Коррозия кирпичной кладки это
Что за вид коррозии кирпичной кладки?
Здравствуйте подскажите что за вид коррозии кирпичной кладки на фотографии? Поверхность темного образования твердая.
Последний раз редактировалось komarimo, 14.12.2012 в 15:03 . Причина: редактирование
Грибок и его отвердевшие останки. Надо зачистить шов и посмотреть как глубоко проник мерзавец.
Saur спасибо. Подскажите где можно прочитать о видах данного грибка.
Для этого нужно знать точно, что это за грибок. Провести анализ образца. А зачем Вам это необходимо?
Просто хочется отходить в отчетах от скупых фраз, а давать понять заказчику (да, и самому иметь понятие и развиватся) что за вид грибка, что за вид коррозии и т.д., как в дальнейшем это повлияет на свойства конструкции. Естественно необходим анализ, и без него точной информации не получить - но пока денег на это не выделяют - хоть почитать литературу.
С-Петербург
хочется отходить в отчетах от скупых фраз, а давать понять заказчику . что за вид грибка,
А на кой черт заказчику знать что за вид грибка. И зачем заказчику нужно платить деньги за эти ценные сведения. Только нарветесь на ненужные разговоры. Не пугайте заказчиков!
Имхо, не грибок, а плохо погашенная известь в кладочном растворе или следы давнишней заделки швов.
Обзор статьи
Микробная деструкция и солевая коррозия кирпичной кладки
691.421.001.4
Аннотация:
Дана характеристика тионовых и нитрифицирующих бактерий, приводящих к развитию биодеструкционных процессов кирпичной кладки; проведен микробиологический анализ образцов разрушенных строительных материалов - кирпича и кладочного раствора; определен объем открытых пор материалов, подвергшихся разрушению деструкцией; описаны химические процессы, происходящие в результате воздействия продуктов метаболизма микробов на строительные материалы, приводящие к их разрушению.
Список цитируемой литературы:
- Андреюк Е. И., Козлова И. А., Коптева Ж. П. Микробная коррозия подземных сооружений // Биоповреждения и биокоррозия в строительстве: материалы 2-й Междунар. науч.-техн. конф. Саранск, 2006. С. 79-99
- Андреюк Е. И., Билай В. И., Коваль Э. З., Козлова И. А. Микробная коррозия и ее возбудители. Киев: Наукова думка, 1980. 287 с
- Анисимов А. А., Александрова И. Ф. О биохимических механизмах действия фунгицидов // Биоповреждения в промышленности. Горький, 1983. С. 7-17
- Биоповреждения в строительстве / под ред. Ф. М. Иванова, С. Н. Горшина. М.: Стройиздат, 1984. 320 с
- Биоповреждения и биокоррозия в строительстве: материалы Междунар. науч.-техн. конф. / редкол.: Н. И. Карпенко, В. Т. Ерофеев, В. Ф. Смирнов и др. Саранск: Изд-во Мордов. ун-та, 2004. 255 с
- Громов Б. В. Строение бактерий. Л.: Изд-во ЛГУ, 1985. 190 с
- Защита от коррозии старения и биоповреждений машин, оборудования и сооружений: справочник. В 2 т. / под ред. А. А. Герасименко. М.: Машиностроение, 1987. Т. I. 688 с. Т. II. 784 с
- Инчик В. В. Высолы и солевая коррозия кирпичных стен. СПб.: СПбГАСУ, 1998. 324 с
- Исаченко Б. Л. Избранные труды: В 2 т. М.; Л.: Изд-во АН СССР, 1951. Т. I. 410 с
- Лугаускас А. Ю., Микульскене А. И., Шляужене Д. Ю. Каталог микромицетов-биодеструкторов полимерных материалов. Биологические повреждения. М.: Наука, 1987. 344 с
- Минас А. И. Результаты изучения солевой формы физической коррозии строительных материалов // Сб. тр. Казахского филиала Академии строительства и архитектуры СССР. 1960. № 2 (4). С. 14-19
- Рубан Е. Л., Коваль Э. З. и др. Физиология и биохимия нитрифицирующих микроорганизмов. Киев: Наукова думка, 1980. 274 с
- Чуйко А. В. Органогенная коррозия строительных материалов и конструкций. 2-е изд. Саратов: СПИ, 1976. 79 с
- Бочаров Б. В. Химическая защита строительных материалов от биологических повреждений // Биоповреждения в строительстве. М.: Стройиздат, 1984. С. 35-47
- кирпичная кладка
- солевая коррозия
- деструкция
- метаболизм
- литотропные бактерии
- тионовые бактерии
- нитрифицирующие бактерии
- ртутная порометрия
- биохимический анализ
- поровая структура
- эрозионная коррозия
- высолы
- кристаллогидраты
- мирабилит
- алуноген
- алуминит
- таумасит
- натровые квасцы
- белит
- masonry
- salt corrosion
- deterioration
- metabolism
- lithothropic bacteria
- thionic bacteria
- nitrifying bacteria
- mercury injection
- biochemical analysis
- pore structure
- erosion corrosion
- efflorescence
- crystalline hydrates
- mirabilite
- keramohalite
- aluminite
- thaumasite
- sodium alum
- belit
Полный текст (файл):
Авторы:
Инчик В. В. Санкт-Петербургский государственный архитектурно-строительный университет
Химическая коррозия кирпичной кладки. Протекание процесса
Использование в современном строительстве многокомпонентных ограждающих конструкций ставит новую задачу изучения взаимного влияния всех составляющих материалов на долговечность конструкции в целом. Кирпичная кладка является старейшим и наиболее типичным представителем многокомпонентных ограждающих конструкций. В статье рассматривается основной процесс химической коррозии материалов, основанный на разрушении материала кирпича под воздействием гидроксида кальция, проникающего в кирпич из цементно-песчаного раствора, где он образуется в процессе дегидратации силикатов и алюмосиликатов кальция (реакция выщелачивания). Рассматриваются побочные процессы первого типа, протекающие с учетом присутствия в материале кирпича щелочных и щелочно-земельных металлов. Возможность протекания реакций, принимающих участие в процессе химической коррозии кирпичной кладки, обосновывается на основе методов химической термодинамики. На основании данных расчетов делаются выводы о приоритете тех или иных реакций, участвующих в процессе. Приводятся результаты инструментальных исследований, включая исследования фазового и элементного состава, дифференциальной сканирующей калориметрии, микроскопического анализа. Рассматриваются результаты предложенного автором исследования с помощью метода определения активных ионов. Предлагается методика расчета долговечности конструкции по параметру прочности с учетом протекания процессов химической и политермической деструкции. Термодинамические расчеты, исследования кинетики процесса, методики проведения экспериментов будут изложены в следующих статьях.
Д.Ю. ЖЕЛДАКОВ, канд. техн. наук ( Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. )
Научно-исследовательский институт строительной физики РААСН (127238, г. Москва, Локомотивный проезд, 21)
К вопросу о химической коррозии и долговечности кирпичной кладки
Обсуждаются актуальные вопросы долговечности и химической коррозии кирпичной кладки на современных объектах строительства. Рассмотрены спорные моменты, представленные в статьях Д.Ю. Желдакова, опубликованных в журнале «Строительные материалы» № 7/2018 г. и № 4/2019 г. по результатам его исследований химической коррозии и долговечности кирпичной кладки. Дано обоснование устойчивости керамического кирпича к химической коррозии, а также того, что для нашего климата основным свойством, определяющим долговечность изделий, является морозостойкость. Представлен критический анализ предложенного автором механизма деструкции кирпичной кладки, основой которого предлагается считать реакции между гидроксидом кальция и оксидами кремния и алюминия с образованием волластонита и однокальциевого алюмината. Показана несостоятельность выводов, сделанных автором о том, что им разработан механизм процесса разрушения кирпича в системе «кирпич – цементно-песчаный раствор» при положительной температуре. Подвергнут сомнению предложенный автором метод расчета предельной долговечности материала конструкции по параметру прочности с учетом процессов химической коррозии, а также главный вывод автора о том, что при использовании многослойных ограждающих конструкций их долговечность необходимо определять не для каждого материала, а только с учетом протекания химических процессов деструкции при взаимном влиянии всех материалов.
В.Д. КОТЛЯР 1 , д-р техн. наук ( Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. )
Н.И. НЕБЕЖКО 2 , инженер
Ю.В. ТЕРЁХИНА 1 , инженер
А.В. КОТЛЯР 1 , канд. техн. наук
1 Донской государственный технический университет (344000, г. Ростов-на-Дону, пл. Гагарина, 1)
2 Индивидуальный предприниматель (344000, г. Новочеркасск, ул. Просвещения, 108)
Обследование стен зданий. Описание основных дефектов, повреждений и трещин стен
Обследование стен начинают с выявления конструктивной схемы здания, назначения стен (ограждающая, несущая, самонесущая), прочностных характеристик материала, типов соединения стен (стеновых панелей) с другими несущими конструкциями: фундаментами, колоннами, перекрытиями и т. д.
С помощью геодезических приборов определяют отклонения стен от вертикали, местные выпучивания, горизонтальность стыков и швов. Измеряют толщину швов стыков и трещин. Относительные горизонтальные отклонения (к высоте этажа) для кирпичных и железобетонных стен не должны превышать 1/500, облицованных естественным камнем 1/700, витражи 1/1000. Влажность материала стен находят отбором проб из разных слоев конструкции стен, в случае ее многослойности. Пробы нумеруют, взвешивают и помещают в термостат, где они высушиваются при температуре (110 ± 5)°С до постоянного веса. Сравнивают влажность стенового материала с допускаемой по нормам.
Стеновые панели армированы сетками и каркасами, в них имеются закладные детали. Поэтому их обследуют как железобетонные конструкции с определением защитного слоя бетона, расположения и диаметра арматуры и т. д. Используют приборы ИСМ и ИЗС. Состояние арматуры и закладных деталей выявляют вскрытием не менее чем в трех местах.
Тщательно обследуют простенки и перемычечные участки стен. Наиболее опасны горизонтальные трещины в простенках и вертикальные в перемычках. Трещины могут возникать от разных факторов: от перепада температуры, осадок фундаментов, усадки бетона, перенапряжения и т. д.
Необходимо выявить, старые ли это трещины (пассивные), которые можно сразу заделать, или это активные развивающиеся трещины. Для этого устанавливают маяки на стену, очищенную от облицовки или штукатурки. На каждой трещине устанавливают по два маяка - в зоне наибольшего раскрытия и в конце.
При обследовании деревянных стен или обшивки обязательно определяют влажность древесины и засыпок; выявляют степень зараженности гнилью, грибками, жучками и т. д. Отбирают из увлажненных мест образцы 10x5x1 см и направляют на микробиологический анализ.
Дефекты и повреждения стен зданий
По виду используемого материала конструкций стены подразделяются на каменные (стены из кирпича, мелких и крупных блоков и панелей) и деревянные.
Основными дефектами каменных стен являются:
- трещины;
- расслоение рядов кладки;
- выветривание кладки;
- отклонение стен от вертикали;
- выпучивание и просадка отдельных участков стен;
- разрушение наружного поверхностного слоя стенового материала и архитектурных деталей;
- выпадение отдельных кирпичей;
- отсутствие и выветривание раствора швов кладки;
- отслоение и разрушение выступающих частей стен;
- пробитые и незаделанные отверстия, ниши, борозды;
- отсыревание и промерзание конструкций;
- высолы из раствора и стенового материала.
Дефекты в крупнопанельных зданиях, как правило, появляются в панелях наружных стен, во внутренних несущих стенах с дымовентиляционными каналами, в вертикальных и горизонтальных стыках между панелями, в примыканиях оконных и дверных коробок к стенам, наружных углах зданий, местах сопряжения перекрытий и крыш со стенами, а также в стыках каркаса и сопряжениях его с ограждающими конструкциями. Обычно это:
- смещения и перекосы панелей в плоскости и из плоскости стен;
- протечки и высокая воздухопроницаемость стыков;
- недостаточная толщина или низкие теплотехнические свойства материалов панелей, приводящие к промерзанию панелей зимой;
- коррозия закладных и накладных крепежных элементов в стыках и арматуры панелей с отделением защитных слоев на поверхностях стен;
- разрушение наружных увлажненных слоев панелей вследствие попеременного замораживания и оттаивания;
- трещины в панелях от силовых, температурных и влажностных воздействий.
В крупноблочных зданиях наблюдаются следующие дефекты и повреждения стен:
- протекание и высокая воздухопроницаемость стыков;
- разрушение заделки стыков;
- коррозия стальных закладных деталей;
- обнажение или недостаточная защита арматуры в наружных железобетонных слоях стеновых панелей;
- разрушение фактурного слоя;
- появление ржавых пятен на стенах.
Наиболее распространенными дефектами деревянных стен являются:
- загнивание древесины и поражение ее жуками-точильщиками и домовыми грибами;
- промерзание;
- высокая воздухопроницаемость пазов брусчатых стен и стыков в щитовых панелях;
- выпучивание стен, просадка углов;
- разрушение или повреждение штукатурки, обшивки и отделки углов и мест сопряжения внутренних стен с наружными;
- осадка засыпки в каркасных стенах;
- повреждение, малый уклон и неплотное прилегание к стенам сливных досок;
- потеря водозащитных свойств рулонной гидроизоляции по цоколю.
Причинами загнивания нижних частей деревянных стен могут быть:
- отсутствие или неправильное устройство сливных досок;
- отсутствие гидроизоляционной прокладки между цоколем и венцами или обвязки;
- обкладывание стен кирпичом без устройства гидроизоляции подполья.
Промерзание и продуваемость деревянных стен происходит из-за:
- неправильной припазовки бревен по длине или в пересечениях;
- плохой конопатке швов;
- отсутствия угловых пилястр.
В каркасных и щитовых зданиях это может происходить вследствие осадки утеплителя, плохой тепло- и воздухоизоляции стыков, а также недостаточной плотности обшивок.
Для стен с применением асбестоцементных листов характерны следующие дефекты:
- трещины и выколы вследствие механических воздействий;
- набухание или коробление в результате увлажнения и высушивания;
- расслоение листов и выкрашивание цементного раствора из-за попеременного замораживания и оттаивания в увлажненном состоянии;
- повреждение креплений и выпадение листов.
В стенах с применением металла могут возникнуть следующие дефекты:
- отслоение облицовок со стороны помещений в зонах швов, элементов каркасов панелей и других теплопроводных включений;
- разрушение антикоррозионных защитных покрытий и коррозия металла на участках, подверженных систематическому увлажнению или воздействию химически агрессивных сред, а также в местах контакта разнородных металлов;
- механические повреждения облицовок (погнутости, пробоины и т.п.);
- дефекты и повреждения соединений листов или их креплений к каркасу панелей либо к несущим конструкциям.
Наиболее распространенной причиной ускоренного износа стен является периодическое их увлажнение в сочетании с температурными знакопеременными колебаниями. Проникание влаги в материал стен может происходить в результате:
- сорбционного поглощения влаги материалом, находящимся на открытом воздухе;
- капиллярного всасывания или диффузии материала при соприкосновении его с жидкостью;
- проникания пара в материал из окружающего воздуха;
- физико-химических процессов.
При обнаружении на стенах увлажненных участков, плесени, моха, высолов и т.п. следует выявить причины их появления. Обычно это связано с такими факторами:
- отсутствием или повреждением гидроизоляции;
- повреждением технологических или сантехнических устройств;
- переувлажнением стен от мокрых производственных процессов внутри здания;
- нарушением температурно-влажностного режима в помещениях;
- складированием у стен производственного сырья, отходов производства, деталей с большими поверхностями, затрудняющими свободную циркуляцию воздуха, что способствует распространению сырости на поверхности стен.
Одним из дефектов наружных стен зданий является промерзание. Признаком промерзания является наличие пятен сырости, конденсата и плесени, выступающих на внутренних поверхностях стен при понижении температуры наружного воздуха. Во время сильных морозов не исключено выступание на стенах инея и образование наледей. Особенно интенсивно эти дефекты проявляются на вертикальных и горизонтальных стыках панелей верхних этажей. Разрушению каменной кладки стен, цоколя и карниза кровли способствуют неисправности водосточных труб, а также применение кирпича с низкой морозостойкостью. На фасадах зданий, облицованных керамическими плитками, имеет место выпучивание облицовки, выход отдельных плит из плоскости стен, трещины и отколы в углах плиток, расстройство крепежных элементов, ржавые подтеки из швов облицовки. В процессе эксплуатации балконов, лоджий и козырьков могут возникнуть следующие повреждения:
- разрушение консольных балок и плит;
- откалывание опорных площадок;
- отслоение и разрушение защитного слоя;
- уклон к зданию пола балконов и лоджий, а также покрытия козырьков;
- отсутствие и неправильное выполнение гидроизоляционного слоя;
- трещины в плитах;
- ослабление или повреждение крепления ограждений.
Разрушение кладки стен выветриванием возникает в зданиях, характер производственных процессов в которых сопряжен с большой влажностью воздуха внутри помещения и в стенах, выполненных из недостаточно морозостойких материалов (например, из силикатного кирпича). Разрушение наружной штукатурки и кладки стен в зданиях с повышенной влажностью воздуха внутри помещения происходит в результате накопления влаги под штукатурным слоем (конденсация влаги), а в зимний период времени - ее обледенения, что сопровождается разрушением штукатурки и кладки. При эксплуатации крупных жилых домов часто встречаются протечки в их стенах через вертикальные и горизонтальные стыки наружных стен, стыки сопряжений оконных и дверных коробок, плит балконов и лоджий, панелей покрытий и панелями наружных стен, что связано с плохой герметизацией стыков, отсутствием противодождевых барьеров в горизонтальных стыках, декомпрессионных каналов и водоотводящих устройств в вертикальных стыках. Конструкция стен может также увлажняться из-за конденсации влаги на их внутренней поверхности или в их толще. Увлажнение стен наряду с ухудшением их прочностных свойств ведет и к ухудшению их теплотехнических свойств. Следовательно, для обеспечения нормального срока службы здания и его эксплуатационных качеств необходимо предупреждать проникновение в стены влаги.
Трещины стен
Трещины в стенах появляются вследствие:
- неравномерной осадки или просадки основания фундаментов;
- температурных напряжений при большой протяженности стен (отсутствие температурных швов);
- недостаточной несущей способности стен (в узких простенках, перемычках, под опорами балок и т.п.).
Так, в каменных стенах факторами, способствующими образованию трещин, являются:
- низкое качество кладки (несоблюдение перевязки, толстые растворные швы, забутовка кирпичным боем);
- недостаточная прочность кирпича и раствора (трещиноватость кирпича, высокая подвижность раствора и т.п.);
- совместное применение в кладке разнородных по прочности и деформативности каменных материалов (глиняный и силикатный кирпич, глиняный кирпич и шлакоблоки);
- использование каменных материалов не по назначению (например, силикатный кирпич в санузлах - в условиях повышенной влажности);
- низкое качество работ в зимнее время (использование обледенелого кирпича, применения смерзшегося раствора);
- отсутствие температурно-усадочных швов или недопустимо большое расстояние между ними;
- агрессивное воздействие внешней среды (кислотное, щелочное и солевое), попеременное замораживание и оттаивание, увлажнение и высушивание;
- неравномерная осадка фундаментов в здании.
Важную информацию о состоянии стен дает анализ трещин в стенах. По поверхностным трещинам в кирпичных стенах можно судить о степени износа и прочности материала стены и самой стены в целом. При хорошем состоянии стен (износ до 20%) кладка монолитная, не имеет видимых изменений, камни и раствор сохраняют прочность, сцепление камней с раствором не нарушено. При удовлетворительном состоянии (износ от 20 до 40%) местами наблюдается разделение кладки на отдельные камни вследствие начинающейся потери сцепления с раствором, однако раствор еще сохраняет свою прочность. При плохом состоянии кладки (износ 40…60%) наблюдается ее прогрессирующее ослабление; потеря раствором прочности; появление волосяных трещин, выпадение или разрушение камней; выпирание отдельных мест стены. Перегрузка участков стен при удовлетворительном состоянии кладки проявляется в появлении трещин в вертикальных и горизонтальных швах. При плохом состоянии кладки трещины от перегрузки идут через камни. Особенно сильно снижение несущей способности проявляется при наличии горизонтальных трещин в простенках и вертикальных в перемычечных конструкциях. Трещины появляются не только от недостаточной несущей способности стен, но и из-за плохого состояния других конструкций: оснований, фундаментов и т.п. Контроль за поведением трещин ведется с помощью маяков, тензометров и др.
Дефекты каменных конструкций
Дефекты каменных конструкций зданий и сооружений классифицируются по следующим основным видам:
- деформации стен (прогибы, отклонения от вертикали);
- сколы, раковины, выбоины и другие нарушения сплошности кладки;
- увлажнение кладки стен, выветривание и вымывание раствора;
- повреждение защитных и отделочных слоев;
- разрушение несущего слоя стен и столбов.
Основными причинами возникновения дефектов каменных конструкций являются:
- ошибки проектирования (неправильный учет нагрузок, неудачное решение узлов сопряжения, потеря устойчивости из-за недостаточного количества связей, неучтенный эксцентриситет, неполная информация по инженерно-геологической оценке грунтов основания);
- низкое качество материала (искривление граней камней, отклонения в размерах, низкая прочность и морозостойкость);
- низкое качество выполнения работ (нарушение горизонтальности, толщины и правил перевязки швов, отклонения несущих стен и столбов от вертикали, нарушение анкеровки);
- неудовлетворительные условия эксплуатации (замачивание и увлажнение, агрессивное воздействие окружающей среды);
- неравномерные осадки фундаментов стен и столбов при недооценке инженерно-геологических условий, нарушении правил производства земляных работ, авариях коммунальных сетей водопровода и канализации, нарушении водоотвода от зданий и сооружений;
- отсутствие или нарушение гидроизоляции стен;
- отсутствие или разрушение карнизов и водосточных труб.
Наиболее характерные признаки наличия дефектов каменных конструкций, места и причины их появления, а также возможные последствия приведены ниже.
Причины образования высолов и разрушения стен зданий
Основной причиной преждевременного обветшания и разрушения конструкций стен из бетона и кирпича, штукатурных покрытий – это проникновение атмосферной влаги внутрь материалов конструкций. Именно вода относится к наиболее распространенным и агрессивным факторам, влияющим на материалы в период эксплуатации строительных конструкций. Вода содействует снижению прочности большинства материалов, загниванию древесины, образованию тре-щин, микроорганизмов, развития коррозионных процессов в металлах и бетонах и т.п.
Являясь капиллярно-пористыми телами, минеральные (фасадные) материалы обладают довольно высоким водопоглощением как при прямом воздействии воды на сооружения, так и в результате большого капиллярный подсоса, способствующего инфильтрации поверхностной влаги во внутрь материалов. Таким образом, в конструкции стен зданий вода попадает двумя путями: капиллярное поднятие грунтовой влаги в кирпичных и каменных стенах зданий и замачивание стен зданий при их эксплуатации в естественных условиях (дожди, снега, конденсация водяных паров на поверхности стен и т.п.).
Кроме того, увлажнение стен происходит и по бытовым причинам. Дело в том, что в квартире средних размеров в течение суток выделяется от 8 до 15 л взвешенных паров бытовой влаги (в результате пользования душем, ванной, кухонной плитой, стирки белья, полива цветов, а также естест-венного испарения влаги людьми, находящимися в данном помещении). Вся эта влага должна удаляться из помещения через вентиляцию или сквозь толщу ограждающих конструкций, что и происходит при наличии пор в строительном материале.
Влага, попавшая в капиллярную сеть кирпича или бетона, начинает мигрировать по микропустотам, порам и капиллярам материалов, конденсируясь в них при понижении температуры стен до точки росы. Результат - не только мокрые стены, имеющие склонность к промерзанию (при увеличении влажности ограждающих конструкций зданий на 10-20% их теплоизоляционная способность снижается на 50%), плесень и лужи в подвале, но и вынос растворимых солей на поверхность стен – появлению высолов, весьма неэстетичных белесых разводов, значительно ухудшающих внешний вид кирпичной кладки.
|
Соли, постоянно присутствующие в кирпиче или бетоне, сами по себе никакого вреда не причиняют. Все беды являются следствием движения воды в массиве стены и ее испарение с поверхности, сопровождающегося образованием белесых и (или) цветных солевых разводов - "высолов", появление которых говорит о начале коррозии строительного материала. Солевые растворы не только уродуют стены своим грязно-серым раскрасом, делая фасады стен весьма неэстетичными, но и являются причиной разрушения материалов стен вследствие различного рода коррозионных процессов – сульфат-ная и бикарбонатная коррозия. отрыв штукатурок, облицовок и окрасочных материалов.
Дождевая вода, часто сама является агрессивной средой по отношению в кирпичной кладке, бетонам и штукатуркам, представляя собой растворы слабых кислот щелочей и различного рода со-лей. Агрессивное воздействие воды на сооружения из кирпича, бетона, природного и искусственного камня, различного рода штукатурок, ячеистого бетона и других подобных материалов – давно установленный факт. Водные растворы кислот и различных солей, проникая внутрь материала, взаимодействует с этими соединениями. Солевые кристаллы растут внутри материала, заполняя микропустоты, и вместе с испаряющейся влагой выходят на поверхность стен. Вода испаряется, а соли кристаллизуются, оставаясь на стене в виде высолов.
Итак, для появления высола необходимо наличие солей, воды и соответствующих погодных условий. Вода (влага) может попасть в массив стены здания следующими путями:
• непосредственно из атмосферы (при косом дожде);
• из почвы по капиллярам и порам стены (в случае нарушения гидроизоляции фундамен-та и заглубленных частей здания);
• через кровлю (при нарушении гидроизоляции крыши).
В устойчивую жару или при затяжных дождях высолы не образуются. Наиболее интенсивно этот процесс протекает при изменении влажности или температуры, то есть в межсезонье. Именно при смене циклов насыщения и испарения все просчеты и нарушения проявляются в виде пятен высолов.
Всего за несколько дней только что построенный кирпичный коттедж может превратиться в заляпанный белесыми разводами уродца. Это явление в той или иной степени присуще практически всем традиционным пористым строительным материалам не только природного, но и искусственного происхождения. Высолы образуются вследствие выноса на поверхность и кристаллизации солей, содержащихся в составе цемен-
та, бетона, штукатурного и кладочного раствора, кирпича, ускорителей твердения, противоморозных добавок и др. Наличие различных солей в используемых материалах не единственная причина, приво-дящая к формированию высолов. Они возникают только при значительном местном увлажнении мате-риалов и медленном испарении влаги из кладки.
Вторая причина разрушения материалов стен фасадов является физическая и химическая коррозия материалов под воздействием их увлажнения. Даже если мокрые стены не покрываются пятнами и разводами, от преждевременного разрушения, вызванного физической и ли химической коррозией строительного материала, все равно никуда не денешься.
Физическая коррозия может быть вызвана:
• выщелачиванием материала в результате вымывания гидроксида кальция (извести), сопровождающегося возрастанием количества новых и увеличением объема существовавших в бетоне капилляров и пор;
• механической деструкцией, обусловленной попеременным замораживанием – оттаиванием и высушиванием – увлажнением материала.
При замораживании – оттаивании внутренняя влага, находящаяся в материале, превращается в лед, имеющий объем, на 9% больше, чем составляющая его вода. Это, как и попеременное высуши-вание – увлажнение, является причиной расшатывания структуры материала стен, его шелушения, сколов, снижения прочностных характеристик и, в конечном итоге, разрушения конструкций стен, отрыв штукатурок, облицовочных материалов, лакокрасочных покрытий.
Химическая коррозия.
Прежде всего это химические реакции между минеральными составляющими (в первую очередь, соединениями кальция - СаО, Са(ОН)2 и др.) и разнообразными "атмосферными" кислотами. Дождевые потоки захватывают из атмосферы большое количество газообразных производственных выбросов, таких как оксиды углерода, серы, азота и фосфора, аммиак, хлор, хлористый водород и т.п., которые частично растворяясь в воде, превращают дождь в кислотный рас-твор, состоящей из смеси Н2СО3, Н2SО3, Н2SO4, НNO2 и HNO3, а также целого ряда кислот фосфорных или хлористых. Указанные кислоты в буквальном смысле растворяет бетон, мрамор, силикатный кирпич и другие материалы с образованием тех же растворимых и малорастворимых солей. При этом увеличивается количество пор, капилляров и микротрещин, которые, в свою очередь, становятся новыми очагами аг-рессии, и скорость разрушения материала существенно возрастает.
В современном строительстве широко распространена облицовка фасадов, особенно цокольной их части. В качестве облицовочного камня применяются следующие природные материалы: гра-нит, мрамор, доломит, известняк, песчаник, известковый туф и др. Под воздействием окружающей сре-ды натуральный камень разрушается. И здесь наиболее влияние на разрушение природного камня оказывает увлажнение. Вода из-за высокой пористости природного камня может буквально пропитать их. С увлажнением связан процесс переноса солей - выщелачивание. В частности при углекислотной агрессии нерастворимый кальцит (мрамор, составляющая часть цементных бетонов и растворов) пре-вращается в водорастворимый гидрокарбонат кальция по реакции
СаСО3 + СО2 + Н2О = Са(НСО3)2
|
При этом происходит элементарное вымывание материала с дополнительным образованием трещин, пор, раковин и т.п.. Вода также в значительной степени разрушает известняковый камень. Де-ло в том, что в природном известняке имеются включения глины. При замачивании и последующем замораживании-оттаивании влажная глина сильно увеличиваясь в размерах способствует шелушению известнякового камня, отслоение его частей, ускоренному образованию высолов.
Разрушение конструкционного материала в результате воздействия грунтовых вод обусловле-но не только физическим вымыванием гидроксида кальция, но и накоплением в материале солей. Водно-солевая коррозия (особенно от действия хлоридов и сульфатов) приводит к образованию новых сильно гидратированных солевых структур сложного состава, существенно увеличивающих кристалли-зационное давление. Так, например, NaCl реагирует с алюминатными минералами, компонентами цементного камня с образованием гидрохлоралюминатов, сульфаты грунтовых вод реагируют с трехкальциевым алюминатом 3CaO*Al2O3 с образованием объемной структуры 3CaO*Al2O3*3CaSO4*30H2O, что в итоге ведет к разрушению материала.
В ряде случаев наблюдается вспучивание материала в результате действия содержащегося в почве активного аморфного кремнезема SiO2, проникающего в бетон с грунтовой влагой. При этом образуются объемные водные гидросиликаты натрия nNa2O*mSiO2*xH2O, также способствующие коррозионному разрушению.
Таким образом, защита фасадов от проникающего действия воды (придание материалам водо-отталкивающих свойств) является серьезной строительной проблемой, во многом определяющая не только эстетику фасадов, но и долговечность как самого материала стен, так и различных его покрытий (штукатурных, лакокрасочных, облицовочных и др). Гидрофобную защиту конструкционных материалов и покрытий необходимо выполнять уже на стадии строительства, не дожидаясь вынужденного ремонта и неизбежных дополнительных затрат на приведение внешнего и внутреннего вида объекта в соответ-ствии с общепринятыми эстетическими нормами.
Химическая коррозия кирпичной кладки. Постановка задачи
2. Чернышов Е.М. Морозная деструкция бетонов. Часть 1. Механизм, критериальные условия управления // Строительные материалы. 2017. № 9. С. 40–46.
3. Гагарин В.Г., Желдаков Д.Ю. Методика учета изменения климатических данных при определении количества циклов перехода температуры через ноль по сечению наружной стены здания как часть программы по адаптации к изменению климата // БСТ. 2017. № 6. С. 32–35.
4. Минас А.И. Защита сооружений от солевой формы физической коррозии, возникающей в районах с сухим климатом. — В кн. Защита строительных конструкций от коррозии. М. 1961, вып. 22, 119 с.
5. Инчик В.В. Физико-химические аспекты деструкции кирпичной кладки. Материалы международной конференции «Проблемы долговечности зданий и сооружений в современном строительстве» 10–12 октября 2007 г. СПб: Роза мира, 2007. С. 79–85.
6. Ананьев А.И. Долговечность, влажностный режим и теплозащитные свойства наружных стен зданий из пустотелого кирпича // АВОК. 2018. № 3. С. 70-73.
7. Москвин В.М. Коррозия бетона. М.: Гос. изд-во лит. по строительству и архитектуре, 1952. 344 с.
8. Москвин В.М., Иванов Ф.М., Алексеев С.Н., Гузеев Е.А. Коррозия бетона и железобетона, методы их защиты. М.: Стройиздат, 1980. 536 с.
9. Желдаков Д.Ю. Ограждающие конструкции зданий – фильтры атмосферного воздуха мегаполисов // Методология безопасности среды жизнедеятельности. Программа и тезисы IV Крымской Международной научно-практической конференции. Под редакцией: А.Т. Дворецкого, Т.В. Денисовой, А.Е. Максименко. Крымский федеральный университет им. В.И. Вернадского (Симферополь). 2017. С. 34.
Читайте также: