых растворов между С6А2F, С4АF, C6AF2 и С2F. В клинкере алюмоферритная фаза по своему составу близка к четырёхкальциевому алюмоферриту.
Четырёхкальциевый алюмоферрит Ca4•Al2O5•Fe2O5 или 4CaO•AI2O3•Fe2O3 (C4AF) (браунмиллерит) - железосодержащий минерал обладающий достаточно высокой скоростью гидратации и обеспечивающий рост прочности системы в первые часы твердения. В портландцементах его количество находится в пределах 10-20%. Скорости процессов гидратации - примерно равны.
Кроме указанных минералов в состав клинкера входит стекловидная фаза, содержащая в своем составе незакристаллизованные ферриты, алюминаты, оксид магния, щелочные соединения и др. При резком охлаждении цементного клинкера стеклофаза, покрывая поверхность минералов, предотвращает фазовые переход. Окись магния находится в клинкере в виде: а) минерала периклаза; б) твердого раствора в алюмоферитной фазе или в трехкальциевом силикате; в) в клинкерном стекле. Вредное влияние MgO при содержании более 5% на равномерность изменения объема цемента проявляется в том случае, когда она присутствует в виде кристаллов периклаза, медленно реагирующих с водой в уже затвердевшем цементе и дающих Mg(ОН)2 характеризующийся увеличенным, удельным объемом. Щелочи: натрий и калий присутствуют в клинкере в виде сульфатов, а также входят в алюминатную и алюмоферритную фазу.
Для регулирования сроков схватывания цемента при помоле клинкера вводится 3-5% двуводного гипса. Кроме этого портландцемент может содержать до 15% кремнезёмосодержаших компонентов, в качестве которых могут использоваться молотый песок, шлаки, золы от сжигания твёрдых топлив. Введением добавок достигается два преимущества: во-первых, цемент стоит дешевле т.к. портландцементный клинкер дороже любой добавки; во-вторых, добавками можно регулировать свойства раствора и камня. Для придания специальных качеств цементу при его помоле вводятся гидрофобизаторы, пластификаторы и другие вещества.
Твердение портландцемента
При смешении цемента с водой на начальных стадиях твердения в реакцию гидратации интенсивно вступают алюминаты и алюмоферриты кальция, благодаря более высокой константе скорости растворения по сравнению с алитом и белитом. Раствор становится пересыщенным по отношению к конечному продукту и из него на поверхности зёрен клинкера и в объёме раствора образуются иглообразные кристаллы гидроалюминатов и гидроферритов кальция различного состава. В общем, виде их состав можно обозначить xCaO•yAI2O3•mН2О и xСаО•yFe2O3•mН2O. Значения коэффициентов x, y, m изменяются в различных соотношениях и зависят, главным образом, от термодинамических условий процессов гидратации. Через некоторое время (3-6 часов) в системе накапливается достаточно много кристаллогидратов и образуются "стеснённые" условия, приводящие к образованию коагуляционной структуры, которая по мере накопления гидроалюминатов переходит в кристаллизационную. Через 6 - 10 часов весь объём между постепенно уменьшающимися зёрнами цемента заполняется скелетом иглообразных кристаллов - продуктов гидратации алюминатных составляющих клинкера. Эта структура иногда называется алюминатной. Цементный раствор, бывший до этого пластичным, начинает терять подвижность и набирать прочность.
В оставшемся объёме одновременно с алюминатной, но со значительно меньшей скоростью, возникают продукты гидратации силикатных клинкерных минералов алита и белита. Последние образуют чрезвычайно тонко пористый ворс из очень малых кристаллов, так называемую силикатную структуру. Влияние этой структуры на прочность твердеющего цементного камня со временем всё более увеличивается. Она уже является собственно носителем прочности цементного камня и приблизительно через 1 сутки начинает преобладать над алюминатной. К месячному сроку в цементном камне обнаруживается практически только силикатная структура. К этому времени процесс гидратации не заканчивается и в ряде случаев может продолжаться годами за счёт неиспользованного клинкерного фонда цемента.
Структура цементного камня
Для полной гидратации цементного зерна необходимо наличие 0,4 кратного количества воды от его массы. При этом только 60% её (т.е. 0,25 от массы цемента) связывается химически, остальные (40 % исходной воды) остаются в порах цементного геля в слабосвязанном состоянии. Размер, гелевых пор около 3•10 -8 см. Они неизбежны и служат причиной тонкопористого строения гелевой массы. При химическом связывании вода претерпевает объёмную контракцию, которая составляет около 1/4 её первоначального объёма. Поэтому плотный объём геля (без пор) на такую же величину меньше суммы объёмов исходных компонентов цемента и воды. Этот процесс называют усадкой, а освобождавшийся в цементном камне объём - объёмом усадки. При твердении цементного камня в водной среде или при высокой влажности рассмотренный объём пор заполняется водой. Таким образом, при полной гидратации цемента получается гель, объём которого примерно на 30% состоит из пор.
Рассмотренный случай является идеальным и на практике практически никогда не встречается. Если количество воды будет меньше 0,4 от массы цемента, то её будет недостаточно для полной гидратации цементных зёрен, и в цементном камне останутся непрореагировавшие зёрна цемента. При избыточном количестве воды часть её не участвует в процессе гидратации и образует в камне капиллярные поры диаметром около 10 -4 см, которые на несколько порядков больше гелевых пор. Примерно таких же размеров достигают и пустоты, возникающие в результате уже упомянутой усадки. Таким образом, водоцементное отношение (В/Ц) в значительной мере определяет структуру цементного камня и его физико-механические свойства. Суммарная пористость камня возрастает с увеличением В/Ц.
Производство портландцемента
Производство портландцемента может быть разделено на два комплекса операций. Первый из них включает изготовление клинкера, второй - получение портландцемента измельчением клинкера совместно с гипсом, активными минеральными и другими добавками. Получение клинкера - наиболее сложный и энергоёмкий процесс, заключающийся в добыче сырья, его смешении и обжиге. В настоящее время применяют два основных способа подготовки сырьевой смеси из исходных компонентов: "мокрый", при котором помол и смешение сырья осуществляется в водной среде, и "сухой", когда материалы измельчаются и смешивается в сухом виде. Каждый из этих способов имеет свои положительные и отрицательные стороны. В водной среде облегчается измельчение материалов, при их совместном помоле быстро достигается высокая однородность смеси, но расход топлива на обжиг в 1,5-2 раза больше чем при сухом. Сухой способ, несмотря на его технико-экономические преимущества по сравнению с мокрым, длительное время находил ограниченное применение из-за пониженного качества получаемого клинкера, однако, успехи в технике тонкого измельчения и гомогенизации сухих смесей обеспечили возможность получения высококачественных, портландцементов и по сухому способу. Применение находит и третий, так называемый, комбинированный способ. Сущность его заключается в том, что подготовка сырьевой смеси осуществляется по мокрому способу, затем шлам обезвоживается на специальных установках и направляется в печь. Комбинированный способ по ряду данных почти на 20-30% снижает расход топлива по сравнению с мокрым, но при этом возрастает трудоёмкость производства и расход электроэнергии.
Обжиг сырьевой смеси осуществляется во вращающихся печах. Длина современных, вращающихся печей достигает 150-185 м и более, а диаметр 4-7 м. Скорость вращения печи составляет 0,5-1,2 об/мин. Шлам, проходя через печь и подвергаясь воздействию газов всё более высокой температуры, претерпевает ряд физических и физико-химических превращений. При температурах же 1300-1500 °С материал спекается, причём образуются клинкерные зерна размером до 15-20 мм и больше. Пройдя зону высоких температур, клинкер начинает охлаждаться потоками более холодного воздуха. Из печи он выходит с температурой 1000-1100 °С и направляется в колосниковый холодильник, где охлаждается до 30-50 °С. Охлаждённый клинкер поступает на склад. В процессе движения шлама по печи протекают следующие физико-химические процессы. В той части печи, где температура составляет 300-600 °С начинается энергичное испарение воды, которое сопровождается постепенным загустеванием шлама. Образуются крупные комья. Затем, три температуре 400-500 °С из материала выгорают органические пpимеси; начинается дегидратация каолинита, и других глинистых минералов с образованием, в частности; каолинитового ангидрида. Удаление из глины гидратной воды сопровождается потерей пластичности и связующих свойств, что приводит к распаду образовавшихся ранее комьев материала в подвижный порошок. Участок печи, где вода испаряется, и материал высыхает, называется зоной сушки. Следующая зона, где происходит дегидратация глины и идет дальнейшее нагревание до 700-800 °С, называется зоной подогрева. Эти две зоны занимают до 50 - 55% длины печи. При температурах 750-800 °С и выше в материале начинаются реакции в твердом состояний между его составляющими. Вначале они едва заметны, однако с повышением температуры материала до 1000 °С и более интенсивность их резко возрастает. Сначала в реакции вступают оксиды алюминия и железа. Они присоединяют к себе оксид кальция и образуются однокальциевый алюминат и однокальциевый феррит. В чистом виде эти соединения не существуют, а образуют твёрдый раствор, растворяются друг в друге. Количество присоединённого оксида кальция увеличивается с ростом температуры. При 900-1000 °С резко усиливается разложение карбоната кальция с образованием окиси кальция в свободном виде и углекислого газа СО2. Этот участок печи называют зоной кальцинирования. В этой зоне вследствие того, что разложение СаСО3 идёт с поглощением тепла потребление последнего наибольшее. На участке печи, где температура материала достигает 1000-1100 °С и где основная масса СaСO3 уже превратилась в свободную окись кальция здесь резко возрастает интенсивность реакций в твёрдом состоянии. Раствор алюмината и феррита кальция связывает всё большее количество оксида кальция и уже образуются двухкальциевый алюминат и феррит кальция. Этот твёрдый раствор содержит равное количество оксида алюминия и оксида кальция. Этот раствор имеет состав 4CaO•AI2O3•Fe2O3. В сырьевой смеси оксида алюминия содержится больше чем оксида железа, поэтому оставшийся алюминат кальция продолжает связывать оксид кальция с образованием трехкальциевого алюмината. Его образование заканчивается при температуре 1200 °С. Присоединение оксида кальция к оксиду кремния начинается при 600 °С, но достаточно быстро происходит при температуре 900-1100 °С. Реакции образования силикатов, алюминатов и ферритов кальция являются экзотермическими, что приводит к интенсивному повышению температуры материала на 150-200 °С на коротком участке печи в несколько метров. Этот участок печи получил название экзотермической зоны. К концу экзотермической зоны температура материала достигает, примерно, 1300 °С. При температуре 1250 °С заканчивается образование двухкальциевого силиката. Поскольку сырьевая смесь содержит больше оксида кальция чем это нужно для образования С2S, С4АF, С3А, то остальное количество СаО идёт на образование трехкальциевого силиката. При температуре 1300 °С начинается спекание материала вследствие образования в нём расплава в количестве 20-30% объёма начавшей спекаться массы. В начальный момент спекания в расплав переходят С3А, С4АF, и СаО, в дальнейшем в нём начинает растворяться и двухкальциевый силикат C2S. При этом в жидкой фазе создаются благоприятные условия для образования основного минерала портландцемента - трехкальциевого силиката C3S из C2S и СаО. Это соединение плохо растворимо в расплаве, вследствие чего оно выделяется из него в виде мелких кристаллов, которые в последующем могут значительно увеличиваться в размерах. Выделение из расплава C3S сопровождается понижением в нём концентрации: C2S и окиси кальция, что приводит к переходу в расплав новых порций этих веществ, оставшихся в твёрдом состоянии в общей массе материала. Это в свою очередь обуславливает дальнейший ход процесса образования в расплаве и выделения из него С3S до почти полного связывания свободной окиси кальция с С2S. Трехкальциевый силикат выделяется из расплава вместе с небольшими количествами Al2O3 и MgO, образуя с ними твёрдый раствор, который называют алитом. Участок печи, где проходит спекание материала, и образование алита называется зоной спекания. Здесь материалы нагревается примерно от 1300 до 1450 °С, что способствует более быстрому усвоению окиси кальция двухкальциевым силикатом и образованию алита. После зоны спекания обжигаемый материал переходит в зону охлаждения. До температуры примерно 1300 °С в нём ещё присутствует жидкая фаза и продолжается реакция усвоения окиси кальция и образования C3S. Затем жидкая фаза застывает и спекание заканчивается. Последний участок печи, где полученный клинкер охлаждается воздухом от 1300 °С до температуры при которой выходит из печи (1000-1100 °С) называется зоной охлаждения. Обычно при охлаждении клинкера с 1450 до 1300 °С и ниже жидкая фаза в нём застывает частично в виде стекла, частично при этом происходит кристаллизация из расплава С3A, C4AF, а также MgO. Степень закристаллизованности расплава зависит от скорости охлаждения материала после его выхода из зоны спекания. Охлажденный клинкер в основном состоит из кристаллов минералов - силикатов (алита и белита) и промежуточного вещества, в которое входит стекло, минералы плавки (С4АF, C3A, С3А3), а также окись кальция и магния (в виде кристаллов).
Минералогический состав цементного камня
Toggle navigationКАЧЕСТВЕННО
БЫСТРО
SEO оптимизация
адаптивная верстка
Ремонт в регионах
Минералогический, химический состав цемента, гидролиз всех минералов цементного камняПо химическому составу в % рядовой цемент содержит:
извести . . 64—68
кремнезема . 21 —24
глинозема. 4—7
окиси железа . 2—4
окиси магния. 1—3
серного ангидрида. 1—2
Минералогический состав цемента в % может колебаться в следующих пределах:
трехкальциевый силикат (алит) 3CaО•SiО2(C3S) . . . .70—20 двухкальциевый силикат (белит) 2CaО•Si02(C2S) . . . .10—60
трехкальциевый алюминат ЗСаО•Аl2О3(С3А). 4—15
четырехкальциевый алюмоферрит 4СаО•Аl2О3•Fе203(С4АF) 6—16
По современным воззрениям вместо С4АF образуется ряд твердых растворов от С2F до С2АF.
При соприкосновении с водой перечисленные минералы гидратируются, т. е. образуют кристаллогидраты определенного состава или претерпевают гидролитическое разложение.
Это обусловливается тем, что отдельные минералы являются устойчивыми только в воде, содержащей определенное количество растворенной извести. Теоретически, если производить обработку отдельных измельченных минералов или их кристаллогидратов проточной водой, можно получить полный гидролиз всех минералов цементного камня:
C3S - C2S + С = CS + 2С = S + ЗС
или
С4А = С3А + С = С2А + 2С.
Выделяющаяся при гидролизе известь может удаляться с водой с ослаблением структуры бетона; происходит выщелачивание или так называемая «белая смерть бетона».
Однако по ряду причин такого полного извлечения извести из бетона не происходит.
Выщелачивание извести происходит только при условии непрерывного обмена воды, например при систематической односторонней фильтрации воды через бетонные стенки плотин, резервуаров, труб и т. п. Но даже в этих случаях фильтрующаяся вода должна быть мягкой, т. е. совершенно не содержать растворенных солей, и в частности карбонатов, а бетон должен быть достаточно пористым.
К тому же удаление извести из бетона даже при фильтрации происходит только из определенных участков, образующихся в результате неплотной укладки бетона.
Все это приводит к тому, что выщелачивающая коррозия не представляет такой грозной опасности, какой она представляется исходя из общих соображений о возможном гидролизе минералов цементного камня.
Практически же находящаяся в порах бетона свободная вода представляет собой насыщенный или даже пересыщенный раствор извести с концентрацией от 1,3 до 1,7 мг/л, в котором вполне устойчивы все алюминаты вплоть до четырехкальциевого, а также все силикаты, начиная с C2S.
Для рассмотрения поведения цементного камня в разных средах существенно отметить, что происходит отщепление извести при гидролизе трехкальциевого силиката с параллельной ее гидратацией и частичным расщеплением на ионы:
Са (ОН)2=Са" + 20Н'.
Именно ионы пидроксила и сообщают бетону щелочной характер.
Гидроокись кальция в поверхностных слоях бетона, соединяясь с углекислотой воздуха, превращается в углекислый кальций или известняк. Происходит так называемая карбонизация бетона:
Са (ОН)2 + СО2 СаС03 + Н2О.
Бетон при этом уплотняется, но щелочность камня снижается с рH= 12-12,5, характерных для насыщенного раствора извести, до 9, характерного для водной вытяжки известняка.
Минералогический состав цементного камня. Минерал, характеризующийся самой высокой растворимостью в воде
Цемент (в переводе с латинского «битый камень») — один из основных строительных материалов; гидравлическое минеральное вяжущее вещество, приобретающее при затвердевании высокую прочность, также используемое при изготовлении бетона. Его называют гидравлическим, поскольку набор прочности и затвердевание происходит в присутствии воды; полученные из цементных минералов и воды твёрдые соединения водостойки, то есть нерастворимы в воде. Его называют минеральным, поскольку исходные материалы, используемые для его получения, — минеральной природы (горные породы или продукты их выветривания).
Файлы: 1 файл
Реферат по химии.docx
Цемент (в переводе с латинского «битый камень») — один из основных строительных материалов; гидравлическое минеральное вяжущее вещество, приобретающее при затвердевании высокую прочность, также используемое при изготовлении бетона. Его называют гидравлическим, поскольку набор прочности и затвердевание происходит в присутствии воды; полученные из цементных минералов и воды твёрдые соединения водостойки, то есть нерастворимы в воде. Его называют минеральным, поскольку исходные материалы, используемые для его получения, — минеральной природы (горные породы или продукты их выветривания).
К основным минералам клинкера относятся алит и белит (силикаты кальция), а также трехкальциевый алюминат и алюмоферрит кальция (алюминаты кальция). Каждый из них можно синтезировать отдельно, что дает возможность сопоставлять свойства минералов.
Алит — основной минерал клинкера. Алита в клинкере содержится 45. 60%, т.е. больше, чем любого другого минерала. Алит отличается быстротой твердения и большой прочностью.
Белит — второй по значению клинкерный минерал. Состав белита выражается формулой 2СаО • Si02, сокращенно C2S. Содержание его в клинкере 20. 30%. Белит медленно твердеет, но при благоприятных условиях может в длительные сроки образовывать с водой весьма прочные соединения. Названия искусственных минералов клинкера — алит и белит — образованы от греческого слова "литое" (камень) с прибавлением начальных букв латинского алфавита А и В. Суммарное содержание этих минералов — силикатов кальция составляет в клинкере портландцемента около 75 %. Поэтому его называют иногда силикатным цементом в отличие от алюминатных цементов, например глиноземистого, в клинкерной части которых преобладают не силикаты, а алюминаты кальция.
Трехкалъциевого алюмината содержится в клинкере 4. 12%. Отличается чрезвычайно быстрым схватыванием и твердением, но дает небольшую прочность.
Четырехкальциевого алюмоферрита содержится в клинкере 10. 20%. По скорости гидратации он уступает алиту, но превосходит белит, прочность же его незначительна.
Для получения морозостойких бетонов нормируют минеральный состав клинкера, чтобы повышать стойкость цементов против химической коррозии. Помимо указанных основных соединений в клинкере присутствует свободный кристаллический окси д магния MgO (минерал периклаз), а также оксиды калия и натрия. Высокое содержание периклаза (более 5 %), особенно в виде крупных кристаллов, представляет большую опасность. При взаимодействии с водой MgO увеличивается в объеме. Если эта реакция происходит в затвердевшем цементном камне, то возникают большие внутренние напряжения, что приводит к растрескиванию бетона. Содержащиеся в клинкере щелочные оксиды К2O и Na2O опасны в том случае, когда в каменных заполнителях бетона (песке и гравии) есть опаловидный кремнезем. Этот аморфный минерал взаимодействует со щелочами уже при нормальной температуре, причем объем продуктов реакции увеличивается, что также может вызвать растрескивание бетона. Для исключения этого ограничивают суммарное содержание К2O + Na2O в клинкере (не более 0,6 %). Минералы цементного клинкера способны энергично взаимодействовать с водой, образуя гидратные соединения. Клинкерные минералы растворяются в воде в большей или меньшей степени, а продукты гидратации цемента (так называемые новообразования или кристаллогидраты) в воде практически нерастворимы. В противном случае отвердевшие цемент или бетон не были бы водостойкими. Процесс твердения цемента в соответствии с теорией твердения вяжущих, разработанной академиком А.А. Байковым, условно разделяется на три периода: подготовительный, коллоидации и кристаллизации. В подготовительном периоде частицы цемента смачиваются водой и начинают растворяться с поверхности; со временем образуется насыщенный раствор. В этот период, длящийся 1 . 3 ч, цементное тесто пластично и легко поддается формованию. В период коллоидации концентрация гидратных новообразований в растворе возрастает. Гидратные новообразования обладают гораздо меньшей растворимостью в воде, чем исходные безводные соединения. Поэтому раствор, насыщенный по отношению к исходным соединениям, является пересыщенным по отношению к новообразованиям. Гидратные новообразования в виде мельчайших коллоидных частичек — субмикрокристаллов — выделяются из раствора, образуя цементный гель. Возникновение геля в большом количестве приводит к загустеванию цементного теста, которое утрачивает пластичность. Момент загустевания (схватывания) цементного теста наступает через 5. 10ч после затворения цемента водой. Прочность загустевшего теста в этот период еще невелика. Период кристаллизации характеризуется дальнейшей гидратацией цемента. Образующийся гель постепенно преобразуется в кристаллические сростки. Число и поверхность контактов в кристаллах новообразований увеличивается, что приводит к заметному росту прочности цементного камня. Твердение цемента и материалов на его основе — бетона, строительного раствора при благоприятных условиях может продолжаться несколько лет. Новообразования, формирующие кристаллический сросток в цементном камне, возникают в результате химических реакций гидролиза и гидратации минералов цементного клинкера. Гидролиз характеризуется расщеплением исходных минералов, а при гидратации идет лишь присоединение воды к исходному минералу. Алит и белит при взаимодействии с водой подвергаются гидролизу. В результате реакций возникает соединение, в состав которого входит химически связанная вода. Важно отметить, что это соединение (гидросиликат кальция), как и другие продукты гидратации цемента, представляет собой твердые вещества. Их называют кристаллогидратами. Кроме гидросиликатов кальция при гидролизе алита и белита образуется гидроксид кальция Са(ОН)2 в значительных количествах. Это обстоятельство имеет большое значение для формирования многих свойств затвердевшего цемента. В результате гидратации трехкальциевого алюмината возникает гидроалюминат кальция. Реакция протекает чрезвычайно быстро. Гидроалюминат кальция образует пространственную структуру, пронизывающую цементное тесто. Оно утрачивает пластичность, и схватывание цемента может происходить уже через 1. 2 мин после затворения.
Чтобы замедлить схватывание цемента, вводят в его состав гипсовый камень, который связывает алюминат кальция. Так продолжается до тех пор, пока не будет израсходован весь гипс. Лишь после этого начинается интенсивное взаимодействие с водой (но уже без гипса), которое приводит к схватыванию цемента. Последний из клинкерных минералов — четырехкальциевый алюмоферрит гидролизуется, и образуются гидроалюминат и гидроферрит кальция. Таким образом, в результате взаимодействия цемента с водой получаются новые соединения, в состав которых входит химически связанная вода: гидросиликаты, гидроалюминаты и гидроферриты кальция, а также гидроксид кальция. Они и обусловливают формирование прочной структуры твердеющего цемента.
Все химические реакции взаимодействия клинкерных минералов с водой — экзотермические, т.е. сопровождаются выделением теплоты. Экзотермия цемента может рассматриваться и как положительное явление (например, при зимнем бетонировании), и как отрицательное (при бетонировании массивных конструкций или производстве работ в жаркую сухую погоду). К одному из продуктов взаимодействия силикатных минералов (алита и белита) с водой относится гидроксид кальция. Это значит, что в результате твердения в цементном камне всегда возникает щелочная среда. Данное явление также имеет свои плюсы и минусы. В щелочной среде, как известно, не происходит коррозии железа. Поэтому бетоны на портландцементе (и его разновидностях) хорошо защищают стальную арматуру от коррозии. Это одно из основных условий высокой долговечности железобетона.
С другой стороны, Са(ОН)2 сравнительно легко подвергается коррозии в агрессивных средах и даже может вымываться водой. Поэтому для повышения стойкости бетона к коррозии приходится вводить в цемент особые добавки, связывающие Са(ОН)2 в более стойкие соединения. Таким путем получают, например, пуццолановый портландцемент.
Наиболее быстро гидратирующимся минералом портландцементного клинкера является трехкальциевый алюминат, за ним идет четырехкальциевый алюмоферрит, далее трехкальциевый силикат и, наконец, двухкальциевый силикат.
Минералогический или минеральный состав портландцемента
В минералогический состав портландцемента входят: алюминат, целит, алит, белит. Алит как вещество, которое быстро твердеет с выделением тепла, состоит из трехкальциевого силиката. Минерал алюминат, при взаимодействии с водой, образует кратковременные, хрупкие кристаллы.
Клинкерные минералы находятся в портландцементе в таком процентном содержании: двухкальцевый силикат от 15% до 37%, трехкальцевый силикат от 37% до 60%, трехкальцевый алюминат от 5% до 15%, четырехкальцевый алюмофферит от 10 до 18%. Свободная известь добавляется в портландцемент не более 0,5% для того чтобы не растрескивался уже затвердевший камень.
Другими словами можно сказать, что минеральный состав портландцемента состоит из: окиси железа, окиси кальция, глинозема и кремнезема. Вследствие их взаимодействия в печи и получаются такие сложные элементы как силикат, алюминат и алюмофферит.
При добавлении в цемент воды происходит сложный процесс гидратации, а потом гидролиза, при котором можно увидеть превращение густой пластичной массы в высохшее твердое и прочное тело, которое уже не имеет пластичности.
Читайте также: