Коэффициент учитывающий относительное увеличение изгибной жесткости ограждения из бетонов
Снижение модуля упругости согласно СП и здравого смысла. Расчет по прочности.
0. Как в нашем славном СССР, или чуток позже, до 2005 г. обходились без снижения E.
Нелинейность не трогаем. Offtop: Думаю, что пока до этого не дорос, да и не уверен, что кто-то в реальном проектированиии считает жб монолитные каркасы в нелинейной постановке.
Интересует линейный расчет монолитного ЖБ каркаса - подбор арматуры, да так чтоб правильно и век стояло. Хочется разобраться с этим. Хочется узнать ваше мнение и ваше решение при расчете реальных жбк каркасов.
Продолжение вопросов:
1. необходимо ли снижать модуль упругости материала, при расчете монолитных ЖБК. Снижаете ли вы Е?
если на 1. ответ да, то:
2. какой принимать коэф. снижения? По СП 52-103-2007 или статье Залесова? какой коэф. и для каких элементов принимаете вы?
3. В СП написано для расчета на первой стадии расчета (подбор армирования):
0,6 – для вертик. сжатых эл-в, 0,3 для плит перекрытий (покрытий) с учетом длительности действия нагрузки |
С учетом длительности действия нагрузки |
- имеется ввиду учет кратковременной с пониженным значением?
4. Если мы рассчитали каркас, и при подборе арматуры поставили галочку с учетом трещин (у меня в Stark имеется, в Лире, Мономахе тоже вроде есть), то получается все ОК - арматура подобрана с учетом трещин по группе нами заданной? Прогибы, допустим, я проверю вручную, с учетом арматуры, в зависимости от изгибных жесткостей. Нужно ли проверять образование и раскрытие трещин вручную? (в МКЭ нужен нелинейный расчет, его мы пока не трогаем).
5. Интересует литература по данному вопросу: Российская, СССР (что лучше) и буржуйская.
Коэффициент учитывающий относительное увеличение изгибной жесткости ограждения из бетонов
НЕСУЩИЕ И ОГРАЖДАЮЩИЕ КОНСТРУКЦИИ
Load-bearing and separating constructions
Дата введения 2013-07-01
Предисловие
Сведения о своде правил
1 ИСПОЛНИТЕЛИ - ЗАО "ЦНИИПСК им.Мельникова"; институты ОАО "НИЦ "Строительство": НИИЖБ им.А.А.Гвоздева и ЦНИИСК им.В.А.Кучеренко; Ассоциация производителей керамических стеновых материалов; Ассоциация производителей силикатных изделий, Сибирский Федеральный университет
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
3 ПОДГОТОВЛЕН к утверждению Управлением градостроительной политики
Информация об изменениях к настоящему актуализированному своду правил публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Госстрой) в сети Интернет
Изменения N 1, 3, 4 внесены изготовителем базы данных
Введение
Настоящий свод правил разработан с целью повышения качества выполнения строительно-монтажных работ, долговечности и надежности зданий и сооружений, а также уровня безопасности людей на строительной площадке, сохранности материальных ценностей в соответствии с Федеральным законом от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений", повышения уровня гармонизации нормативных требований с европейскими и международными нормативными документами; применения единых методов определения эксплуатационных характеристик и методов оценки.
Актуализация СНиП 3.03.01-87 выполнена следующим авторским коллективом: ЗАО "ЦНИИПСК им.Мельникова" в составе специалистов: кандидаты техн. наук И.И.Пресняков, В.В.Евдокимов, В.Ф.Беляев; д-ра техн. наук Б.В.Остроумов, В.К.Востров; инженеры С.И.Бочкова, В.М.Бабушкин, Г.В.Калашников; Сибирский Федеральный Университет - доцент, канд. техн. наук В.Л.Игошин; институты ОАО "НИЦ "Строительство": НИИЖБ им.А.А.Гвоздева - д-ра техн. наук Б.А.Крылов, В.Ф.Степанова, Н.К.Розенталь; кандидаты техн. наук В.Р.Фаликман, М.И.Бруссер, А.Н.Болгов, В.И.Савин, Т.А.Кузьмич, М.Г.Коревицкая, Л.А.Титова; И.И.Карпухин, Г.В.Любарская, Д.В.Кузеванов, Н.К.Вернигора и ЦНИИСК им.В.А.Кучеренко - д-ра техн. наук И.И.Ведяков, С.А.Мадатян; кандидаты техн. наук О.И.Пономарев, С.Б.Турковский, А.А.Погорельцев, И.И.Преображенская, А.В.Простяков, Г.Г.Гурова, М.И.Гукова; А.В.Потапов, A.M.Горбунов, Е.Г.Фокина; Ассоциация производителей керамических стеновых материалов - В.Н.Геращенко; Ассоциация производителей силикатных изделий - Н.В.Сомов.
1 Область применения
1.1 Настоящий свод правил распространяется на производство и приемку работ, выполняемых при строительстве и реконструкции предприятий, зданий и сооружений во всех отраслях народного хозяйства:
при возведении монолитных бетонных и железобетонных конструкций из тяжелого, особо тяжелого, на пористых заполнителях, жаростойкого и щелочестойкого бетона, при производстве работ по торкретированию и подводному бетонированию;
при изготовлении сборных бетонных и железобетонных конструкций в условиях строительной площадки;
при монтаже сборных железобетонных, стальных, деревянных конструкций и конструкций из легких эффективных материалов;
при сварке монтажных соединений строительных стальных и железобетонных конструкций, соединений арматуры и закладных изделий монолитных железобетонных конструкций;
при производстве работ по возведению каменных и армокаменных конструкций из керамического и силикатного кирпича, керамических, силикатных, природных и бетонных камней, кирпичных и керамических панелей и блоков, бетонных блоков.
Требования настоящего свода правил следует учитывать при проектировании конструкций зданий и сооружений.
1.2 При возведении специальных сооружений - автомобильных дорог, мостов, труб, стальных резервуаров и газгольдеров, тоннелей, метрополитенов, аэродромов, гидротехнических мелиоративных и других сооружений, а также при возведении зданий и сооружений на вечномерзлых и просадочных грунтах, подрабатываемых территориях и в сейсмических районах следует дополнительно руководствоваться требованиями соответствующих нормативных документов.
2 Нормативные ссылки
2.1 В настоящем своде правил использованы ссылки на следующие нормативные документы:
ГОСТ 379-95 Кирпич и камни силикатные. Технические условия
ГОСТ 450-77 Кальций хлористый технический. Технические условия
ГОСТ 530-2012 Кирпич и камень керамические. Общие технические условия
ГОСТ 965-89 Портландцементы белые. Технические условия
ГОСТ 969-91 Цементы глиноземистые и высокоглиноземистые. Технические условия
ГОСТ 1581-96 Портландцементы тампонажные. Технические условия
ГОСТ 2081-2010 Карбамид. Технические условия
ГОСТ 2246-70 Проволока стальная сварочная. Технические условия
ГОСТ 3242-79 Соединения сварные. Методы контроля качества
ГОСТ 5264-80 Ручная дуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры
ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями
ГОСТ 5802-86 Растворы строительные. Методы испытаний
ГОСТ 6402-70 Шайбы пружинные. Технические условия
ГОСТ 6996-66 Сварные соединения. Методы определения механических свойств
ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме
ГОСТ 7473-2010 Смеси бетонные. Технические условия
ГОСТ 7512-82 Контроль неразрушающий. Соединения сварные. Радиографический метод
ГОСТ 7566-2018 Металлопродукция. Приемка, маркировка, упаковка, транспортирование и хранение
ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия
ГОСТ 8269.0-97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний
ГОСТ 8713-79 Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры
ГОСТ 8735-88 Песок для строительных работ. Методы испытаний
ГОСТ 8736-2014 Песок для строительных работ. Технические условия
ГОСТ 9087-81 Флюсы сварочные плавленые. Технические условия
ГОСТ 9206-80 Порошки алмазные. Технические условия
ГОСТ 9467-75 Электроды покрытые металлические для ручной дуговой сварки конструкционных и теплоустойчивых сталей. Типы
ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости
ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам
ГОСТ 10181-2014 Смеси бетонные. Методы испытаний
ГОСТ 10243-75 Сталь. Методы испытаний и оценки макроструктуры
ГОСТ 10541-78 Масла моторные универсальные и для автомобильных карбюраторных двигателей. Технические условия
ГОСТ 10690-73 Калий углекислый технический (поташ). Технические условия
ГОСТ 10832-2009 Песок и щебень перлитовые вспученные. Технические условия
ГОСТ 10906-78 Шайбы косые. Технические условия
ГОСТ 10922-2012 Арматурные и закладные изделия, их сварные, вязаные и механические соединения для железобетонных конструкций. Общие технические условия
ГОСТ 11052-74 Цемент гипсоглиноземистый расширяющийся
ГОСТ 11371-78 Шайбы. Технические условия
ГОСТ 11533-75 Автоматическая и полуавтоматическая дуговая сварка под флюсом. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры
ГОСТ 11534-75 Ручная дуговая сварка. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры
ГОСТ 12730.5-2018 Бетоны. Методы определения водонепроницаемости
ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения
ГОСТ 13087-2018 Бетоны. Методы определения истираемости
ГОСТ 14771-76 Дуговая сварка в защитном газе. Соединения сварные. Основные типы, конструктивные элементы и размеры
ГОСТ Р 55724-2013 Контроль неразрушающий. Соединения сварные. Методы ультразвуковые
ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
ГОСТ 15164-78 Электрошлаковая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры
Коэффициент учитывающий относительное увеличение изгибной жесткости ограждения из бетонов
ПОСОБИЕ
ПО ПРОЕКТИРОВАНИЮ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ИЗ ТЯЖЕЛОГО БЕТОНА БЕЗ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ АРМАТУРЫ
(к СП 52-101-2003)
Содержит указания СП 52-101-2003 по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры; положения, детализирующие эти указания, примеры расчета, а также рекомендации, необходимые для проектирования.
Для инженеров-проектировщиков, а также студентов строительных вузов.
ПРЕДИСЛОВИЕ
В Пособии приведены все указания по проектированию СП 52-101-2003, положения, детализирующие эти указания, примеры расчета элементов, а также рекомендации по проектированию.
Материалы по проектированию редко встречаемых конструкций с ненапрягаемой высокопрочной арматурой (классов А600 и выше) в настоящее Пособие не включены, а приведены в "Пособии по проектированию предварительно напряженных железобетонных конструкций из тяжелого бетона".
В Пособии не приведены особенности проектирования конструкций отдельных видов зданий и сооружений, связанные с определением усилий в этих конструкциях. Эти вопросы освещены в соответствующих Сводах Правил и пособиях.
Единицы физических величин, приведенные в Пособии: силы выражены в ньютонах (Н) или килоньютонах (кН); линейные размеры - в мм (для сечений) или в м (для элементов или их участков); напряжения, сопротивления, модули упругости - мегапаскалях (МПа); распределенные нагрузки и усилия - в кН/м или Н/мм. Поскольку 1 МПа =1 Н/мм, при использовании в примерах расчета формул, включающих величины в МПа (напряжения, сопротивления и т.п.), остальные величины приводятся только в Н и мм (мм).
В таблицах нормативные и расчетные сопротивления и модули упругости материалов приведены в МПа и в кгс/см.
Пособие разработано "ЦНИИПромзданий" (инженер И.К.Никитин, доктора технических наук Э.Н.Кодыш и Н.Н.Трёкин) при участии "НИИЖБ" (доктора технических наук А.С.Залесов, Е.А.Чистяков, А.И.Звездов, Т.А.Мухамедиев).
1. ОБЩИЕ РЕКОМЕНДАЦИИ
ОСНОВНЫЕ ПОЛОЖЕНИЯ
1.1. Рекомендации настоящего Пособия распространяются на проектирование бетонных и железобетонных конструкций зданий и сооружений, выполняемых из тяжелого бетона классов по прочности на сжатие от В10 до В60 без предварительного напряжения арматуры и эксплуатируемых при систематическом воздействии температур не выше 50 °С и не ниже минус 40 °С в среде с неагрессивной степенью воздействия при статическом действии нагрузки.
Рекомендации Пособия не распространяются на проектирование бетонных и железобетонных конструкций гидротехнических сооружений, мостов, тоннелей, труб под насыпями, покрытий автомобильных дорог и аэродромов и некоторых других специальных сооружений.
Примечание. Термин "тяжелый бетон" применен в соответствии с ГОСТ 25192.
1.2. При проектировании бетонных и железобетонных конструкций, кроме выполнения расчетных и конструктивных требований настоящего Пособия, должны выполняться технологические требования по изготовлению и возведению конструкций, а также должны быть обеспечены условия для надлежащей эксплуатации зданий и сооружений с учетом требований по экологии согласно соответствующим нормативным документам.
1.3. В сборных конструкциях особое внимание должно быть уделено на прочность и долговечность соединений.
1.4. Бетонные элементы применяют:
а) преимущественно в конструкциях, работающих на сжатие при расположении продольной силы в пределах поперечного сечения элемента;
б) в отдельных случаях в конструкциях, работающих на сжатие при расположении продольной силы за пределами поперечного сечения элемента, а также в изгибаемых конструкциях, когда их разрушение не представляет непосредственной опасности для жизни людей и сохранности оборудования (например, элементы, лежащие на сплошном основании).
Конструкции рассматривают как бетонные, если их прочность в стадии эксплуатации обеспечена одним бетоном.
1.5. Расчетная зимняя температура наружного воздуха принимается как средняя температура воздуха наиболее холодной пятидневки в зависимости от района строительства согласно СНиП 23-01-99. Расчетные технологические температуры устанавливаются заданием на проектирование.
ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ
1.6. Расчеты бетонных и железобетонных конструкций следует производить по предельным состояниям, включающим:
- предельные состояния первой группы (по полной непригодности к эксплуатации вследствие потери несущей способности);
- предельные состояния второй группы (по непригодности к нормальной эксплуатации вследствие образования или чрезмерного раскрытия трещин, появления недопустимых деформаций и др.).
Расчеты по предельным состояниям первой группы, содержащиеся в настоящем Пособии, включают расчеты по прочности с учетом в необходимых случаях деформированного состояния конструкции перед разрушением.
Расчеты по предельным состояниям второй группы, содержащиеся в настоящем Пособии, включают расчеты по раскрытию трещин и по деформациям.
Расчет бетонных конструкций по предельным состояниям второй группы не производится.
Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов следует, как правило, производить для всех стадий - изготовления, транспортирования, возведения и эксплуатации, при этом расчетные схемы должны отвечать принятым конструктивным решениям.
1.7. Определение усилий и деформаций от различных воздействий в конструкциях и в образуемых ими системах зданий и сооружений следует производить с учетом возможного образования трещин и неупругих деформаций в бетоне и арматуре (физическая нелинейность), а также с учетом в необходимых случаях деформированного состояния конструкций перед разрушением (геометрическая нелинейность).
Для статически неопределимых конструкций, методика расчета которых с учетом физической нелинейности не разработана, допускается определять усилия в предположении линейной упругости материала.
1.8. Нормативные значения нагрузок и воздействий, коэффициенты сочетаний, коэффициенты надежности по нагрузке, коэффициенты надежности по назначению, а также подразделение нагрузок на постоянные и временные (длительные и кратковременные) принимают согласно СНиП 2.01.07-85*.
1.9. При расчете элементов сборных конструкций на воздействие усилий, возникающих при их подъеме, транспортировании и монтаже, нагрузку от веса элемента следует принимать с коэффициентом динамичности, равным: 1,60 - при транспортировании, 1,40 - при подъеме и монтаже. В этом случае следует учитывать также коэффициенты надежности по нагрузке.
Допускается принимать более низкие, обоснованные в установленном порядке, значения коэффициентов динамичности, но не ниже 1,25.
2. МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ
БЕТОН
ПОКАЗАТЕЛИ КАЧЕСТВА БЕТОНА И ИХ ПРИМЕНЕНИЕ ПРИ ПРОЕКТИРОВАНИИ
2.1. Для бетонных и железобетонных конструкций следует предусматривать бетоны следующих классов и марок:
а) классов по прочности на сжатие:
B10; B15; B20; B25; B30; B35; B40; B45; B50; B55; B60;
б) классов по прочности на осевое растяжение:
0,8; 1,2; 1,6; 2,0; 2,4; 2,8; 3,2;
в) марок по морозостойкости:
F50; F75; F100; F150; F200; F300; F400; F500;
г) марок по водонепроницаемости:
W2; W4; W6; W8; W10; W12.
2.2. Возраст бетона, отвечающий его классу по прочности на сжатие и на осевое растяжение (проектный возраст), назначают при проектировании, исходя из возможных реальных сроков загружения конструкции проектными нагрузками. При отсутствии этих данных класс бетона устанавливают в возрасте 28 суток.
Значение отпускной прочности бетона в элементах сборных конструкций следует назначать в соответствии с ГОСТ 13015.0* и стандартами на конструкции конкретных видов.
* На территории Российской Федерации документ не действует. Действует ГОСТ 13050-2003. - Примечание изготовителя базы данных.
2.3. Класс бетона по прочности на сжатие назначается во всех случаях.
Класс бетона по прочности на осевое растяжение назначается в случаях, когда эта характеристика имеет главенствующее значение, и ее контролируют на производстве (например, для бетонных изгибаемых элементов).
Марку по морозостойкости назначают для конструкций, подверженных в процессе эксплуатации попеременному замораживанию и оттаиванию (надземные конструкции, подвергающиеся атмосферным воздействиям, находящиеся во влажном грунте или под водой и др.).
Марку по водонепроницаемости назначают для конструкций, к которым предъявляют требования ограничения водопроницаемости (резервуары, подпорные стены и др.).
2.4. Для железобетонных конструкций рекомендуется принимать класс бетона на сжатие не ниже В15; при этом для сильно нагруженных сжатых стержневых элементов рекомендуется принимать класс бетона не ниже B25.
Для бетонных сжатых элементов не рекомендуется применять бетон класса выше B30.
2.5. Для надземных конструкций, повергаемых атмосферным воздействиям окружающей среды при расчетной зимней температуре наружного воздуха от минус 5 °С до минус 40 °С, принимают марку бетона по морозостойкости не ниже F75; при этом, если такие конструкции защищены от непосредственного воздействия атмосферных осадков, марку по морозостойкости можно применять не ниже F50.
При расчетной зимней температуре выше минус 5 °С в указанных выше конструкциях марку бетона по морозостойкости не нормируют.
Примечание. Расчетная зимняя температура наружного воздуха принимается согласно п.1.5.
НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА
2.6. Нормативные значения сопротивления бетона осевому сжатию (призменная прочность) и осевому растяжению (при назначении класса по прочности на сжатие) принимают в зависимости от класса бетона B согласно табл.2.1.
Нормативные сопротивления бетона и и расчетные значения сопротивления бетона для предельных состояний второй группы и , МПа (кгс/см) при классе бетона по прочности на сжатие
Оценка звукоизоляции ограждающих конструкций
Аннотация: В статье приведено описание распространения шума в жилых помещениях. Приводится сравнение результатов расчета, полученных с использованием международных расчетных ручных и автоматизированных методов. Приведено описание мероприятий по улучшению звукоизоляции строительных конструкций.
Ключевые слова: воздушный шум, звукоизоляция, расчет, улучшение звукоизоляции
Введение
Шум окружает человека везде – на улице, на работе и в быту. По данным ВОЗ около 40 % населения Европы страдают от шума с повышенными уровнями.
Шум в значительной мере нарушает сон. Крайне неблагоприятно действуют прерывистые, внезапно возникающие шумы, особенно в вечерние и ночные часы, на только что заснувшего человека. Внезапно возникающий во время сна шум нередко вызывает сильный испуг, особенно у больных людей и детей. Шум уменьшает продолжительность и глубину сна. Под влиянием уровня шума 50 дБ срок засыпания увеличивается на час и более, сон становится поверхностным, после пробуждения люди чувствуют усталость, головную боль, а нередко и сердцебиение. Поэтому особенно важно обеспечить акустический комфорт в жилых помещениях зданий.
Для обеспечения в помещении требуемых уровней звукового давления ограждающие конструкции (стены и перекрытия) должны обладать необходимыми звукоизоляционными характеристиками.
Физические особенности распространения звука зачастую делают невозможным проводить мероприятия по снижению шума после постройки дома без учета его конструкции, так как они часто касаются в том числе основных вопросов проектирования и строительства зданий. Поэтому мероприятия по снижению шумового воздействия и обеспечению требуемой звукоизоляции строительных конструкций должны быть определены и внедрены уже на стадии проектирования здания.
В соответствии с Постановлением 87 «Положение о составе разделов проектной документации и требованиях к их содержанию» описание архитектурно-строительных мероприятий, обеспечивающих защиту помещений от шума, является необходимой составной частью раздела «Архитектурные решения» проектной документации на объекты капитального строительства. В соответствии с СП 51.13330.2011 (Актуализированная редакция СНиП 23-03-2003 «Защита от шума») в данном разделе должны быть выполнены расчеты ожидаемых уровней шума в помещениях с нормируемыми уровнями шума, определена требуемая звукоизоляция воздушного и ударного шума ограждающими конструкциями здания и разработаны технические решения.
Различают два вида шума по характеру его распространения в помещении: шум воздушный и шум структурный.
Воздушный шум распространяется следующим образом: источник колебаний – голосовые связки, струны музыкальных инструментов, диффузор громкоговорителя – вызывают колебания частиц воздуха, которые распространяются в виде продольных звуковых волн.
Ударный же шум распространяется за счет того, что механическое воздействие на конструкцию вызывает в ней изгибные колебания, которые приводят в колебательное движение частицы воздуха в смежных помещениях, и человек слышит ударный шум, возникающий на другом этаже. Этот тип шума распространяется на большие расстояния, чем воздушный. Например, стук по трубе центрального отопления на одном этаже слышен на всех остальных и воспринимается жильцами, как если бы его источник находился совсем рядом.
Некоторые бытовые приборы являются источниками обоих видов шума. Например, система принудительной вентиляции. Воздушный шум проникает в помещение по воздуховодам, а структурный возникает в результате вибрации стенок защитного кожуха вентилятора и самих воздуховодов.
Механизм распространения шума через ограждающие конструкции здания приведен на рис. 1 [1].
1 – падающая на конструкцию звуковая энергия; 2 – отраженная звуковая энергия; 3, 5 – энергия, излучаемая колеблющейся конструкцией в смежные помещения; 4 – энергия структурного шума; 6 – энергия, трансформирующаяся в тепловую; 7 – звуковая энергия, прошедшая через поры и неплотности; 8 – суммарная звуковая энергия, прошедшая через конструкцию
Рис. 1. Механизм распространения шума через ограждающую конструкцию
Уровни шума некоторых бытовых источников приводятся в таблице 1 в сравнении с нормативными уровнями, установленными СН 2.2.4/2.1.8.562-96.
Таблица 1. Уровни шума бытовых источников
Как видно из таблицы, уровни шума большинства источников превышают нормативные уровни, установленные для дневного времени, и абсолютно все источники имеют уровни шума, выше, чем предельно допустимые уровни, установленные для ночного времени.
Звукоизолирующие преграды, устанавливаемые на пути распространения воздушного шума могут достаточно надежно защищать от него место пребывания человека.
Для обеспечения допустимых уровней звукового давления ограждающие конструкции должны обладать необходимыми звукоизоляционными характеристиками. В строительной акустике нормируются звукоизоляционные характеристики для воздушного и ударного шума. Нормативные значения для различных видов шума приведены в СП 51.13330.2011 Актуализированная редакция СНиП 23-03-2003 «Защита от шума». Оценка индексов звукоизоляции конструкций проводится согласно СП 23-103-2003 «Проектирование звукоизоляции ограждающих конструкций жилых и общественных зданий».
- Оценка звукоизоляции ограждающих конструкций
Согласно СП 23-103-2003 «Проектирование звукоизоляции ограждающих конструкций жилых и общественных зданий» [2] при ориентировочных расчетах индекс изоляции воздушного шума ограждающими конструкциями сплошного сечения допускается определять по формуле:
где т – поверхностная плотность, кг/м 2 ;
К – коэффициент, учитывающий относительное увеличение изгибной жесткости ограждения из бетонов на легких заполнителях, поризованных бетонов и т.п. по отношению к конструкциям из тяжелого бетона с той же поверхностной плотностью.
C 01.12.2013 г. на территории РФ действует ГОСТ Р ЕН 12354-1-2012 «Акустика зданий. Методы расчета акустических характеристик зданий по характеристикам их элементов. Часть 1. Звукоизоляция воздушного шума между помещениями» [3]. В ГОСТ Р ЕН 12354-1-2012 приводится следующая формула для расчета звукоизоляции ограждающих конструкций согласно ЕН ИСО 717-1 «Акустика. Оценка звукоизоляции в зданиях и строительных элементах. Часть 1. Изоляция от воздушного шума»:
Сравнение результатов измерений, представленных различными международными лабораториями за последние тридцать лет, показывает, что они лежат в пределах отклонений от минус 4 до плюс 8 дБ. Такой относительно большой разброс обусловлен многими факторами, некоторые из которых связаны с особенностями материала, другие с лабораторным оборудованием и применением различных методов измерений. Учет влияния указанных факторов привел к разработке различных эмпирических формул для «закона массы», используемых в настоящее время в европейских странах.
Так, в Австрии индекс звукоизоляции воздушного шума рассчитывается по формуле:
, дБ, при m ³ 150 кг/м 2 (3)
, дБ, при m ³ 50 кг/м 2 (5)
Сравнение результатов расчета по различным формулам показывает, что отклонение составляет до 10 дБ. Максимальные значения индекса звукоизоляции получены по европейским методикам расчета. При этом расчет по формулам СП 23-103-2003 и ЕН ИСО 717-1 дает практически одинаковые результаты.
Рис. 2. Индекс изоляции воздушного шума в зависимости от поверхностной плотности конструкции
- Автоматизированные методы расчета
С точки зрения передачи звука, различают акустически однородные (однослойные) конструкции и акустически неоднородные (многослойные) конструкции. Однородные конструкции состоят из одного или нескольких слоев, жестко связанных между собой по всей поверхности и колеблющихся как одно целое (оштукатуренные кирпичные стены, плиты перекрытий с покрытием по стяжке линолеумом и др.). Многослойные конструкции состоят из нескольких слоев, не связанных жестко друг с другом, способных колебаться с разными для каждого слоя амплитудами. Звукоизоляционные свойства неоднородных конструкций выше, чем однородных.
Для однослойных конструкций одним из факторов снижения звукоизоляции воздушного шума является явление «волнового совпадения». При возбуждении однослойной конструкции в какой-либо точке под действием источника колебаний, в ней распространяются изгибные волны, скорость которых зависит от толщины, плотности, модуля упругости и частоты возбуждающих колебаний. В звуковой волне, падающей наклонно на конструкцию, чередующиеся области повышенного и пониженного звукового давления вызывают деформацию и изгиб конструкции.
Проведение оценки индексов звукоизоляции с учетом резонансных явлений, особенно для многослойных конструкций – процесс довольно трудоемкий, поэтому предпочтение обычно отдается автоматизированным методам расчета.
Все положения стандартизированных российских расчетных методик реализованы в программном модуле «Расчет звукоизоляции» фирмы «Интеграл». Пример расчета индекса звукоизоляции приведен на рис. 3.
Рис. 3. Автоматизированный расчет индекса звукоизоляции
В новой версии программы имеется возможность не только получить спектральную характеристику перегородок и перекрытий различных типов, но и оценить их с помощью интегрального показателя – индекса звукоизоляции. Расчет производится автоматически для однородных материалов, многопустотных плит и многослойных конструкций.
Как известно, эффективность звукоизоляции катастрофически падает, если в ограждении есть щели и отверстия: например, если в сплошном массивном металлическом листе сделать 13 % (к общей площади) отверстий, то лист пропустит 97 % падающего на него звука. Небольшая щель при пропуске трубы или неплотно смонтированная электрическая розетка в стене на 1-3 дБ снизят звукоизоляционные свойства любой, даже самой качественной конструкции. Поэтому в расчетной программе реализована возможность оценки снижения шума при наличии отверстий.
Кроме того, программа позволяет подобрать техническое решение, позволяющее обеспечить выполнение нормативных требований.
- Улучшение звукоизоляции ограждающих конструкций
Для однослойных массивных ограждений существует зависимость – чем оно массивнее, тем лучше оно изолирует помещение от шума. Согласно исследованиям, удвоение массы конструкции приводит к улучшению звукоизоляции в среднем на 6 дБ.
Однако требование рационального расхода ресурсов диктует необходимость развития современного проектирования звукоизоляции в направлении обеспечения требуемых акустических условий в помещениях за счет регулируемой звукоизоляции ограждений при минимально возможной их массе.
Улучшения звукоизоляции перегородки можно добиться, уменьшив жесткость узла сопряжения каркаса перегородки с несущим перекрытием и элементов перегородок друг с другом. Для этого при монтаже перегородок между поверхностью основания и горизонтальными направляющими устанавливают уплотнительные ленты, эластичные прокладки. Аналогично уплотняющие прокладки устраивают в узле примыкания перегородки к потолку.
Хорошую звукоизоляцию могут обеспечить перегородки по металлическому каркасу с двухслойной обшивкой, у которых индекс изоляции воздушного шума на 6 дБ больше по сравнению с однослойной.
Наличие жесткого каркаса создает условия для беспрепятственной передачи звука через его конструкцию от одной обшивки к другой. Поэтому замена одинарного каркаса на двойной, состоящий из двух рядов, не связанных между собой стоек, позволяет значительно улучшить звукоизоляционные характеристики.
Улучшение звукоизоляции слоем, таким как упруго закрепленная облицовка стен, плавающий пол или подвесной потолок, различно для косвенной и прямой звукопередачи и зависит от типа базовых структурных элементов, на которые устанавливается слой. Поэтому звукоизоляция должна определяться по результатам лабораторных измерений с таким же базовым структурным элементом, который применяется в натурных условиях.
В настоящее время не существует стандартного метода расчетов или измерений, позволяющего определить влияние косвенной звукопередачи на прямую звукопередачу, а также результатов, обусловленных изменением базового структурного элемента.
Однако, по результатам испытаний различных технических решений, позволяющих улучшить звукоизоляцию конструкций, набирается статистика, позволяющая использовать их в процессе проектирования. Некоторые типичные примеры улучшения звукоизоляции дополнительными слоями или при помощи мероприятий приведены в таблице 2 согласно ГОСТ Р ЕН 12354-12012, СП 55-101-2000 и каталогам производителей.
Таблица 2. Улучшение звукоизоляции конструкций
Заключение
СП 275.1325800.2016 Конструкции ограждающие жилых и общественных зданий. Правила проектирования звукоизоляции стр. 3
Требуемую звукоизоляцию R тр Атран, дБА, следует определять из расчета обеспечения допустимых значений проникающего шума как по эквивалентному, так и по максимальному уровню, т.е. из двух значений R тр Атран принимается наибольшее.
9 Расчеты частотных характеристик звукоизоляции внутренних ограждающих конструкций жилых и общественных зданий
Примеры расчета звукоизоляции наиболее характерными ограждающими конструкциями приведены в приложении А.
Расчеты изоляции воздушного шума криволинейными ограждениями (в частности цилиндрическими), а также изоляции воздушного шума двойными ограждениями без жесткой связи по контуру приведены в приложениях Б и В.
9.1 Расчет изоляции воздушного шума однослойными плоскими тяжелыми ограждениями сплошного сечения (железобетон, бетон различных видов, кирпич и т.п.)
Частотную характеристику изоляции воздушного шума однослойной плоской ограждающей конструкцией сплошного сечения с поверхностной плотностью от 100 до 800 кг/м2 (из бетона, железобетона, кирпича, керамзитобетона и подобных материалов) следует определять, изображая её в виде ломаной линии, аналогичной линии ABCD (рисунок 1).
Рисунок 1 – Частотная характеристика изоляции воздушного шума однослойным плоским ограждением
Абсциссу точки В-fв следует определять по таблице 7 в зависимости от толщины и плотности материала конструкции. Значение fв следует округлять до среднегеометрической частоты, в пределах которой находится fв. Границы частот, входящих в 1/3-октавную полосу, приведены в таблице 8.
Ординату точки В-Rв, дБ, следует определять в зависимости от эквивалентной поверхностной плотности mэ, по формуле
Эквивалентная поверхностная плотность mэ, кг/м2, определяется по формуле
где m - поверхностная плотность, кг/м2, (для ребристых конструкций без учета ребер);
К - коэффициент, учитывающий относительное увеличение изгибной жесткости ограждения из бетона на легких заполнителях, поризованных бетонов и т.п. конструкций по отношению к конструкциям из тяжелого бетона с той же поверхностной плотностью. Для сплошных ограждающих конструкций плотностью y= 1800 кг/м2 и более К = 1.
Таблица 7 - Значения абсциссы fв в зависимости от поверхностной плотности бетона
Ограждающих конструкций жилых зданий
Индекс изоляции воздушного шума однослойными ограждающими конструкциями, а также двухслойными глухими остеклениями и перегородками, выполненными в виде двух облицовок по каркасу с воздушным промежутком, следует определять на основании рассчитанной частотной характеристики изоляции воздушного шума.
Индекс изоляции воздушного шума перекрытиями с полом по упругому основанию и индекс приведенного уровня ударного шума под перекрытиями определяются непосредственно (без построения расчетных частотных характеристик).
6.1. Методика построения частотных характеристик акустически однородных ограждений
К акустически однородным конструкциям кроме сплошных, состоящих из одного материала, относятся также конструкции из нескольких слоев разнородных материалов, жестко связанных между собой (например, оштукатуренные кирпичные или керамзитобетонные стены, склеенные из разнородных материалов перегородки и т.п.).
Расчет индекса изоляции воздушного шума акустически однородных ограждений состоит из построения частотной характеристики звукоизолирующей способности этого ограждения, вычисления индекса изоляции воздушного шума , дБ и сравнения его с нормативным индексом по таблице 1.
Частотную характеристику изоляции воздушного шума однослойной плоской ограждающей конструкцией сплошного сечения (рис. 1.6) с поверхностной плотностью от 100 до 800 кг/м 2 из бетона, железобетона, кирпича и тому подобных материалов следует определять, изображая ее в виде ломаной
линии, аналогичной линии ABCD на рисунке 2.
Рисунок 1 – Акустически
однородные конструкции.
(а - массивные, б – тонкие)
Расчет и построение частотной характеристики звукоизолирующей способности акустически однородного ограждения производится в следующем порядке:
а) Строится график, по оси абсцисс которого откладываются частоты в диапазоне 100-6000 Гц (в масштабе: октава – 3 см), а по оси ординат – величины звукоизолирующей способности в дБ (масштаб: 10 дБ – 2 см).
б) определяется поверхностная плотность ограждения
Рисунок 2— Частотная характеристика изоляции воздушного шума однослойным плоским ограждением
в) Построение кривойначинается с горизонтального участка ВА.
Абсциссу точки В - следует определять по таблице 4 в зависимости от толщины и плотности материала конструкции.
Значение следует округлять до среднегеометрической частоты, в пределах которой находится . Границы третьоктавных полос приведены в таблице 5.
Ординату точки В — RB следует определять в зависимости от эквивалентной поверхностной плотности , по формуле
Эквивалентная поверхностная плотность определяется по формуле
- поверхностная плотность, кг/м 2 (для ребристых конструкций принимается без учета ребер);
К- коэффициент, учитывающий относительное увеличение изгибной жесткости ограждения из бетонов на легких заполнителях, поризованных бетонов и т.п. по отношению к конструкциям из тяжелого бетона с той же поверхностной плотностью. Для сплошных ограждающих конструкций из бетонов на легких заполнителях, поризованных бетонов; кладки из кирпича и пустотелых керамических блоков коэффициент Копределяется по таблице 6.
г) из точки В влево проводится горизонтальный отрезок ВА , а вправо от точки В проводится отрезок ВС с наклоном 6 дБ на октаву до точки С с ординатой =65 дБ; из точки С вправо проводится горизонтальный отрезок С D .
Если точка С лежит за пределами нормируемого диапазона частот ( Гц), отрезок CD отсутствует.
Значения звукоизоляции следует округлять до 0,5 дБ.
ПРИМЕЧАНИЕ:
Расчеты изложенные в 6.1. дают достоверные результаты при отношении толщины разделяющего ограждения (подлежащего расчету) к средней толщине примыкающих к нему ограждений в пределах
При других отношениях толщин необходимо учитывать изменение звукоизоляции за счет увеличения или уменьшения косвенной передачи звука через примыкающие конструкции.
Для крупнопанельных зданий, в которых ограждающие конструкции выполнены из бетона, железобетона, бетона на легких заполнителях, поправка имеет следующие значения:
Для зданий из монолитного бетона величина должна быть уменьшена на 1 дБ.
В каркасно-панельных зданиях, где элементы каркаса (колонны и ригели) выполняют роль виброзадерживающих масс в стыках панелей, вводится дополнительно поправка к результатам расчета = + 2 дБ.
Пример 4.Построить частотную характеристику изоляции воздушного шума перегородкой из керамзитобетона класса В 7,5 (рис.1), плотностью 1400 кг/м 3 и толщиной 120 мм.
а) Строим график (рис.3);
= 33000 / 120 = 275 250 Гц.
Округляем до средней частоты третьоктавной полосы в пределах которой находится .
в) Определяем поверхностную плотность перегородки
= 1400·0,12 = 168 кг/м 2 .
По таблице 6 находим коэффициент = 1,2, таким образом эквивалентная поверхностная плотность перегородки составит
= 168·1,2 = 201,6 кг/м 2 .
Звукоизоляция в точке В составляет дБ.
Из т. В влево проводим горизонтальный отрезок ВА, вправо от т. В – отрезок ВС с наклоном 6 дБ на октаву, точка С лежит вне нормируемого диапазона частот (рис. 3). В нормируемом диапазоне частот изоляция воздушного шума составляет:
Гц |
R , дБ |
Рисунок 3— Расчетная частотная характеристика к примеру 4.
а) Строим график (рис.5.2);
б) Определяем поверхностную плотность перегородки
= 2500·0,12 = 300 кг/м 2 .
в) Для определения коэффициента необходимо вычислить момент инерции сечения .
Многопустотная плита шириной 1,2м имеет 6 круглых пустот диаметром 0,16м, расположенных посредине сечения.
Момент инерции находим как разность моментов инерции прямоугольного сечения и шести круглых пустот :
Определяем коэффициент по формуле 7.
Средняя плотность плиты (с учетом пустотности) составляет 1364 кг/м 2 .
По таблице 4 определяем частоту точки В:
= 33000 / 220 = 150 160 Гц.
Округляем до частоты третьоктавной полосы, в пределах которой находится .
Определяем эквивалентную поверхностную плотность конструкции = 1,2·300 = 360 кг/м 2 .
Находим ординату точки В:
г) Из т. В влево проводим горизонтальный отрезок ВА, вправо от т. В – отрезок ВС с наклоном 6 дБ на октаву. Точка С попадает на последнюю третьоктавную полосу нормируемого частотного диапазона.
В нормируемом диапазоне частот изоляция воздушного шума составляет:
Гц |
R , дБ |
Рисунок 5— Расчетная частотная характеристика к примеру 5.
Читайте также: